| CS 395T: Sublinear Algorithms | Fall 2014 |
| :--- | ---: | ---: |
| Lecture $1 —$ Aug, 28, 2014 | |
| Prof. Eric Price | Scribe: Eshan Chattopadhyay, Zhao Song |

1 Overview

In this lecture we will introduce 3 different but related areas of computer science.

1. Streaming Algorithms: There is a lot of data coming in, but there is a constraint on the amount of storage i.e. $o(n)$ space.
2. Compressed Sensing: We are allowed to make $o(n)$ observations on the data and compute functions of the data.
3. Property Testing: Testing properties of objects e.g. graphs with randomized algorithms that run in very less time and succeed with high probability.

1.1 Property Testing

Let G be a graph. Some properties you might want to test for are:

1. Is G bipartite?
2. Is G connected?

Similarly, for a distribution D we can ask if D is uniform.
It turns out that for exactly testing of a property is a hard problem in some cases. Thus we use a relaxed definition of property testing. We will be interested in the following task:

Distinguish

1. X has property P : Accept with high probabilty.
2. X is a ϵ-far from having P : Reject with high probability.

Thus for testing a graph property, we can test for:

1. G has property P.
2. Need to change at least ϵn vertices of G to have P.

It turns out that testing for testing if a graph G is bipartite (using the above definition), there is a known algorithm that takes poly $\left(\frac{1}{\epsilon}\right)$ samples and poly $\left(\frac{1}{\epsilon}\right)$ time.
For testing if G is connected, there is an algorithm that take poly $\left(\frac{1}{\epsilon}\right)$ samples.

2 Testing if a distribution is uniform

We now present and analyze an algorithm for testing if a distribution is uniform. We note that the naive way would require $O(n)$ samples.

Distribution Consider a distribution over $\{1,2, \cdots, n\}$ with pdf P. We need to distinguish between the following possibilities.

1. $\forall i, p_{i}=\frac{1}{n}\left(\right.$ then $\left.P=U_{n}\right)$.
2. $\sum_{i=1}^{n}\left|p_{i}-\frac{1}{n}\right| \geq \epsilon$.

Let $x_{1}, x_{2}, \cdots, x_{m}$ be independent samples from P. Our algorithm works by counting the number of collisions in the samples. We define the random variable A as:

$$
A=\frac{\sum_{1 \leq i<j \leq m} 1\left(x_{i}=x_{j}\right)}{\binom{m}{2}}
$$

Thus,

$$
E[A]=\sum_{i=1}^{n} p_{i}^{2}=\|P\|_{2}^{2}
$$

We note the following simple claims.
Claim 2.1. $\left\|U_{n}\right\|_{2}^{2}=\frac{1}{n}$.
Claim 2.2. For any pdf P, if $\left\|P-U_{n}\right\|_{1} \geq \epsilon$, then $\|P\|_{2}^{2} \geq \frac{1}{n}+\frac{\epsilon^{2}}{n}$.
Algorithm: Compute A :

1. output YES, if $A \leq \frac{1}{n}+\frac{\epsilon^{2}}{2 n}$;
2. No, otherwise.

To prove correctness, we need to show that $\operatorname{Var}[A]$ small.
Claim 2.3.

$$
\operatorname{Var}[A]<\frac{\epsilon^{4}}{8 n^{2}} \quad \text { if } \quad m>\frac{\sqrt{n}}{\epsilon^{4}}
$$

Proof. Define: $Z_{i j}=1\left(x_{i}=x_{j}\right)-\|P\|_{2}^{2}$.
Thus, we have:

$$
\begin{aligned}
\operatorname{Var}[A] & =E[A-E[A]]^{2} \\
& =E\left[\frac{\sum_{1 \leq i<j \leq m} 1\left(x_{i}=x_{j}\right)}{\binom{m}{2}}-\|P\|_{2}^{2}\right]^{2} \\
& =E\left[\frac{\sum_{1 \leq i<j \leq m} Z_{i j}}{\binom{m}{2}}\right]^{2} \\
& =\frac{1}{\binom{m}{2}}\left(\sum_{1 \leq i<j \leq m} E\left[Z_{i j}^{2}\right]+\sum_{1 \leq i<j \leq m, k<l, i, j \neq k, l} E\left[Z_{i j} Z_{k l}\right]+\sum_{1 \leq i<j \leq m, k \notin\{i, j\}} E\left[Z_{i j} Z_{j k}\right]\right)
\end{aligned}
$$

Consider the first term:

$$
E\left[Z_{i j}^{2}\right] \leq E\left[\left(Z_{i j}+\|P\|_{2}\right)^{2}\right]=\|P\|_{2}^{2}
$$

Consider the second term:

$$
E\left[Z_{i j} Z_{k l}\right]=0
$$

Consider the third term:

$$
\begin{aligned}
& E\left[Z_{i j} Z_{j k}\right] \\
= & E\left[1\left(x_{i}=x_{j}=x_{k}\right)-\|P\|_{2}^{2} \cdot\left(1\left(x_{i}=x_{j}\right)+1\left(x_{j}=x_{k}\right)\right)+\|P\|_{2}^{4}\right] \\
= & \sum_{i=1}^{n} p_{i}^{3}-\|P\|_{2}^{2} \cdot 2 p_{i}^{2}+\|P\|_{2}^{4}=\left(\sum_{i=1}^{n} p_{i}^{3}\right)-\|P\|_{2}^{4}
\end{aligned}
$$

Now, we have that

$$
\sum_{i=1}^{n} p_{i}^{3} \leq \sqrt{n}\left(\sum_{i} p_{i}^{2}\right)^{2}
$$

because for each i,

$$
\begin{aligned}
& \text { if } p_{i} \leq 1 / \sqrt{n} \text {, then } p_{i}^{3} \leq p_{i}^{2} \frac{\sqrt{n}}{n} \leq \sqrt{n} p_{i}^{2}\left(\sum_{i} p_{i}^{2}\right) \\
& \text { if } p_{i} \geq 1 / \sqrt{n} \text {, then } p_{i}^{3} \leq \sqrt{n} p_{i}^{2} \cdot p_{i}^{2} \leq \sqrt{n} p_{i}^{2}\left(\sum_{i} p_{i}^{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{i} E\left[Z_{i j} Z_{j k}\right] \\
= & \binom{m}{3} \cdot\left(\sqrt{n} \cdot\left(\sum_{i} p_{i}^{2}\right)^{2}-\|P\|_{2}^{4}\right) \\
\leq & \frac{m^{3}}{6} \sqrt{n}\|P\|_{2}^{4}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{Var}[A] & \leq \frac{4}{m^{4}}\left(\frac{m^{2}}{2}\|P\|_{2}^{2}+\frac{m^{3}}{6} \sqrt{n}\|P\|_{2}^{4}\right) \\
& =\frac{2}{m^{2}}\|P\|_{2}^{2}+\frac{2}{3 m} \sqrt{n}\|P\|_{2}^{4} \\
& <2 \frac{\epsilon^{8}}{n}\|P\|_{2}^{2}+\frac{2}{3} \epsilon^{4}\|P\|_{2}^{4} \quad\left(\text { since } \quad m>\frac{\sqrt{n}}{\epsilon^{4}}\right) \\
& \simeq \frac{2}{3} \epsilon^{4}\|P\|_{2}^{4}
\end{aligned}
$$

We can conclude that $|A-E[A]| \leq \epsilon^{2}\|P\|_{2}^{2}$ with probability $>3 / 4$.

3 Streaming Algorithm

1. orders coming by
2. connection pass through router
3. scanning disk

Ex. Distinct elements.

$1,7,3,997,1,1,1,5,7, \cdots \in[U]$. Estimate number of distinct values n to ($1 \pm \epsilon$) factor.

1. Hash table $O(n)$ space
2. today $O\left(\frac{1}{\epsilon^{3}} \log |U|\right)$ space
3. Next class: $O\left(\frac{1}{\epsilon^{2}} \log \log |U|\right)$ space

A simpler problem: Is $n>(1+\epsilon) T$ or $n<(1-\epsilon) T$ in space S.
We show how a solution for the above problem can be used to solve the general problem.
Algorithm: Choose random set $S \subset[U]$, each $i \in S$ with $p=\frac{1}{T}$. Record any element if stream lies in S.

We run the algorithm in parallel for the following values of $T: 1,(1+\epsilon),(1+\epsilon)^{2}, \cdots,(1+\epsilon)^{X}=U$.

