Fall 2014

Lecture 14 — Oct 14, 2014

Prof. Eric Price

Scribe: Xiangru Huang

1 Overview

In the last lecture : lower bounds

In this lecture: problems for final project, RIP-1, expanders, SMP, SSMP

2 Problems for final project

• Adaptivity in Sparse Recovery

So far, we can choose matrix A independent of x and estimate x from Ax using $O(klog \frac{n}{k})$ space. What if we choose $\langle v_1, x \rangle$, $\langle v_2, x \rangle$, \cdots , $\langle v_m, x \rangle$ where v_i depend on $v_1, v_2, \cdots, v_{i-1}$?

• k-sparse

Given $A \sim \mathcal{N}(0, I_{M \times N})$, we know that if $m = O(k \log \frac{n}{k})$ (hence RIP), then L1 minimization and IHT works.

But for $m \ll k \log \frac{n}{k}$, doing ℓ_1/ℓ_1 recovery is impossible. What if x is exactly k-sparse?

• Compressed Sensing with priors

e.g. If x follows some distribution, what could happen? This is a general question.

• Count-sketch

Using top 2k coordinates, we can do $(1+\epsilon) \ell_2/\ell_2$ approximate recovery where $m = O(\frac{k}{\epsilon} logn)$ If we use top k coordinates, then $m = O(\frac{k}{\epsilon^2} logn)$. Better analysis used in [MP14] might give $O(\frac{k}{\epsilon^2} + \frac{k}{\epsilon} logn)$.

• LASSO vs sqrt LASSO

LASSO finds $\underset{x}{argmin} \|y - Ax\|_{2}^{2} + \lambda \|x\|_{1}$. And sqrt LASSO finds $\underset{x}{argmin} \|y - Ax\|_{2} + \lambda \|x\|_{1}$. Compare these two algorithms. Which one is better under certain situations?

• Random order streams

Given $x_1, x_2, \dots, x_m \sim D$ over F_2^n . e.g. $x = Ay \pmod{2}$ where A is a n by $\frac{n}{2}$ matrix. One of the two cases is true:

- -D is $\frac{n}{2}$ -dimension subspace
- -D is uniform

How many samples to distinguish these two cases?

3 Sparse Matrix with RIP-1

Consider 0-1 matrix $A \in \mathbb{R}^{m \times n}$ with d = O(logn) ones per column. For A, we can achieve fast multiplication and O(logn) update time. The problem is A can't satisfy RIP unless $m = O(k^2)$. But A can satisfy the following RIP-1 property [BGIKS08].

Definition 1. A has RIP-1 of (k, ϵ) if $\forall k$ -sparse x, $||Ax||_1 = (1 \pm \epsilon) ||x||_1$.

Definition 2. G = (U, V, E) is a bipartite graph with left-degree d. n = |U|, m = |V|. N(S) denotes the neighbors of S. G is a unbalanced bipartite expander of (k, ϵ) if

 $\forall S \subset U, |S| \le k \Rightarrow N(S) \ge (1 - \epsilon)d|S|$

Claim 3. random graph with $d = \frac{1}{\epsilon} \log \frac{n}{k}, m = \frac{1}{\epsilon^2} k \log \frac{n}{k}$ is expander w.h.p.

Claim 4. There exist explicit expander constructions for $\forall \alpha > 0, d = O(logn \frac{logk}{\epsilon})^{1+\frac{1}{\alpha}}, m = k^{1+\alpha}d^2$

The adjacency matrices of expander graphs, scaled by a factor of $\frac{1}{d}$, satisfy RIP-1.

Theorem 5. (k, ϵ) expander \Rightarrow $(k, 2\epsilon)$ RIP-1

Proof. $\forall S$ of size $k, d = \frac{1}{\epsilon} \log \frac{n}{k}, m = \frac{2}{\epsilon} kd$. Consider all kd edges, define $V_1, V_2, \dots, V_{kd} \in [m]i.i.d$. Let C_j denotes the event that V_j collide with V_1, V_2, \dots, V_{j-1} . We have

$$Pr[C_j] \le \frac{j-1}{m} \le \frac{kd}{m} \le \frac{\epsilon}{2}$$
$$Pr[\sum_{i=1}^{kd} C_i > \epsilon kd] \le 2^{-\frac{\epsilon kd}{2}} = 2^{-\Omega(\frac{\epsilon kd}{2})}$$

By union bound, the probability that $N(S) \ge (1-\epsilon)d|S|$ holds for all $S \subset U, |S| = k$ is at least $1 - 2^{-\Omega(k \log \frac{n}{k})} {n \choose k} = 1 - 2^{-\Omega(k \log \frac{n}{k})}$. Then sum over all sizes we can show $\sum_{i=0}^{n} 2^{-i \log \frac{n}{k}} << 1$, which means the theorem is true w.h.p.

4 From RIP-1 to sparse recovery

There is a viable natual algorithm from count-sketch. You can check out the explanation in the book [FSR].

```
Algorithm: Natural Alg

x^{(0)} = 0

For r = 0, 1, \dots, T\{

u_i \leftarrow median(y - Ax^{(r)})_j

x^{(r+1)} \leftarrow H_k(x(r) + u)

\}

output x^{(T)}
```

Here we introduce SMP [BIR08] and SSMP [BI09]. The following algorithm is SMP.

```
Algorithm: SMP

x^{(0)} = 0

Repeat T times

u_i \leftarrow median(y - Ax^{(r)})_j

x^{(r+1)} \leftarrow H_k(x(r) + H_{2k}(u))

output x^{(T)}
```

SSMP is similar to SMP except the updates is done sequentially.

```
Algorithm: SSMP

1) Let x^{(0)} = 0

2) For r = 1, 2, \dots, T = O(log(||x||_1/||e||_1))

a) For t = 1, 2, \dots, 10k

• u_i \leftarrow median(y - Ax^{(r)})_j

• Let i be the largest term of u

• Let x^{(r)} = x^{(r)} + u_i e_i

b) Let x^{(r)} = H_k(x^{(r)})

3) Report x' = x^{(T)}
```

Here we prove SSMP. A more detailed proof can be found at [BI09]

Proof. $y = Ax = (\sum_{i \in S} a_i x_i) + e$ If $\sum ||a_i x_i||_1 \le (1 + \epsilon) ||\sum a_i x_i||_1$, we can show $\exists a_i, i, s.t.$

$$||y - a_i x_i||_1 \le (1 - \frac{1}{10k})||y||_1$$

Therefore each step $x^{(r)} = x^{(r)} + u_i e_i$ decreases $\|y - Ax^{(r)}\|$ by $1 - \frac{\Omega(1)}{k}$, after O(k) steps, we have

$$\begin{aligned} \|y - Ax^r\| &\leq \frac{1}{10} \|y - Ax^{(r-1)}\| \\ \Rightarrow \|x^{(r)} - x\|_1 &\leq \frac{1}{5} \|x^{(r)} - x\|_1 + O(\|e\|_1) \\ \Rightarrow It \ takes \ O(\log(\|x\|_1 / \|e\|_1) \ iterations \ to \ get \ error \ to \ O(\|e\|_1) \end{aligned}$$

¹you will prove this in your homework

References

- [AMS99] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci.
- [MP14] Gregory T. Minton and Eric Price. Improved Concentration Bounds for Count-Sketch SODA(best student paper) 2014., 58(1):137–147, 1999.
- [BGIKS08] Radu Berinde and Anna C. Gilbert and Piotr Indyk and Howard J. Karloff and Martin J. Strauss. Combining geometry and combinatorics: A unified approach to sparse signal recovery. *CoRR*.
- [BI09] Berinde, Radu, and Piotr Indyk. Sequential sparse matching pursuit. Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on. IEEE, 2009.
- [BIR08] Berinde, Radu, Piotr Indyk, and Milan Ruzic. Practical near-optimal sparse recovery in the l1 norm. Communication, Control, and Computing, 2008 46th Annual Allerton Conference on. IEEE, 2008.
- [FSR] Foucart, Simon, and Holger Rauhut. A mathematical introduction to compressive sensing. Berlin: Springer, 2013.