CS 395T: Sublinear Algorithms	Fall 2014	
Lecture 13-Oct. 9, 2014		
Prof. Eric Price		Scribe: Udit Agarwal

In today's lecture, we will cover the following topics:

1. l_{2} / l_{1} upper bounds [CRT06]
2. l_{2} / l_{2} lower bounds [CDD09] :- To perform l_{2} / l_{2} recovery deterministically, at least $\Omega(n)$ samples are required.
3. l_{1} / l_{1} lower bounds [DIPW10] :- To perform l_{1} / l_{1} recovery deterministically or with a randomized algorithm, at least $\Omega\left(k \log \frac{n}{k}\right)$ samples are required.

Consider the problem of stable sparse recovery: given a matrix $A \in \mathbb{R}^{m \times n}$ and a k-sparse vector x and given $y=A x+e$, with e as the error term, we wish to recover \hat{x} such that

$$
\|\hat{x}-x\|_{2} \leq C\|e\|_{2}
$$

Ques: What about if x is not k-sparse??
Then the problem becomes: given $A x, \forall x \in \mathbb{R}^{n}$, recover \hat{x} such that

$$
\|\hat{x}-x\|_{p} \leq C \min _{k \text {-sparse } x^{\prime}}\left\|x-x^{\prime}\right\|_{q}
$$

for some norm parameters p and q and an approximation factor C.
Thus, the error term depends only on the top k terms of x. Some of the l_{p} / l_{q} recovery guarantees are as follows:

- l_{2} / l_{2} :

$$
\|\hat{x}-x\|_{2} \leq C\left\|x-x_{k}\right\|_{2}
$$

- l_{2} / l_{1} :

$$
\|\hat{x}-x\|_{2} \leq \frac{C}{\sqrt{k}}\left\|x-x_{k}\right\|_{1}
$$

- l_{1} / l_{1} :

$$
\|\hat{x}-x\|_{1} \leq C\left\|x-x_{k}\right\|_{1}
$$

where x_{k} contains the top k terms of x.
Now, we'll talk about the bounds on the number of samples required to perform each of these l_{p} / l_{q} guarantees deterministically:

- l_{2} / l_{2} : To perform l_{2} / l_{2} recovery deterministically, at least $\Omega(n)$ samples are required.
- l_{2} / l_{1} : To perform l_{2} / l_{1} recovery deterministically, at least $O\left(k \log \frac{n}{k}\right)$ samples are required.
- l_{1} / l_{1} : To perform l_{1} / l_{1} recovery deterministically, at least $\Omega\left(k \log \frac{n}{k}\right)$ samples are required and can be done in $O(n \log n)$ time.

$1 l_{2} / l_{1}$ Recovery Upper Bound

We are given a matrix $A \in \mathbb{R}^{m \times n}$ that satisfies RIP and $Y=A x_{2 k}+e$, where e is the error term. Then, we have

$$
\begin{equation*}
\left\|\hat{x}-x_{k}\right\| \leq C\|e\|_{2} \tag{1}
\end{equation*}
$$

Ques: What about if x is non-sparse??
We have, $A x=A x_{2 k}+A\left(x-x_{2 k}\right)$.
From (1), running with $k^{\prime}=2 k$, we get that

$$
\begin{equation*}
\left\|\hat{x}-x_{2 k}\right\|_{2} \leq C\left\|A\left(x-x_{2 k}\right)\right\|_{2} \tag{2}
\end{equation*}
$$

Now, we'll use a shelling argument, similar to one we described in the last class.
Split x into blocks $x^{(1)}, x^{(2)}, \ldots$ of size k, so that $x^{(1)}$ has the largest k coordinates, and each next $x^{(i)}$ has the next largest k coordinates. Then, we have

$$
x-x_{2 k}=x^{(3)}+x^{(4)}+\ldots
$$

Then,

$$
\begin{aligned}
\left\|A\left(x-x_{2 k}\right)\right\|_{2} & =\left\|A \cdot \sum_{i=3}^{\infty} x^{(i)}\right\|_{2} \\
& \leq \sum_{i=3}^{\infty}\left\|A x^{(i)}\right\|_{2} \\
& \leq \sum_{i=3}^{\infty}(1+\epsilon)\left\|x^{(i)}\right\|_{2} \\
& \leq(1+\epsilon) \sum_{i=3}^{\infty} \sqrt{k}\left\|x^{(i)}\right\|_{\infty} \\
& \leq(1+\epsilon) \sum_{i=3}^{\infty} \sqrt{k} \frac{\left\|x^{(i-1)}\right\|_{1}}{k} \\
& =\frac{(1+\epsilon)}{\sqrt{k}} \sum_{i=2}^{\infty}\left\|x^{(i)}\right\|_{1} \\
& =\frac{(1+\epsilon)}{\sqrt{k}}\left\|x-x_{k}\right\|_{1}
\end{aligned}
$$

Now, plugging this inequality in equation (2), we have

$$
\begin{equation*}
\left\|\hat{x}-x_{k}\right\|_{2} \leq C \frac{(1+\epsilon)}{\sqrt{k}}\left\|x-x_{k}\right\|_{1} \tag{3}
\end{equation*}
$$

Now, we have

$$
\begin{equation*}
\|\hat{x}-x\|_{2} \leq\left\|\hat{x}-x_{2 k}\right\|_{2}+\left\|x-x_{2 k}\right\|_{2} \tag{4}
\end{equation*}
$$

Also, by plugging $A=I$ in the previous argument, we have

$$
\begin{equation*}
\left\|x-x_{2 k}\right\|_{2} \leq \frac{1}{\sqrt{k}}\left\|x-x_{k}\right\|_{1} \tag{5}
\end{equation*}
$$

Now using equations (4) \& (5) in equation (3), we have

$$
\left\|\hat{x}-x_{k}\right\|_{2} \leq\left(C \frac{(1+\epsilon)}{\sqrt{k}}+\frac{1}{\sqrt{k}}\right)\left\|x-x_{k}\right\|_{1}
$$

$2 l_{1} / l_{1}$ Recovery Algorithm

We have seen in Problem 2 of Problem Set 2 that $(k, C / \sqrt{k}) l_{2} / l_{1}$ recovery implies $(k, O(C)) l_{1} / l_{1}$ recovery. Hence, l_{1} / l_{1} recovery guarantee is taken care of by the results in the previous section.

$3 \quad l_{2} / l_{2}$ Recovery: Deterministic Lower Bound

We will show that deterministic l_{2} / l_{2} recovery requires $\Omega(n)$ samples even for $k=1$. So let's think about the $k=1$ case.

Now, suppose we are given $y=A x$ for some $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$, and can recover \hat{x} such that

$$
\|\hat{x}-x\|_{2} \leq C \min _{i \in[n]}\left\|x-x_{i}\right\|_{2}
$$

where x_{i} contains the top i terms of x.
If $y=0$, then \hat{x} must also be zero vector.
Thus, $\forall x \in \mathcal{N}:=\operatorname{nullspace}(A)$, we need 0 to be an OK output.
Then $\forall j \in[n]$ and $x \in \mathcal{N}$,

$$
\begin{align*}
\sum_{i} x_{i}^{2} & \leq C^{2} \sum_{i \neq j} x_{i}^{2} \\
x_{j}^{2} & \leq\left(C^{2}-1\right) \cdot\left(\|x\|_{2}^{2}-x_{j}^{2}\right) \\
x_{j}^{2} & \leq \underbrace{\left(1-\frac{1}{C^{2}}\right)}_{\alpha<1} \cdot\|x\|_{2}^{2} \tag{6}
\end{align*}
$$

Our goal is to show that (6) implies that the dimension of \mathcal{N} must be small.
Let v_{1}, \ldots, v_{n-m} be the orthogonal basis for \mathcal{N}. Thus, $(n-m)$ is the dimension of the null space \mathcal{N}.

Let $e_{i} \in \mathbb{R}^{n}$ such that it's i-th entry is 1 and the rest of the entries are 0 .
Then, $\operatorname{Proj}_{\mathcal{N}}\left(e_{i}\right)$ (the orthogonal projection of e_{i} onto $\left.\mathcal{N}\right)=\sum_{j=1}^{n-m} v_{j} v_{j}^{T} e_{i}$
Since $\operatorname{Proj}_{\mathcal{N}}\left(e_{i}\right) \in \mathcal{N}$, using (6) we have for the i th coordinate that

$$
\begin{align*}
\left(\operatorname{Proj}_{\mathcal{N}}\left(e_{i}\right)\right)_{i}= & \sum_{j=1}^{n-m} e_{i}^{T} v_{j} v_{j}^{T} e_{i} \leq \sqrt{\alpha \cdot\left\|\operatorname{Proj}_{\mathcal{N}}\left(e_{i}\right)\right\|_{2}^{2}} \tag{7}\\
& \sum_{j=1}^{n-m}\left|\left\langle v_{j}, e_{i}\right\rangle\right|^{2} \leq \sqrt{\alpha} \tag{8}
\end{align*}
$$

Now, sum equation (8) over $i \in\{1, \ldots, n\}$ and find

$$
\begin{aligned}
n-m & =\sum_{j=1}^{n-m}\left\|v_{j}\right\|_{2}^{2} \\
& =\sum_{j=1}^{n-m} \sum_{i=1}^{n}\left|\left\langle v_{j}, e_{i}\right\rangle\right|^{2} \\
& \leq n \sqrt{\alpha} \\
& <\left(1-\frac{1}{2 C^{2}}\right) n
\end{aligned}
$$

using (6). Hence, $m \geq \frac{n}{2 C^{2}}$.
This was proved by Albert Cohen, Wolfgang Dahmen, and Ronald DeVore [CDD09] .

4 Deterministic l_{1} / l_{1} lower bound [DIPW10]

Idea: We need to find a large set of well-separated sparse points and we should be able to cover them even in presence of lot of noise.

We'll use a Volume Argument to find such a set of points.

4.1 Gilbert-Varshamov Bound

They showed that $\forall q, k \in \mathbb{Z}^{+}, \epsilon \in \mathbb{R}^{+}$with $0<\epsilon<1-\frac{1}{q}, \exists$ a set $S \subseteq[q]^{k}$ such that S has minimum Hamming Distance ϵk and

$$
\log |S| \geq\left(1-H_{q}(\epsilon)\right) k \log q
$$

where H_{q} is the q-ary entropy function

$$
H_{q}(\epsilon)=-\epsilon \log _{q}\left(\frac{\epsilon}{q-1}\right)-(1-\epsilon) \log _{q}(1-\epsilon)
$$

If we set $q=\frac{n}{k}$ and $\epsilon=\frac{1}{2}$, then $S \subseteq\left[\frac{n}{k}\right]^{k}$ and has minimum hamming distance equal to $\frac{k}{2}$ and $\log |S| \gtrsim k \log \frac{n}{k}$.
We can transform the set $[q]^{k}$ to $\{0,1\}^{k}$ by taking each character and writing it into a unit. For example,

$$
\begin{aligned}
5 & \rightarrow(0,0,0,0,1,0, \ldots, 0) \\
6 & \rightarrow(0,0,0,0,0,1,0, \ldots, 0)
\end{aligned}
$$

This gives us a set $S \subseteq\{0,1\}^{n}$ consisting of only k-sparse vectors with minimum l_{1}-distance k and $\log |S| \gtrsim k \log \frac{n}{k}$.
Now, suppose $x \in S,\|w\|_{1} \leq \frac{k}{10}$, and we recover \hat{x} from $y=A(x+w)$.
We know that

$$
\begin{aligned}
\|\hat{x}-(x+w)\|_{1} & \leq 2 \min _{k \text {-sparse } x^{\prime}}\left\|(x+w)-x^{\prime}\right\|_{1} \\
& \leq 2 \cdot \frac{k}{10} \quad\left(\text { can be achieved by plugging } x^{\prime}=x\right) \\
& =\frac{k}{5}
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\|\hat{x}-x\|_{1} & \leq\|w\|_{1}+\|\hat{x}-(x+w)\|_{1} \\
& \leq \frac{3}{10} k \\
& <\frac{k}{2}
\end{aligned}
$$

We have bunch of points $x \in S$ and $S \subset B_{1} . k$, where B_{1} is the l_{1} ball in \mathbb{R}^{n}.
Now, $\forall x_{i} \in S$, consider a ball $\left(x_{i}+\frac{k}{10} B_{1}\right)$. For any given real matrix $A \in \mathbb{R}^{m \times n}$, we can project the ball $\left(x_{i}+\frac{k}{10} B_{1}\right)$ to $A\left(x_{i}+\frac{k}{10} B_{1}\right)$ and these balls are disjoint for different $x_{i} \in S$. And as $\cup_{x_{i} \in S}\left(x_{i}+\frac{k}{10} B_{1}\right) \subset \frac{11}{10} k B_{1}$, all these projected balls lies inside $A\left(\frac{11}{10} k B_{1}\right)$.

Now, the volume of each of the projected small balls is equal to $\operatorname{Vol}\left(A\left(\frac{k}{10} B_{1}\right)\right)$ and that of the bigger ball inside which each of the disjoint smaller balls lie is equal to $\operatorname{Vol}\left(A\left(\frac{11}{10} k B_{1}\right)\right)$. And, we have

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(A\left(\frac{11}{10} k B_{1}\right)\right)}{\operatorname{Vol}\left(A\left(\frac{k}{10} B_{1}\right)\right)}=11^{m} \tag{9}
\end{equation*}
$$

Note: $A B_{1}$ is some convex shape in \mathbb{R}^{m}.

As the smaller balls are disjoint and they lie inside the bigger ball, we have

$$
\begin{aligned}
|S| \operatorname{Vol}\left(A\left(\frac{k}{10} B_{1}\right)\right) & \leq \operatorname{Vol}\left(A\left(\frac{11}{10} k B_{1}\right)\right) \\
|S| & \leq 11^{m} \quad(\text { from equation }(9)) \\
m & \geq \log _{11}|S| \\
m & \gtrsim k \log \frac{n}{k}
\end{aligned}
$$

5 Randomized Lower Bound [DIPW10]

We'll show that any matrix $A \in \mathbb{R}^{m \times n}$ which is used for randomized l_{1} / l_{1} recovery must have at least $m=\Omega\left(k \log \frac{n}{k}\right)$ rows. We'll first assume that each of the entries $A_{i j}$ is an integer with $O(\log n)$ bits.

Thus, the vector $A x$ requires $O(m \log n)$ bits. Thus, in total $\Omega\left(k \log \frac{n}{k} \log n\right)$ bits must be stored for $A x$ where each x_{i} is poly-precision ($\log n$ bits per entry).

Let S be a set of k-sparse binary vectors and has minimum hamming distance k and $\log |S| \gtrsim k \log \frac{n}{k}$.
Now, consider $x_{1}, x_{2}, \ldots, x_{R} \in S$.
Let

$$
z=x_{1}+\underbrace{\frac{1}{11} x_{2}+\frac{1}{11^{2}} x_{3}+\cdots+\frac{1}{11^{R-1}} x_{R}}_{=w^{\prime}(\mathrm{let})}
$$

We have,

$$
\left\|w^{\prime}\right\| \leq k\left(\frac{1}{11}+\frac{1}{11^{2}}+\ldots\right)=\frac{k}{10}
$$

Rounding the recovery z of $y=A z$ to S gives x_{1}.
Note: We can relate this problem to a Communication Complexity problem. Consider the following communication game. There are two parties, Alice and Bob. Alice is given the R vectors $x_{1}, x_{2}, x_{3}, \ldots, x_{R}$ from set S. Now, Alice sends the vector $A x$ as a message to Bob, who must recover the vectors $x_{1}, x_{2}, x_{3}, \ldots, x_{R}$ from $A z$, which implies that $A z$ has indeed $\Omega(R \log S)=\Omega\left(R k \log \frac{n}{k}\right)$ bits.

Let

$$
\begin{aligned}
y^{(2)} & =\left(y-A x_{1}\right) \cdot 11 \\
& =A \cdot\left(x_{2}+\frac{1}{11} x_{3}+\frac{1}{11^{2}} x_{4}+\ldots\right)
\end{aligned}
$$

Now, rounding $y^{(2)}$ to S gives us x_{2}.
We can adopt the same strategy to recover all other x_{i} 's for all $1 \leq i \leq R$.

If this algorithm works with probability $\geq 1-\frac{1}{2 R}$, then probably all stages succeed and we can recover all the x_{i}, which is $\Omega\left(R k \log \frac{n}{k}\right)$ bits.
If A has $\log n$ bits per coordinate, then $A x$ has $(R+\log n)$ bits per coordinate.
If $R \geq \log n$, then this means we have communicated $\Omega\left(R k \log \frac{n}{k}\right)$ bits of information using only $O(m \log n)$ bits of transmission. Hence

$$
\begin{aligned}
m \log n & \gtrsim k \log \frac{n}{k} \log n \\
m & \gtrsim k \log \frac{n}{k}
\end{aligned}
$$

5.1 Removing the assumptions

The above proof had two flaws: it assumed that the entries of A were integers with $O(\log n)$ bits per entry, and it required the algorithm to succeed with probability $1-\frac{1}{2 \log n}$ probability. Neither of these is necessary to the proof.

To decrease the probability requirement, consider the following communication game. There are two parties, Alice and Bob. Alice is given a string $z \in\{0,1\}^{n}$. Bob is given an index $i \in[n]$, together with $z_{1}, z_{2}, \ldots, z_{i-1}$. Now Alice sends some message to Bob, who must output z_{i} with probability at least $\frac{3}{4}$. We refer to this problem as Augmented Indexing. It is known that solving Augmented Indexing requires lots of communication:

Theorem 5.1 ([BJKS02]). Any protocol that solved Augmented Indexing requires $\Omega(n)$ bits of communication.

In our current setting, Alice has a bit string of length $R \log S$, which she converts into vectors $x_{1}, x_{2}, \ldots, x_{R} \in S$. Bob converts his inputs into an index $i \in[R]$ and vectors $x_{1}, x_{2}, \ldots, x_{i-1}$, and wants to learn x_{i}. Now Alice sends the vector $A z$ to Bob, who must recover the vector x_{i}.

Lemma 5.2. [DIPW10] Consider any $m \times n$ matrix A with orthonormal rows. Let A^{\prime} be the result of rounding A to $c \log n$ bits per entry. Then for any $x \in \mathbb{R}^{n}$ with $A^{\prime} x=A(x+\epsilon)$ and $\|\epsilon\|_{1}<n^{2-c}$

References

[BJKS02] Z. Bar-Yossef, T.S. Jayram, R. Kumar, and D. Sivakumar. Information theory methods in communication complexity. In Proceedings 17th Annual IEEE Conference on Computational Complexity, pages 133-142, 2002.
[CRT06] Candes, Emmanuel J., Justin K. Romberg, and Terence Tao. "Stable signal recovery from incomplete and inaccurate measurements." Communications on pure and applied mathematics 59.8 (2006): 1207-1223.
[CDD09] Cohen, Albert, Wolfgang Dahmen, and Ronald DeVore. "Compressed sensing and best -term approximation." Journal of the American Mathematical Society 22.1 (2009): 211-231.
[DIPW10] Do Ba, K., Indyk, P., Price, E., \& Woodruff, D. P. (2010, January). Lower Bounds for Sparse Recovery. In SODA (Vol. 10, pp. 1190-1197).

