CS 395T: Sublinear Algorithms	Fall 2014
Lecture 14 - Oct 14, 2014	
Prof. Eric Price	
Scribe: Xiangru Huang	

1 Overview

In the last lecture: lower bounds
In this lecture: problems for final project, RIP-1, expanders, SMP, SSMP

2 Problems for final project

- Adaptivity in Sparse Recovery

So far, we can choose matrix A independent of x and estimate x from $A x$ using $O\left(k \log \frac{n}{k}\right)$ space. What if we choose $\left\langle v_{1}, x\right\rangle,\left\langle v_{2}, x\right\rangle, \cdots, \quad\left\langle v_{m}, x\right\rangle$ where v_{i} depend on $v_{1}, v_{2}, \cdots, v_{i-1}$?

- k-sparse

Given $A \sim \mathcal{N}\left(0, I_{M \times N}\right)$, we know that if $m=O\left(k \log \frac{n}{k}\right)$ (hence RIP), then L1 minimization and IHT works.
But for $m \ll k \log \frac{n}{k}$, doing ℓ_{1} / ℓ_{1} recovery is impossible. What if x is exactly k-sparse?

- Compressed Sensing with priors

e.g. If x follows some distribution, what could happen? This is a general question.

- Count-sketch

Using top $2 k$ coordinates, we can do $(1+\epsilon) \ell_{2} / \ell_{2}$ approximate recovery where $m=O\left(\frac{k}{\epsilon} \log n\right)$ If we use top k coordinates, then $m=O\left(\frac{k}{\epsilon^{2}} \log n\right)$.
Better analysis used in [MP14] might give $O\left(\frac{k}{\epsilon^{2}}+\frac{k}{\epsilon} \log n\right)$.

- LASSO vs sqrt LASSO

LASSO finds argmin $\|y-A x\|_{2}^{2}+\lambda\|x\|_{1}$. And sqrt LASSO finds argmin $\|y-A x\|_{2}+\lambda\|x\|_{1}$. Compare these two algorithms. Which one is better under certain situations?

- Random order streams

Given $x_{1}, x_{2}, \cdots, x_{m} \sim D$ over F_{2}^{n}. e.g. $x=A y(\bmod 2)$ where A is a n by $\frac{n}{2}$ matrix. One of the two cases is true:

- D is $\frac{n}{2}$-dimension subspace
- D is uniform

How many samples to distinguish these two cases?

3 Sparse Matrix with RIP-1

Consider 0-1 matrix $A \in \mathbb{R}^{m \times n}$ with $d=O(\log n)$ ones per column. For A, we can achieve fast multiplication and $O(\operatorname{logn})$ update time. The problem is A can't satisfy RIP unless $m=O\left(k^{2}\right)$. But A can satisfy the following RIP-1 property [BGIKS08].
Definition 1. A has RIP-1 of (k, ϵ) if $\forall k$-sparse $x,\|A x\|_{1}=(1 \pm \epsilon)\|x\|_{1}$.
Definition 2. $G=(U, V, E)$ is a bipartite graph with left-degree d. $n=|U|, m=|V| . N(S)$ denotes the neighbors of $S . G$ is a unbalanced bipartite expander of (k, ϵ) if

$$
\forall S \subset U,|S| \leq k \Rightarrow N(S) \geq(1-\epsilon) d|S|
$$

Claim 3. random graph with $d=\frac{1}{\epsilon} \log \frac{n}{k}, m=\frac{1}{\epsilon^{2}} k \log \frac{n}{k}$ is expander w.h.p.
Claim 4. There exist explicit expander constructions for $\forall \alpha>0, d=O\left(\operatorname{logn} \frac{\operatorname{logk}}{\epsilon}\right)^{1+\frac{1}{\alpha}}, m=k^{1+\alpha} d^{2}$
The adjacency matrices of expander graphs, scaled by a factor of $\frac{1}{d}$, satisfy RIP-1.
Theorem 5. (k, ϵ) expander $\Rightarrow(k, 2 \epsilon)$ RIP-1
Proof. $\forall S$ of size $k, d=\frac{1}{\epsilon} \log \frac{n}{k}, m=\frac{2}{\epsilon} k d$. Consider all $k d$ edges, define $V_{1}, V_{2}, \cdots, V_{k d} \in[m] i . i . d$. Let C_{j} denotes the event that V_{j} collide with $V_{1}, V_{2}, \cdots, V_{j-1}$. We have

$$
\begin{gathered}
\operatorname{Pr}\left[C_{j}\right] \leq \frac{j-1}{m} \leq \frac{k d}{m} \leq \frac{\epsilon}{2} \\
\operatorname{Pr}\left[\sum_{i=1}^{k d} C_{i}>\epsilon k d\right] \leq 2^{-\frac{\epsilon k d}{2}}=2^{-\Omega\left(\frac{\epsilon k d}{2}\right)}
\end{gathered}
$$

By union bound, the probability that $N(S) \geq(1-\epsilon) d|S|$ holds for all $S \subset U,|S|=k$ is at least $1-2^{-\Omega\left(k \log \frac{n}{k}\right)}\binom{n}{k}=1-2^{-\Omega\left(k \log \frac{n}{k}\right)}$. Then sum over all sizes we can show $\sum_{i=0}^{n} 2^{-i \log \frac{n}{k}} \ll 1$, which means the theorem is true w.h.p.

4 From RIP-1 to sparse recovery

There is a viable natual algorithm from count-sketch. You can check out the explanation in the book [FSR].

```
Algorithm: Natural Alg
x (0)}=
For r=0,1,\cdots,T{
    u
    \mp@subsup{x}{}{(r+1)}\leftarrow\mp@subsup{H}{k}{}(x(r)+u)
}
output }\mp@subsup{x}{}{(T)
```

Here we introduce SMP [BIR08] and SSMP [BI09]. The following algorithm is SMP.

Algorithm: SMP

$x^{(0)}=0$
Repeat T times

$$
\begin{gathered}
u_{i} \leftarrow \underset{j \in N(i)}{\operatorname{median}}\left(y-A x^{(r)}\right)_{j} \\
x^{(r+1)} \leftarrow H_{k}\left(x(r)+H_{2 k}(u)\right)
\end{gathered}
$$

output $x^{(T)}$

SSMP is similar to SMP except the updates is done sequentially.

Algorithm: SSMP

1) Let $x^{(0)}=0$
2) For $r=1,2, \cdots, T=O\left(\log \left(\|x\|_{1} /\|e\|_{1}\right)\right)$
a) For $t=1,2, \cdots, 10 k$

- $u_{i} \leftarrow \underset{j \in N(i)}{\operatorname{median}}\left(y-A x^{(r)}\right)_{j}$
- Let i be the largest term of u
- Let $x^{(r)}=x^{(r)}+u_{i} e_{i}$
b) Let $x^{(r)}=H_{k}\left(x^{(r)}\right)$

3) Report $x^{\prime}=x^{(T)}$

Here we prove SSMP. A more detailed proof can be found at [BI09]
Proof. $y=A x=\left(\sum_{i \in S} a_{i} x_{i}\right)+e$
If $\sum\left\|a_{i} x_{i}\right\|_{1} \leq(1+\epsilon)\left\|\sum a_{i} x_{i}\right\|_{1},{ }^{1}$ we can show $\exists a_{i}, i$, s.t.

$$
\left\|y-a_{i} x_{i}\right\|_{1} \leq\left(1-\frac{1}{10 k}\right)\|y\|_{1}
$$

Therefore each step $x^{(r)}=x^{(r)}+u_{i} e_{i}$ decreases $\left\|y-A x^{(r)}\right\|$ by $1-\frac{\Omega(1)}{k}$, after $O(k)$ steps, we have

$$
\begin{aligned}
& \left\|y-A x^{r}\right\| \leq \frac{1}{10}\left\|y-A x^{(r-1)}\right\| \\
\Rightarrow & \left\|x^{(r)}-x\right\|_{1} \leq \frac{1}{5}\left\|x^{(r)}-x\right\|_{1}+O\left(\|e\|_{1}\right) \\
\Rightarrow & \text { It takes } O\left(\log \left(\|x\|_{1} /\|e\|_{1}\right) \text { iterations to get error to } O\left(\|e\|_{1}\right)\right.
\end{aligned}
$$

[^0]
References

[AMS99] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci.
[MP14] Gregory T. Minton and Eric Price. Improved Concentration Bounds for Count-Sketch SODA(best student paper) 2014., 58(1):137-147, 1999.
[BGIKS08] Radu Berinde and Anna C. Gilbert and Piotr Indyk and Howard J. Karloff and Martin J. Strauss. Combining geometry and combinatorics: A unified approach to sparse signal recovery. CoRR.
[BI09] Berinde, Radu, and Piotr Indyk. Sequential sparse matching pursuit. Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on. IEEE, 2009.
[BIR08] Berinde, Radu, Piotr Indyk, and Milan Ruzic. Practical near-optimal sparse recovery in the 11 norm. Communication, Control, and Computing, 200846 th Annual Allerton Conference on. IEEE, 2008.
[FSR] Foucart, Simon, and Holger Rauhut. A mathematical introduction to compressive sensing. Berlin: Springer, 2013.

[^0]: ${ }^{1}$ you will prove this in your homework

