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1 Overview

These notes describe two lectures. The first gives an introduction to ε-covers, ε-packings, and RIP
matrices. The second describes compressed sensing and iterative hard thresholding.

2 ε-cover and ε-packing

First, we define metric spaces, ε-covers and covering number.

Definition 1 (Metric Space). A metric space is an ordered pair (X, d) where X is a space and d
is a metric on X such that ∀x, y ∈ X :

1. d(x, y) ≥ 0.

2. d(x, y) = 0⇔ x = y.

3. d(x, y) = d(y, x).

4. d(x, y) ≤ d(x, z) + d(z, y), ∀z ∈ X.

Definition 2. An ε-cover of X with respect to d is a collection of points {x1, · · · , xn} ⊆ X such
that ∀y ∈ X,min1≤i≤nd(y, xi) ≤ ε.

Definition 3. The covering number N(ε,X, d) is the minimal number of points of all ε-cover of X
w.r.t. d.

We abuse the notation N to denote N(ε,X, d) if X, d is clear. We use logN(ε,X, d) to denote the
metric entropy of (X, d) which indicates the information by knowing the positions of a point to ε
distance in d.

Example 4. X = [−1, 1], d(x, y) = |x − y|. Then {0,±2ε,±4ε, · · · } is an ε-cover of X, so
N(ε,X, d) ≤ 2

2ε + 1 = 1 + 1/ε.

Example 5. X = [−1, 1]m, d(x, y) = |x− y|∞. From the above example, {0,±2ε,±4ε, · · · }m is an
ε-cover of X. So N(ε,X, d) ≤ (1 + 1/ε)m and the metric entropy is logN = Θ(m log(1

ε )).

A closely related concept of covering number is packing number.

Definition 6. An ε-packing of X w.r.t. d is a collection of points {x1, · · · , xn} ⊆ X such that
∀i, j(i 6= j), d(xi, xj) ≥ ε.

The packing number M(ε,X, d) is the maximal number of points of all ε-packings of (X, d).
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Lemma 7.
M(2ε,X, d) ≤ N(ε,X, d) ≤M(ε,X, d).

In general, the difference between ε and 2ε will only affect constants, which we will not care about
in this course. So we will freely switch between the packing number and the covering number of
(X, d).

3 N(ε, Bd
q , ‖ · ‖p)

Now let us consider the covering of Lq balls in Lp norm.

Definition 8. ‖x‖p = (
∑

i |xi|p)1/p for any p > 0. The unit ball of dimension d in Lp is Bd
p =

{x ∈ Rd|‖x‖p ≤ 1}.

One can verify ‖ · ‖p is a metric by Holder’s inequality for any p > 0. We abuse the notation ‖ · ‖ if
p is clear. One of the basic property of Lp we will use in this lecture is ‖x‖p0 ≤ ‖x‖p1 for p0 ≥ p1.
We also use V ol(S) to denote the volume of S. Another property of ball volume often used in this

lecture is that
αBdp
βBdp

= (αβ )d – scaling a ball by α in each of d dimensions increases its volume by a

factor of αd.

Fact 9. 1
εd
V ol(Bdq )

V ol(Bdp)
≤ N(ε, Bd

q , ‖ · ‖p) ≤ (2
ε )
d V ol(B

d
q+ ε

2
Bdp)

V ol(Bdp)
.

Proof. Lower bound: Let {x1, x2, · · · , xN} be an ε-cover of Bd
q . Because Bd

q ⊆ ∪i(xi + εBd
p),

V ol(Bd
q ) ≤ N · V ol(εBd

p).

Upper Bound: Let {x1, x2, · · · , xN} be an ε-packing of Bd
q . Because all the balls of xi + ε

2B
d
p are

disjoint, ∪i(xi + ε
2B

d
p) ⊆ Bd

q + ε
2B

d
p(some xi may be on the surface). Therefore N · V ol( ε2B

d
p) ≤

V ol(Bd
q + ε

2B
d
p) and a upper bound of packing number is also a upper bound of covering number

by Lemma 7.

To make this simpler, let’s look at a couple cases.

Same norm. If p = q, the upper bound
V ol(Bdq+ ε

2
Bdp)

V ol(Bdp)
=

V ol((1+ ε
2

)Bdp)

V ol(Bdp)
= (1 + ε

2)d. Therefore

1
εd
≤ N ≤ (1 + 2

ε )
d.

When q = 1 and p = 2. Because Bd
1 ≤ Bd

2 from the property of Lp, one upper bound is
V ol(Bdq+ ε

2
Bdp)

V ol(Bdp)
≤ V ol((1+ ε

2
)Bdp)

V ol(Bdp)
≤ (1 + ε

2)d. For the lower bound, V ol(Bd
1) = 2d

d! because there are

two signs for each dimension and the volume of each d-simplex is 1
d! . V ol(Bd

2) = πd/2

(d/2)! for even

d[Sphere]. Therefore 1
εd
· 2d/d!

πd/2/(d/2)!
≤ N and d log(1/ε)− d

2 log d ≤ logN ≤ d log(2/ε).

This gives a tight bound of N = Θ(d log(1/ε)) when ε < 1/d. For ε > 1/
√
d, however, the lower

bound is trivial.
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In fact, the volume argument is loose in the “large ε” setting. We can also show that logN ≤ O( log d
ε2

)
by Maurey’s empirical method (see, for example, [NPW12]):

1. For any ~x = (x1, · · · , xd) ≤ Bd
1 , we consider the following experiment(e1, e2, · · · , ed is the

standard basis of Rd):

2. Randomly sampling zi from {e1, e2, · · · , ed} according to (|x1|, |x2|, · · · , |xn|) (or 0 for the
remainder) for i = 1, · · · , t independently.

3. Let z = 1
t

∑
i zi. Then E[z] = x and

E[‖x− z‖22] =

d∑
j=1

(xj −
1

t

∑
i

1zi=ej )
2 =

1

t

d∑
j=1

xj(1− xj) ≤
1

t

∑
j

xj ≤ 1/t.

4. So there exists a z such that E[‖z−x‖2] ≤ ε after choosing t = 1/ε2. Therefore N ≤ (2d+1)t

and logN ≤ O( log d
ε2

).

4 Sparse Vectors and RIP matrix

Let us start with some definitions.

Definition 10. We use supp(x) = {i|xi 6= 0, 1 ≤ i ≤ d} to denote the support of vector x. And we
define ‖x‖0 = |supp(x)| and k-sparse space

Tk = {x : ‖x‖2 ≤ 1, ‖x‖0 = k}.

It is not difficult to see N(ε, Tk, ‖ · ‖2) ≤
(
d
k

)
(1 + 2

ε )
k by a union bound over all k-dimensional

subspaces. Therefore logN(ε, Tk, ‖ · ‖2) ≤ O(k log d
kε).

Now we are interested in finding a matrix A with “few” rows that preserves the norm of every
vector x ∈ Tk, i.e. has bounded maxx:x∈Tk

‖Ax‖2
‖x‖2 over nonzero vector x. Recall what we proved in

the construction of a JL matrix: if we sample a matrix A ∈ Rm×n by independently sampling each
entry ai,j ∼ N(0, 1/m), then ∀x ∈ Rn, ‖Ax‖22 = (1 ± ε)‖x‖22 with prob. at least 1 − 2e−ε

2m/C for
some constant C(see lecture note 2). If Tk is finite, we could take a union bound to argue the same
way to generate A also works here for every vector x ∈ Tk. However, Tk is infinite and we need
another argument to bound the error.

Instead of union bound, let S = {x(1), · · · , x(N)} be an ε-cover(a.k.a.“net”) of Tk with size N ≤(
d
k

)
(1 + 2

ε )
d. We can decompose any x ∈ Tk in this way:

1. Find x1 ∈ S such that x = x1 + εx′ for ‖x′‖2 ≤ 1 and |supp(x′)| ≤ k. Since S is an ε-cover,
there always exists x1 ∈ S such that ‖x − x1‖2 < ε by definition. |supp(x′)| ≤ k follows
from a special property of our net: because our net is a union bound over all k-dimensional
subspaces, we can choose x1 from the same k-dimensional subspace as x.

2. If ‖x′‖ 6= 0, then applying the above procedure on x′ again to get x′ = x2 + εx′′ such that
‖x′′‖2 ≤ 1 and |supp(x′′)| ≤ k, and so on.
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3. Eventually, we have x = x1 + εx2 + ε2x3 + · · ·+ εi−1xi + · · · so all the xi ∈ S.

Now we choose m = C0 logN/ε2 = O( d
ε2

log d
εk ) for a large constant C0 and ε < 1

2 , then ‖Ax‖2 =
(1± ε)‖x‖2 for all x ∈ S with high probability by union bound. This concludes

∀x ∈ T, ‖Ax‖2 = ‖A(x1 + εx2 + ε2x3 + · · ·+ εi−1xi · · · )‖2
≤ ‖Ax1‖2 + ε‖Ax2‖2 + ε2‖Ax3‖2 + · · ·+ εi−1‖Axi‖2 + · · ·
≤ (1 + ε)(1 + ε+ ε2 + · · ·+ εi−1 + · · · )

≤ (1 + ε)
1

1− ε
≤ 1 +O(ε)

Definition 11 (Restricted Isometry Property). An m× n matrix A has restricted isometry prop-
erty(RIP) of (k, ε) if ∀x with ‖x‖0 ≤ k, (1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2.

An equivalent way to define RIP is for any subset S of size k, ‖(AS)TAS − I‖2 ≤ ε where AS is the

matrix by picking column in S and ‖A‖p = supx 6=~0
‖Ax‖p
‖x‖p .

From now on, we assume ε is a small constant such as 1/10 and 1/100 without further specification.
In general, we are interested in the construction of an m × n RIP matrix A with the following
properties:

1. It is easy to check A satisfies RIP or not.

2. A can be stored in o(mn) space.

3. The multiplication Ax can be computed in o(mk) time for x ∈ Tk.

4. m is as small as possible.

Example 12 (Random (sub)Gaussian Matrix). We generate A by independently sampling a (sub)Gaussian
variable in every entry. With overwhelming probability (≥ 1− eΩ(m)), A is an RIP matrix for suf-
ficiently large m = Ω( 1

ε2
klog(n/k)). However, we do not know how to verify A satisfies RIP even

though it happens with very high prob., and it is also bad in storage and multiplication.

Example 13 (Coherent Matrix). A matrix A with n columns {a1, a2, · · · , an} is defined to be α-
coherent iff

<ai,aj>√
‖ai‖2·‖aj‖2

≤ α. Let A′ be the normalized matrix of A(normalize every column to a

unit vector). We can show A′ is a (k, α · k)-RIP matrix: for any k-sparse vector x,

‖Ax‖22 =
∑

i∈supp(x)

∑
j∈supp(x)

< a′i, a
′
j > xixj =

∑
i∈supp(x)

x2
i +

∑
i 6=j

α · |xixj | ≤ ‖x‖22 + αk‖x‖22.

Coherent matrix is easy to verify but it need a large m if we want to use it as a RIP matrix. For
example, suppose we generate every ai by independently choosing {±1} in every entry. It is not to
difficult to see m ≥ 1/α2 ≥ Ω(k2) if we want ai is α-coherent with high prob.(compute the variance
of < ai, aj >). Finding an explicit RIP matrix with m much smaller than k2 is a challenging open
problem. Some progress was made by Bourgain et. al.[BDFKK11], who obtained m = k2−δ for a
universal constant δ, but δ is tiny.
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Example 14 (Fourier Matrix). [FM] An n × n square Fourier matrix F is defined as Fi,j = ωij

where ω = e2πi/n(i is the imaginary unit here). Another way to construct a (k, ε)-RIP matrix is
sampling a row subset S with size m = O(k log n log3 log k) to get a |S| × n matrix A[CGV2013],
and A is a RIP matrix w.h.p.

There exists an algorithm multiplies A to x in time Õ(m) and stores A in space O(k log2 n log3 log k).
However, we do not know how to verify a matrix A that is generated this way is a RIP matrix. The
same construction also works for Hadamard matrix and a similar one for circulant matrices.

One interesting question for RIP matrices is how sparse can a RIP matrix be. The negative result
is that there are at least Ω(k) nonzero entries in every column (see HW3).

5 Compressed Sensing

Let A ∈ Rm×n. We normalize every column of A to be roughly 1. Given y = Ax + e for some
x ∈ Rn with ‖x‖0 ≤ k and e is a noise vector. The goal of compressed sensing is to efficiently
recover x̂ given y such that ‖x− x̂‖2 ≤ C‖e‖2 for some universal constant C.

Compressed sensing has widely applications in industry. For example, it has been used in imaging
processing, magnetic resonance imaging(MRI), oil expolation, spectrum sensing and feature testing.
It takes advantage of the data’s sparseness in some basis. We first discuss the differences between
compressed sensing and sparse recovery, then introduce Iterative Hard Thresholding to recover x̂.

Compressed sensing is very similar to “sparse recovery” or “heavy hitters”, problems we saw earlier
in class with Count-Min and Count-Sketch. “Compressed sensing” and “sparse recovery” are terms
for essentially the same problem that grew out of different communities: “compressed sensing” from
math/statistics/signal processing, and “sparse recovery” from streaming algorithms in computer
science. That said, there are noticeable differences in problem formulation and approaches between
the two communities, so it makes sense to preserve the distinction.

Note that this list isn’t formal or definitive; it’s a sense of differences between the two communities
working in the same area, but there’s work that blurs the lines.

1. In sparse recovery, it is allowed to choose matrix A after giving x and the algorithm only
needs to be able to find the correct answer w.h.p. over A such as Count-Sketch. However,
we have to choose the matrix A before reading y in compressed sensing, and the algorithm
should be able to recover x̂ for every y = Ax+ e where x, e satisfy the requirements.

2. In compressed sensing, there is a noise vector e and one often assumes that x is exactly k-
sparse, while in sparse recovery one generally assumes that x is not k-sparse but you observe
Ax exactly. This distinction is generally not too important, and algorithms that work in
either noise model typically also work in the other one.

3. Sparse recovery cares more about the running time. Sparse recovery algorithms strive for
n logc n or ideally k logc n time, while compressed sensing algorithms are often happy with nc

time.

4. In sparse recovery, algorithms is closed tied to the matrices we used in it. In compressed
sensing, algorithms works well as long as the matrix A has some property P . For example,

5



if A satisfies RIP, solving argminx̂:‖Ax̂−y‖≤ε‖x̂‖1 will give a good recovery x̂ of x by convex
optimization, L1 minimization and iterative methods.

6 Iterative Hard Thresholding

We are focusing on Iterative Hard Thresholding in the rest of this notes. We first describe its
algorithm and go to the analysis later. Let A be a (C · k, ε)-RIP matrix and Hk(x) denote the
projection of x on its top k elements. Given y = Ax + e for ‖x‖0 ≤ k and ‖e‖2 is small, the
algorithm works as following with an appropriate choice t:

1. x(1) = ~0.

2. For i = 1, 2, · · · , t

3. x(i+1) = Hk(x
(i) +AT (y −Ax(i))).

We are going to prove ‖x(t+1) − x‖2 ≤ O(‖e‖) for t = O(log ‖x‖‖e‖ ). The intuition of the algorithm is

AT (y − Ax(i)) = ATA(x − x(i)) + AT e. Because ‖ATSAS − Ik‖2 ≤ ε for any column subset S with
size C · k, we can think ATA ≈ In and ATA(x− x(i)) +AT e ≈ x− x(i).

Proof. Let x0 = x − x(i), z = ATAx0 + AT e. We use H be the support set of x0. Because
x(i+1) = Hk(x

(i) + z), we try to bound ‖z−x0‖ at first. For any column subset S with size at most
(C − 2)k, we bound ‖(z − x0)S‖ as this way:

‖(z − x0)S‖2 = ‖
(
(ATA− I)x0 +AT e

)
S
‖2

≤ ‖
(
(ATA− I)x0

)
S∪H‖2 + ‖(AT e)S‖2

≤ ‖(ATA− I)(S∪H)×(S∪H)‖2 · ‖x0‖2 + ‖AS‖2 · ‖e‖2
≤ ε‖x0‖2 + (1 + ε)‖e‖2

However, our goal is to prove ‖x− x(i+1)‖ is small after enough steps which is equivalent to prove
‖zS − x0‖2/‖x0‖2 < 1 for the top k elements subset S in xi+1. We need the following Lemma to
prove the bound of ‖(z − x0)S‖2 can be used to bound ‖zS − x0‖2.

Lemma 15. Let x, z ∈ Rn, x is k-sparse with support set H and S is the top k elements subset of
z. Then

‖x− zS‖22 ≤ 5‖(x− z)H∪S‖22.

Proof. Pairing up i ∈ H \ S and j ∈ S \H(Recall |S| = |H| = k and zj ≥ zi by definition), it is
enough to prove

z2
j + x2

i ≤ 5
(
(zi − xi)2 + z2

j

)
.

We discuss it by two cases:

1. |zi| > |xi|/2 : x2
i ≤ 4z2

i ≤ 4z2
j .

2. |zi| < |xi|/2 : x2
i ≤ 4(xi − zi)2.
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Continue to the proof of the convergence, Taking (x, x(i+1)) into the lemma, if ε < 0.1 and ‖x(i) −
x‖ ≥ 12‖e‖ we have

‖x− x(i+1)‖ ≤
√

5‖(x− x(i+1))S∪H‖
≤
√

5‖(x0 − z)S∪H‖
≤
√

5ε‖x0‖+
√

5(1 + ε)‖e‖
≤ ‖x(i) − x‖/4 + 3‖e‖
≤ ‖x(i) − x‖/2.

For t = O(log ‖x‖‖e‖ ), we have x(t+1) = O(‖e‖).
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