CS 395T: Sublinear Algorithms Fall 2014

Lecture: 12 — More compressed sensing, Oct 7, 2014
Prof. Eric Price Scribe: Tianyang Li

1 Overview

In the last lecture: regular compressed sensing.

In this lecture: model-based compressed sensing.

2 Compressed sensing

e 1 is k-sparse
e observe y = Az +e

e recover & ~ x where ||z — z||2 < |le]|2

(or x is “approximately” k-sparse and we recover & where ||Z — || < |lell2 + Ck min |z — 2’| )
-Sparse T
various norm

Some notes about A

o If A € R™*" gatisfies RIP, then recovery is possible.

e When each entry in A is sampled from a Gaussian with mean 0 and variance 1, then m =
O(nlog %) suffices.

How good is this?

n

e to store the positions of the entries: log (Z) ~ klog %

e to store the values of the entries: k words

Define “sparsity ratio” R = 7.

Compressed sensing saves logiR factor relative to naive sampling.
Storage saves approximately R factor.

Can’t use O(k) measurements in general.

But can for more structured signals, e.g. block-sparse signals:
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Figure 1: % “blocks” of length B where each block is all on/all off

For block-sparse signals, the number of support is (%) — 20(518 %) When B > log 7 this is 20(k),
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3 Tree sparsity
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Figure 2: Sparsity pattern is contiguous rooted subtree

Number of trees with k£ terms in size n binary tree

e path that visits all vertices < 2k edges

e at each vertex there are 3 possible directions to go

number of trees < 32k = 20(k)

4 Model sparsity

F is a family of supports, each S in F satisfies S C [n], |S| < k.

Theorem 1. m = O(k + log|F|) Gaussian measurements suffice.

Model based compressed sensing Given y = Az + e, supp(z) € F, recover & such that
12 — ]2 < [lell2



Model RIP Vz with supp(z) € F & F ={SUTIS,T € F}

[Az]l2 = (1 €)||z[l

Model THT ' ' ‘
2 = Hr(a' 4+ AT (y — Az?))

where
Hyr = arg min ||z7||2
TeF

(Before in regular compressed sensing if A satisfies 2k-RIP then IHT works.)

First iteration analysis
2=ATy=ATAz + ATe

VT and S = supp(z), if A is model RIP on F & F,

T T
Iz = zsurlls < |47 A = Tllo[zlls + [[Agursm ll2llell2

< ellzflz + (1 +€)llell2

Vz and T € F we want
~~

top k of z
[z = zpll2 S ll(z — 2)surll2

To prove (7):
lzsvrll2 < (@ = 2)s\rll2 + [lzs\rll2

< Iz = 2)s\7ll2 + Iz sll2
= lzs\rlls < 20l(z = 2)s\rll3 + 2]z 53

lz = 273 = llzarllz + lzmsll3 + I(z = 2)mns|13
\S NS
< 2l|(z = 2)s\2 13 + 301253 + ll(@ — )13

< 3||(z — 2)surll3

Running time

e regular THT: log % (matrix vector multiplication time for A)

e model IHT: log Hi”j (matrix vector multiplication time for A + Hr)




Computing Hr for trees

e exact: O(nk?), O(nk)

e approximate (find 7" such that ||z7||2 < mjin||zT\|2): O(n)

5 Compressed sensing using L' minimization

For
y=Axr+e

min ]

given
|AZ —ylla <€

Theorem 2. If ¢ > |le||2 and A satisfies RIP or RE then ||Z — z|]2 S e.

5.1 Restricted Eigenvalue (RE)

IHT fails for A =21

2= AT Ax + ATe

=4x + 2e
Definition 3. Restricted Eigenvalue (RE)
[Az[]2
Izl
whenever
S| =k

Izsll = allzslh
For example, € = % and a = 1.

Proof. (Theorem 2) Set € = ||e]|2.

Let z =2 — x.

1Az — e]|3 < llell3
1AZ]13 — 2e" Az + [lel|3 < [lel3
= [|Az[l2 < 2le]2

(17)
(18)



For S = supp(x),

lzslls = llzlli > |21
= [z + 2|1
> |[(x+ 2)sll1 + Nzl
> lzslli + llzglls — llzs]h
so |lzsll1 > [lzgll1-

RE = [lz[l2 S [|Az[l2 < 2[le]2. [

5.2 RIP = RE

“Shelling argument” Suppose A satisfies the RIP of order 2k. We would like to show for any
z and S C [n] of size k with ||zg|[1 > ||zg||1 that [|Az|[2 2 ||z]|2-

Split z into blocks 2!, 22, ... of decreasing magnitude, so z!' has the largest k coordinates, and each
next z' has the next largest 2k coordinates. Then for i > 3 we have that

H2i||2 < szHQ < Hzi_IHQ (22)
V2k V2

By assumption, ||z!]|; > || Y52, 2%[|1. Then

1Az]| = A" + 22+ ...
> [|A( + 2% [ 42%) - ...

> (1 =o)lz" + 222 = L+ 12]2)

=3

> (1= @)ll2!lz = L+ l12'11)/vV2k

1=2
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for e < 1/10.
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