CS 395T: Sublinear Algorithms

Fall 2014

Lecture 13 — Oct. 9, 2014

Prof. Eric Price

Scribe: Udit Agarwal

In today's lecture, we will cover the following topics:

- 1. l_2/l_1 upper bounds [CRT06]
- 2. l_2/l_2 lower bounds [CDD09] :- To perform l_2/l_2 recovery deterministically, at least $\Omega(n)$ samples are required.
- 3. l_1/l_1 lower bounds [DIPW10] :- To perform l_1/l_1 recovery deterministically or with a randomized algorithm, at least $\Omega(k \log \frac{n}{k})$ samples are required.

Consider the problem of stable sparse recovery: given a matrix $A \in \mathbb{R}^{m \times n}$ and a k-sparse vector x and given y = Ax + e, with e as the error term, we wish to recover \hat{x} such that

$$||\hat{x} - x||_2 \le C||e||_2$$

Ques: What about if x is not k-sparse??

Then the problem becomes: given $Ax, \forall x \in \mathbb{R}^n$, recover \hat{x} such that

$$||\hat{x} - x||_p \le C \min_{k \text{-sparse } x'} ||x - x'||_q$$

for some norm parameters p and q and an approximation factor C.

Thus, the error term depends only on the top k terms of x. Some of the l_p/l_q recovery guarantees are as follows:

• l_2/l_2 : $||\hat{x} - x||_2 \le C||x - x_k||_2$ • l_2/l_1 : $||\hat{x} - x||_2 \le \frac{C}{\sqrt{k}}||x - x_k||_1$ • l_1/l_1 : $||\hat{x} - x||_1 \le C||x - x_k||_1$

where x_k contains the top k terms of x.

Now, we'll talk about the bounds on the number of samples required to perform each of these l_p/l_q guarantees deterministically:

• l_2/l_2 : To perform l_2/l_2 recovery deterministically, at least $\Omega(n)$ samples are required.

- l_2/l_1 : To perform l_2/l_1 recovery deterministically, at least $O(k \log \frac{n}{k})$ samples are required.
- l_1/l_1 : To perform l_1/l_1 recovery deterministically, at least $\Omega(k \log \frac{n}{k})$ samples are required and can be done in $O(n \log n)$ time.

1 l_2/l_1 Recovery Upper Bound

We are given a matrix $A \in \mathbb{R}^{m \times n}$ that satisfies RIP and $Y = Ax_{2k} + e$, where e is the error term. Then, we have

$$||\hat{x} - x_k|| \le C||e||_2 \tag{1}$$

Ques: What about if x is non-sparse??

We have, $Ax = Ax_{2k} + A(x - x_{2k})$.

From (1), running with k' = 2k, we get that

$$||\hat{x} - x_{2k}||_2 \le C||A(x - x_{2k})||_2 \tag{2}$$

Now, we'll use a shelling argument, similar to one we described in the last class.

Split x into blocks $x^{(1)}, x^{(2)}, \dots$ of size k, so that $x^{(1)}$ has the largest k coordinates, and each next $x^{(i)}$ has the next largest k coordinates. Then, we have

$$x - x_{2k} = x^{(3)} + x^{(4)} + \dots$$

Then,

$$||A(x - x_{2k})||_{2} = ||A \cdot \sum_{i=3}^{\infty} x^{(i)}||_{2}$$

$$\leq \sum_{i=3}^{\infty} ||Ax^{(i)}||_{2}$$

$$\leq \sum_{i=3}^{\infty} (1 + \epsilon)||x^{(i)}||_{2}$$

$$\leq (1 + \epsilon) \sum_{i=3}^{\infty} \sqrt{k} ||x^{(i)}||_{\infty}$$

$$\leq (1 + \epsilon) \sum_{i=3}^{\infty} \sqrt{k} \frac{||x^{(i-1)}||_{1}}{k}$$

$$= \frac{(1 + \epsilon)}{\sqrt{k}} \sum_{i=2}^{\infty} ||x^{(i)}||_{1}$$

$$= \frac{(1 + \epsilon)}{\sqrt{k}} ||x - x_{k}||_{1}$$

(As A satisfies the RIP)

Now, plugging this inequality in equation (2), we have

$$||\hat{x} - x_k||_2 \le C \frac{(1+\epsilon)}{\sqrt{k}} ||x - x_k||_1 \tag{3}$$

Now, we have

$$||\hat{x} - x||_2 \le ||\hat{x} - x_{2k}||_2 + ||x - x_{2k}||_2 \tag{4}$$

Also, by plugging A = I in the previous argument, we have

$$||x - x_{2k}||_2 \le \frac{1}{\sqrt{k}} ||x - x_k||_1 \tag{5}$$

Now using equations (4) & (5) in equation (3), we have

$$|\hat{x} - x_k||_2 \le (C\frac{(1+\epsilon)}{\sqrt{k}} + \frac{1}{\sqrt{k}})||x - x_k||_1$$

2 l_1/l_1 Recovery Algorithm

We have seen in Problem 2 of Problem Set 2 that $(k, C/\sqrt{k}) l_2/l_1$ recovery implies $(k, O(C)) l_1/l_1$ recovery. Hence, l_1/l_1 recovery guarantee is taken care of by the results in the previous section.

3 l_2/l_2 Recovery: Deterministic Lower Bound

We will show that deterministic l_2/l_2 recovery requires $\Omega(n)$ samples even for k = 1. So let's think about the k = 1 case.

Now, suppose we are given y = Ax for some $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, and can recover \hat{x} such that

$$||\hat{x} - x||_2 \le C \min_{i \in [n]} ||x - x_i||_2$$

where x_i contains the top *i* terms of *x*.

If y = 0, then \hat{x} must also be zero vector.

Thus, $\forall x \in \mathcal{N} := nullspace(A)$, we need 0 to be an OK output.

Then $\forall j \in [n]$ and $x \in \mathcal{N}$,

$$\sum_{i} x_i^2 \le C^2 \sum_{i \ne j} x_i^2$$
$$x_j^2 \le (C^2 - 1) \cdot (||x||_2^2 - x_j^2)$$

$$x_j^2 \le \underbrace{(1 - \frac{1}{C^2})}_{\alpha < 1} . ||x||_2^2 \tag{6}$$

Our goal is to show that (6) implies that the dimension of \mathcal{N} must be small.

Let v_1, \ldots, v_{n-m} be the orthogonal basis for \mathcal{N} . Thus, (n-m) is the dimension of the null space $\mathcal{N}.$

Let $e_i \in \mathbb{R}^n$ such that it's *i*-th entry is 1 and the rest of the entries are 0.

Then, $Proj_{\mathcal{N}}(e_i)$ (the orthogonal projection of e_i onto \mathcal{N}) = $\sum_{j=1}^{n-m} v_j v_j^T e_i$ Since $Proj_{\mathcal{N}}(e_i) \in \mathcal{N}$, using (6) we have for the *i*th coordinate that

γ

$$(Proj_{\mathcal{N}}(e_i))_i = \sum_{j=1}^{n-m} e_i^T v_j v_j^T e_i \le \sqrt{\alpha . ||Proj_{\mathcal{N}}(e_i)||_2^2}$$
(7)

$$\sum_{j=1}^{n-m} |\langle v_j, e_i \rangle|^2 \le \sqrt{\alpha} \tag{8}$$

Now, sum equation (8) over $i \in \{1, \ldots, n\}$ and find

$$n - m = \sum_{j=1}^{n-m} \|v_j\|_2^2$$
$$= \sum_{j=1}^{n-m} \sum_{i=1}^n |\langle v_j, e_i \rangle|^2$$
$$\leq n\sqrt{\alpha}$$
$$< (1 - \frac{1}{2C^2})n$$

using (6). Hence, $m \ge \frac{n}{2C^2}$.

This was proved by Albert Cohen, Wolfgang Dahmen, and Ronald DeVore [CDD09].

Deterministic l_1/l_1 lower bound [DIPW10] 4

Idea: We need to find a large set of well-separated sparse points and we should be able to cover them even in presence of lot of noise.

We'll use a Volume Argument to find such a set of points.

4.1Gilbert-Varshamov Bound

They showed that $\forall q, k \in \mathbb{Z}^+, \epsilon \in \mathbb{R}^+$ with $0 < \epsilon < 1 - \frac{1}{q}, \exists a \text{ set } S \subseteq [q]^k$ such that S has minimum Hamming Distance ϵk and 1

$$\log |S| \ge (1 - H_q(\epsilon))k \log q$$

where H_q is the q-ary entropy function

$$H_q(\epsilon) = -\epsilon \log_q(\frac{\epsilon}{q-1}) - (1-\epsilon) \log_q(1-\epsilon)$$

If we set $q = \frac{n}{k}$ and $\epsilon = \frac{1}{2}$, then $S \subseteq [\frac{n}{k}]^k$ and has minimum hamming distance equal to $\frac{k}{2}$ and $\log |S| \gtrsim k \log \frac{n}{k}$.

We can transform the set $[q]^k$ to $\{0,1\}^k$ by taking each character and writing it into a unit. For example,

$$5 \rightarrow (0, 0, 0, 0, 1, 0, \dots, 0)$$

 $6 \rightarrow (0, 0, 0, 0, 0, 1, 0, \dots, 0)$

This gives us a set $S \subseteq \{0, 1\}^n$ consisting of only k-sparse vectors with minimum l_1 -distance k and $\log |S| \gtrsim k \log \frac{n}{k}$.

Now, suppose $x \in S$, $||w||_1 \leq \frac{k}{10}$, and we recover \hat{x} from y = A(x+w).

We know that

$$\begin{aligned} ||\hat{x} - (x+w)||_1 &\leq 2 \min_{k \text{-sparse } x'} ||(x+w) - x'||_1 \\ &\leq 2 \cdot \frac{k}{10} \quad (\text{can be achieved by plugging } x' = x) \\ &= \frac{k}{5} \end{aligned}$$

Now, we have

$$\begin{split} ||\hat{x} - x||_1 &\leq ||w||_1 + ||\hat{x} - (x + w)||_1 \\ &\leq \frac{3}{10}k \\ &< \frac{k}{2} \end{split}$$

We have bunch of points $x \in S$ and $S \subset B_1.k$, where B_1 is the l_1 ball in \mathbb{R}^n .

Now, $\forall x_i \in S$, consider a ball $(x_i + \frac{k}{10}B_1)$. For any given real matrix $A \in \mathbb{R}^{m \times n}$, we can project the ball $(x_i + \frac{k}{10}B_1)$ to $A(x_i + \frac{k}{10}B_1)$ and these balls are disjoint for different $x_i \in S$. And as $\bigcup_{x_i \in S} (x_i + \frac{k}{10}B_1) \subset \frac{11}{10}kB_1$, all these projected balls lies inside $A(\frac{11}{10}kB_1)$.

Now, the volume of each of the projected small balls is equal to $Vol(A(\frac{k}{10}B_1))$ and that of the bigger ball inside which each of the disjoint smaller balls lie is equal to $Vol(A(\frac{11}{10}kB_1))$. And, we have

$$\frac{Vol(A(\frac{11}{10}kB_1))}{Vol(A(\frac{k}{10}B_1))} = 11^m \tag{9}$$

Note: AB_1 is some convex shape in \mathbb{R}^m .

As the smaller balls are disjoint and they lie inside the bigger ball, we have

$$|S|Vol(A(\frac{k}{10}B_1)) \le Vol(A(\frac{11}{10}kB_1))$$
$$|S| \le 11^m \quad \text{(from equation (9))}$$
$$m \ge \log_{11}|S|$$
$$m \gtrsim k \log \frac{n}{k}$$

5 Randomized Lower Bound [DIPW10]

We'll show that any matrix $A \in \mathbb{R}^{m \times n}$ which is used for randomized l_1/l_1 recovery must have at least $m = \Omega(k \log \frac{n}{k})$ rows. We'll first assume that each of the entries A_{ij} is an integer with $O(\log n)$ bits.

Thus, the vector Ax requires $O(m \log n)$ bits. Thus, in total $\Omega(k \log \frac{n}{k} \log n)$ bits must be stored for Ax where each x_i is poly-precision (log n bits per entry).

Let S be a set of k-sparse binary vectors and has minimum hamming distance k and $\log |S| \gtrsim k \log \frac{n}{k}$.

Now, consider $x_1, x_2, \ldots, x_R \in S$.

Let

$$z = x_1 + \underbrace{\frac{1}{11}x_2 + \frac{1}{11^2}x_3 + \dots + \frac{1}{11^{R-1}}x_R}_{=w'(\text{let})}$$

We have,

$$||w'|| \le k(\frac{1}{11} + \frac{1}{11^2} + \dots) = \frac{k}{10}$$

Rounding the recovery z of y = Az to S gives x_1 .

Note: We can relate this problem to a Communication Complexity problem. Consider the following communication game. There are two parties, Alice and Bob. Alice is given the R vectors $x_1, x_2, x_3, \ldots, x_R$ from set S. Now, Alice sends the vector Ax as a message to Bob, who must recover the vectors $x_1, x_2, x_3, \ldots, x_R$ from Az, which implies that Az has indeed $\Omega(R \log S) = \Omega(Rk \log \frac{n}{k})$ bits.

Let

$$y^{(2)} = (y - Ax_1).11$$

= $A.(x_2 + \frac{1}{11}x_3 + \frac{1}{11^2}x_4 + \dots)$

Now, rounding $y^{(2)}$ to S gives us x_2 .

We can adopt the same strategy to recover all other x_i 's for all $1 \le i \le R$.

If this algorithm works with probability $\geq 1 - \frac{1}{2R}$, then probably all stages succeed and we can recover all the x_i , which is $\Omega(Rk \log \frac{n}{k})$ bits.

If A has $\log n$ bits per coordinate, then Ax has $(R + \log n)$ bits per coordinate.

If $R \ge \log n$, then this means we have communicated $\Omega(Rk \log \frac{n}{k})$ bits of information using only $O(m \log n)$ bits of transmission. Hence

$$m \log n \gtrsim k \log \frac{n}{k} \log n$$
$$m \gtrsim k \log \frac{n}{k}$$

5.1 Removing the assumptions

The above proof had two flaws: it assumed that the entries of A were integers with $O(\log n)$ bits per entry, and it required the algorithm to succeed with probability $1 - \frac{1}{2\log n}$ probability. Neither of these is necessary to the proof.

To decrease the probability requirement, consider the following communication game. There are two parties, Alice and Bob. Alice is given a string $z \in \{0,1\}^n$. Bob is given an index $i \in [n]$, together with $z_1, z_2, \ldots, z_{i-1}$. Now Alice sends some message to Bob, who must output z_i with probability at least $\frac{3}{4}$. We refer to this problem as Augmented Indexing. It is known that solving Augmented Indexing requires lots of communication:

Theorem 5.1 ([BJKS02]). Any protocol that solved Augmented Indexing requires $\Omega(n)$ bits of communication.

In our current setting, Alice has a bit string of length $R \log S$, which she converts into vectors $x_1, x_2, \ldots, x_R \in S$. Bob converts his inputs into an index $i \in [R]$ and vectors $x_1, x_2, \ldots, x_{i-1}$, and wants to learn x_i . Now Alice sends the vector Az to Bob, who must recover the vector x_i .

Lemma 5.2. [DIPW10] Consider any $m \times n$ matrix A with orthonormal rows. Let A' be the result of rounding A to $c \log n$ bits per entry. Then for any $x \in \mathbb{R}^n$ with $A'x = A(x + \epsilon)$ and $||\epsilon||_1 < n^{2-c}$

References

- [BJKS02] Z. Bar-Yossef, T.S. Jayram, R. Kumar, and D. Sivakumar. Information theory methods in communication complexity. In *Proceedings 17th Annual IEEE Conference on Computational Complexity*, pages 133–142, 2002.
- [CRT06] Candes, Emmanuel J., Justin K. Romberg, and Terence Tao. "Stable signal recovery from incomplete and inaccurate measurements." Communications on pure and applied mathematics 59.8 (2006): 1207-1223.
- [CDD09] Cohen, Albert, Wolfgang Dahmen, and Ronald DeVore. "Compressed sensing and best -term approximation." Journal of the American Mathematical Society 22.1 (2009): 211-231.

[DIPW10] Do Ba, K., Indyk, P., Price, E., & Woodruff, D. P. (2010, January). Lower Bounds for Sparse Recovery. In SODA (Vol. 10, pp. 1190-1197).