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Lecture 13 — Oct. 9, 2014

Prof. Eric Price Scribe: Udit Agarwal

In today’s lecture, we will cover the following topics:

1. l2/l1 upper bounds [CRT06]

2. l2/l2 lower bounds [CDD09] :- To perform l2/l2 recovery deterministically, at least Ω(n)
samples are required.

3. l1/l1 lower bounds [DIPW10] :- To perform l1/l1 recovery deterministically or with a random-
ized algorithm, at least Ω(k log n

k ) samples are required.

Consider the problem of stable sparse recovery: given a matrix A ∈ Rm×n and a k-sparse vector x
and given y = Ax+ e, with e as the error term, we wish to recover x̂ such that

||x̂− x||2 ≤ C||e||2

.

Ques: What about if x is not k-sparse??

Then the problem becomes: given Ax, ∀x ∈ Rn, recover x̂ such that

||x̂− x||p ≤ C min
k-sparse x′

||x− x′||q

for some norm parameters p and q and an approximation factor C.

Thus, the error term depends only on the top k terms of x. Some of the lp/lq recovery guarantees
are as follows:

• l2/l2 :
||x̂− x||2 ≤ C||x− xk||2

• l2/l1 :

||x̂− x||2 ≤
C√
k
||x− xk||1

• l1/l1 :
||x̂− x||1 ≤ C||x− xk||1

where xk contains the top k terms of x.

Now, we’ll talk about the bounds on the number of samples required to perform each of these lp/lq
guarantees deterministically:

• l2/l2 : To perform l2/l2 recovery deterministically, at least Ω(n) samples are required.
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• l2/l1 : To perform l2/l1 recovery deterministically, at least O(k log n
k ) samples are required.

• l1/l1 : To perform l1/l1 recovery deterministically, at least Ω(k log n
k ) samples are required

and can be done in O(n log n) time.

1 l2/l1 Recovery Upper Bound

We are given a matrix A ∈ Rm×n that satisfies RIP and Y = Ax2k + e, where e is the error term.
Then, we have

||x̂− xk|| ≤ C||e||2 (1)

Ques: What about if x is non-sparse??

We have, Ax = Ax2k +A(x− x2k).

From (1), running with k′ = 2k, we get that

||x̂− x2k||2 ≤ C||A(x− x2k)||2 (2)

Now, we’ll use a shelling argument, similar to one we described in the last class.

Split x into blocks x(1), x(2), ... of size k, so that x(1) has the largest k coordinates, and each next
x(i) has the next largest k coordinates. Then, we have

x− x2k = x(3) + x(4) + ...

Then,

||A(x− x2k)||2 = ||A.
∞∑
i=3

x(i)||2

≤
∞∑
i=3

||Ax(i)||2

≤
∞∑
i=3

(1 + ε)||x(i)||2 (As A satisfies the RIP)

≤ (1 + ε)

∞∑
i=3

√
k||x(i)||∞

≤ (1 + ε)

∞∑
i=3

√
k
||x(i−1)||1

k

=
(1 + ε)√

k

∞∑
i=2

||x(i)||1

=
(1 + ε)√

k
||x− xk||1
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Now, plugging this inequality in equation (2), we have

||x̂− xk||2 ≤ C
(1 + ε)√

k
||x− xk||1 (3)

Now, we have
||x̂− x||2 ≤ ||x̂− x2k||2 + ||x− x2k||2 (4)

Also, by plugging A = I in the previous argument, we have

||x− x2k||2 ≤
1√
k
||x− xk||1 (5)

Now using equations (4) & (5) in equation (3), we have

||x̂− xk||2 ≤ (C
(1 + ε)√

k
+

1√
k

)||x− xk||1

2 l1/l1 Recovery Algorithm

We have seen in Problem 2 of Problem Set 2 that (k,C/
√
k) l2/l1 recovery implies (k,O(C)) l1/l1

recovery. Hence, l1/l1 recovery guarantee is taken care of by the results in the previous section.

3 l2/l2 Recovery: Deterministic Lower Bound

We will show that deterministic l2/l2 recovery requires Ω(n) samples even for k = 1. So let’s think
about the k = 1 case.

Now, suppose we are given y = Ax for some A ∈ Rm×n and x ∈ Rn, and can recover x̂ such that

||x̂− x||2 ≤ C min
i∈[n]
||x− xi||2

where xi contains the top i terms of x.

If y = 0, then x̂ must also be zero vector.

Thus, ∀x ∈ N := nullspace(A), we need 0 to be an OK output.

Then ∀j ∈ [n] and x ∈ N , ∑
i

x2i ≤ C2
∑
i 6=j

x2i

x2j ≤ (C2 − 1).(||x||22 − x2j )

x2j ≤ (1− 1

C2
)︸ ︷︷ ︸

α < 1

.||x||22 (6)
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Our goal is to show that (6) implies that the dimension of N must be small.

Let v1, . . . , vn−m be the orthogonal basis for N . Thus, (n −m) is the dimension of the null space
N .

Let ei ∈ Rn such that it’s i-th entry is 1 and the rest of the entries are 0.

Then, ProjN (ei) (the orthogonal projection of ei onto N ) =
∑n−m

j=1 vjv
T
j ei

Since ProjN (ei) ∈ N , using (6) we have for the ith coordinate that

(ProjN (ei))i =
n−m∑
j=1

eTi vjv
T
j ei ≤

√
α.||ProjN (ei)||22 (7)

n−m∑
j=1

|〈vj , ei〉|2 ≤
√
α (8)

Now, sum equation (8) over i ∈ {1, . . . , n} and find

n−m =
n−m∑
j=1

‖vj‖22

=

n−m∑
j=1

n∑
i=1

|〈vj , ei〉|2

≤ n
√
α

< (1− 1

2C2
)n

using (6). Hence, m ≥ n
2C2 .

This was proved by Albert Cohen, Wolfgang Dahmen, and Ronald DeVore [CDD09] .

4 Deterministic l1/l1 lower bound [DIPW10]

Idea: We need to find a large set of well-separated sparse points and we should be able to cover
them even in presence of lot of noise.

We’ll use a Volume Argument to find such a set of points.

4.1 Gilbert-Varshamov Bound

They showed that ∀q, k ∈ Z+, ε ∈ R+ with 0 < ε < 1− 1
q , ∃ a set S ⊆ [q]k such that S has minimum

Hamming Distance εk and
log |S| ≥ (1−Hq(ε))k log q

where Hq is the q-ary entropy function

Hq(ε) = −ε logq(
ε

q − 1
)− (1− ε) logq(1− ε)
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If we set q = n
k and ε = 1

2 , then S ⊆ [nk ]k and has minimum hamming distance equal to k
2 and

log |S| & k log n
k .

We can transform the set [q]k to {0, 1}k by taking each character and writing it into a unit. For
example,

5→ (0, 0, 0, 0, 1, 0, . . . , 0)

6→ (0, 0, 0, 0, 0, 1, 0, . . . , 0)

This gives us a set S ⊆ {0, 1}n consisting of only k-sparse vectors with minimum l1-distance k and
log |S| & k log n

k .

Now, suppose x ∈ S, ||w||1 ≤ k
10 , and we recover x̂ from y = A(x+ w).

We know that

||x̂− (x+ w)||1 ≤ 2 min
k-sparse x′

||(x+ w)− x′||1

≤ 2 · k
10

(can be achieved by plugging x′ = x)

=
k

5

Now, we have

||x̂− x||1 ≤ ||w||1 + ||x̂− (x+ w)||1

≤ 3

10
k

<
k

2

We have bunch of points x ∈ S and S ⊂ B1.k, where B1 is the l1 ball in Rn.

Now, ∀xi ∈ S, consider a ball (xi + k
10B1). For any given real matrix A ∈ Rm×n, we can project

the ball (xi + k
10B1) to A(xi + k

10B1) and these balls are disjoint for different xi ∈ S. And as

∪xi∈S(xi + k
10B1) ⊂ 11

10kB1, all these projected balls lies inside A(1110kB1).

Now, the volume of each of the projected small balls is equal to V ol(A( k10B1)) and that of the
bigger ball inside which each of the disjoint smaller balls lie is equal to V ol(A(1110kB1)). And, we
have

V ol(A(1110kB1))

V ol(A( k10B1))
= 11m (9)

Note: AB1 is some convex shape in Rm.
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As the smaller balls are disjoint and they lie inside the bigger ball, we have

|S|V ol(A(
k

10
B1)) ≤ V ol(A(

11

10
kB1))

|S| ≤ 11m (from equation (9))

m ≥ log11 |S|

m & k log
n

k

5 Randomized Lower Bound [DIPW10]

We’ll show that any matrix A ∈ Rm×n which is used for randomized l1/l1 recovery must have at
least m = Ω(k log n

k ) rows. We’ll first assume that each of the entries Aij is an integer with O(log n)
bits.

Thus, the vector Ax requires O(m log n) bits. Thus, in total Ω(k log n
k log n) bits must be stored

for Ax where each xi is poly-precision (log n bits per entry).

Let S be a set of k-sparse binary vectors and has minimum hamming distance k and log |S| & k log n
k .

Now, consider x1, x2, . . . , xR ∈ S.

Let

z = x1 +
1

11
x2 +

1

112
x3 + · · ·+ 1

11R−1
xR︸ ︷︷ ︸

=w′(let)

We have,

||w′|| ≤ k(
1

11
+

1

112
+ . . . ) =

k

10

Rounding the recovery z of y = Az to S gives x1.

Note: We can relate this problem to a Communication Complexity problem. Consider the
following communication game. There are two parties, Alice and Bob. Alice is given the R vectors
x1, x2, x3, . . . , xR from set S. Now, Alice sends the vector Ax as a message to Bob, who must recover
the vectors x1, x2, x3, . . . , xR from Az, which implies that Az has indeed Ω(R logS) = Ω(Rk log n

k )
bits.

Let

y(2) = (y −Ax1).11

= A.(x2 +
1

11
x3 +

1

112
x4 + . . . )

Now, rounding y(2) to S gives us x2.

We can adopt the same strategy to recover all other xi’s for all 1 ≤ i ≤ R.
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If this algorithm works with probability ≥ 1 − 1
2R , then probably all stages succeed and we can

recover all the xi, which is Ω(Rk log n
k ) bits.

If A has log n bits per coordinate, then Ax has (R+ log n) bits per coordinate.

If R ≥ log n, then this means we have communicated Ω(Rk log n
k ) bits of information using only

O(m log n) bits of transmission. Hence

m log n & k log
n

k
log n

m & k log
n

k

5.1 Removing the assumptions

The above proof had two flaws: it assumed that the entries of A were integers with O(log n) bits
per entry, and it required the algorithm to succeed with probability 1− 1

2 logn probability. Neither
of these is necessary to the proof.

To decrease the probability requirement, consider the following communication game. There are
two parties, Alice and Bob. Alice is given a string z ∈ {0, 1}n. Bob is given an index i ∈ [n],
together with z1, z2, . . . , zi−1. Now Alice sends some message to Bob, who must output zi with
probability at least 3

4 . We refer to this problem as Augmented Indexing. It is known that solving
Augmented Indexing requires lots of communication:

Theorem 5.1 ([BJKS02]). Any protocol that solved Augmented Indexing requires Ω(n) bits of
communication.

In our current setting, Alice has a bit string of length R logS, which she converts into vectors
x1, x2, . . . , xR ∈ S. Bob converts his inputs into an index i ∈ [R] and vectors x1, x2, . . . , xi−1, and
wants to learn xi. Now Alice sends the vector Az to Bob, who must recover the vector xi.

Lemma 5.2. [DIPW10] Consider any m×n matrix A with orthonormal rows. Let A′ be the result
of rounding A to c log n bits per entry. Then for any x ∈ Rn with A′x = A(x+ ε) and ||ε||1 < n2−c
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