
CS 395T: Sublinear Algorithms Fall 2014

Lecture 16 — Oct 21, 2014

Prof. Eric Price Scribe: Chi-Kit Lam

1 Overview

In this lecture we will talk about information and compression, which the Huffman coding can
achieve with the average number of bits sent almost precisely equal to the entropy.

Then we will talk about communication complexity and information cost, which is the asymptotic
number of bits two parties need to transmit in a conversation in order to compute some function
of their inputs.

We will also talk about adaptive sparse recovery, which is like the conversation version of sparse
recovery.

2 Information and compression

2.1 Entropy

Suppose we have a distribution P over the letters. We want to know how many bits we need to
send. In particular, we want a prefix code x→ cx ∈ {0, 1}∗, which is basically a binary tree. In the
example in Figure ??, the string TAN is encoded as 10010111011. We want to minimize the average
length Ex∼P |cx|, which we will call `.

E

T A

O

I N

0

0

0

0

0

0 11

1

1

1

1

Figure 1: A binary tree corresponding to a prefix code.

Theorem 1 ([?]). ` ≥ H(P), where H(P) =
∑

x P (x) log2
1

P (x) = Ex∼P log2
1

P (x) is the entropy.

Huffman[?] gave a simple optimal construction of a prefix code with ` < H(P) + 1.

1

Suppose

p =

{
1 with probability 1/100

0 with probability 99/100
.

Then H(p) = 1
100 log 100 + 99

100 log 100
99 ≈

7
100 + 1

100 ≈
8

100 . In this case, Huffman’s code still needs
about 1 bit. So, the entropy is essentially “rounded up”.

In general, if x1, . . . , xn ∼ P , then we can encode (x1, . . . , xn) in at most H(x1, . . . , xn) + 1 =
nH(P) + 1 bits, while it cannot be done in less than nH(P) bits. This is a prettily strong “direct
sum” statement. Solving 1 copy costs H(P) ≤ ` < H(P) + 1, while solving n copies costs on
average H(P) ≤ ` < H(P) + 1/n. This shows that one can gain just a little but not much by doing
multiple copies.

2.2 Huffman coding

The algorithm of Huffman coding is actually quite simple. Given the distribution, the algorithm
sorts the letters by frequency. Then, the last two letters are merged and their frequencies are
summed up into a new node. This process repeats until everything is merged together, resulting a
binary tree. Figure ?? shows the first two iterations of the algorithms.

E T A I O N K Z X Q...

10% 7% ... 0.2%0.5%0.6%0.69%

(i)

E T A I O N K Z

X Q

...

10% 7% ... 0.7% 0.6%0.69%

(ii)

E T A I O N

K Z X Q

...

10% 7% ... 0.7%

(iii)

1.29%

Figure 2: The first two iterations of the algorithm. (i) Initially, the letters are sorted by frequency.
(ii) In the first iteration, X and Q are merged. (iii) In the second iteration, K and Z are merged.

We can show that |cx| < log 1
P (x) + 1. (Intuitively, if P (x) = 2−k, then there are at most 2k nodes

with larger frequencies and they can fit into a complete binary tree. So, |cx| ≤ k.) This implies
` = E |cx| < H(P) + 1.

3 Communication Complexity and Information Cost

3.1 Communication Complexity

In the communication setting, Alice has some input x and Bob has some input y. They share some
public randomness and want to compute f(x, y). Alice sends some message m1, and then Bob

2

responds with m2, and then Alice responds with m3, and so on. At the end, Bob outputs f(x, y).
They can choose a protocol Π, which decides how to assign what you send next based on the
messages you have seen so far and your input. The total number of bits transfered is |Π| =

∑
|mi|.

The communication complexity of the protocol Π is

CCµ(Π) = E
µ

(|Π|),

where µ is a distribution over the inputs (x, y) and the protocol. The communication complexity
of the function f for a distribution µ is

CCµ(f) = min
Π solves f with 3/4 prob

CCµ(Π).

The communication complexity of the function f is

CC(f) = max
µ

CCµ(f).

3.2 Information Cost

Information cost is related to communication complexity, as entropy is related to compression.

Recall that the entropy is H(X) =
∑
p(x) log 1

p(x) . Now, the mutual information I(X;Y) =

H(X) − H(X|Y) between X and Y is how much a variable Y tells you about X. It is actually
interesting that we also have I(X;Y) = H(Y)−H(Y |X).

The information cost of a protocol Π is

IC(Π) = I(X; Π|Y) + I(Y ; Π|X).

This is how much Bob learns from the protocol about X plus how much Alice learns from the
protocol about Y . The information cost of a function f is

IC(f) = min
Π solves f

IC(Π).

For all protocol Π, we have IC(Π) ≤ E |Π| = CC(Π), because there are at most b bits of information
if there are only b bits transmited in the protocol. Taking the minimum over all protocols implies
IC(f) ≤ CC(f). This is analogous to Shannon’s result that H ≤ `.

It is really interesting that the asymptotic statement is true. Suppose we want to solve n copies of
the communication problem. Alice given x1, . . . , xn and Bob given y1, . . . , yn, they want to solve
f(x1, y1), . . . , f(xn, yn), each failing at most 1/4 of the time. We call this problem the direct sum
f⊕n. Then, for all functions f , it is not hard to show that IC(f⊕n) = nIC(f).

Theorem 2 ([?]).
CC(f⊕n)

n
→ IC(f) as n→∞.

In the limit, this theorem suggests that information cost is the right notion.

3

3.3 Separation of Information and Communication

The remaining question is, for a single function, whether CC(f) ≈ IC(f), in particular whether
CC(f) = IC(f)O(1) + O(1). If this is true, it would prove the direct sum conjecture CC(f⊕n) &
nCC(f)−O(1).

The recent paper by Ganor, Kol and Raz [?] showed that it is not true. They gave a function f
for which IC(f) = k and CC(f) ≥ 2Ω(k). This is the best because it was known before this that

CC(f) ≤ 2O(IC(f)). The function that they gave has input size 222
k

. So, it is still open whether
CC(f) . IC(f) log log |input|.

A binary tree with depth 22k is split into levels of width ≈ k. For every node v in the tree, there
are two associated values xv and yv. There is a random special level of width ≈ k. Outside this
special level, we have xv = yv for all v. We think about xv and yv as which direction you ought to
go. So, if they are both 0, you want to go in one direction. If they are both 1, you want to go in
the other. Within the special level, the values xv and yv are uniform. At the bottom of the special
level, v is good if the path to v is mostly (80%) following directions. The goal is to agree on any
leaf v′ where v′ is a descendent of some good vertex.

What makes it tricky is that you do not know where the special level is, because if you knew where
the special level was, then O(k) communication suffices. The problem is you do not know where the
special level is. You can try binary searching to find the special level, taking O(2k) communication.
This is basically the best you can do apparently.

We can construct a protocol with information cost only O(k). It is okay to transmit something very
large as long as the amount of information contained in it is small. Alice can transmit her path and
Bob just follows it, and that is a large amount of communication but it is not so much information
because Bob knows what the first set would be. The issue is that it still gives you ≈ 2k bits of
information knowing where the special level is. The idea is instead that Alice chooses a noisy path
where 90% of the time follows her directions and 10% deviates. This path is transmitted to Bob.
It can be shown that this protocol only has O(k) information.

Therefore, many copies can get more efficient.

4 Adaptive Sparse Recovery

Adaptive sparse recovery is like the conversation version of sparse recovery.

In non-adpative sparse recovery, Alice has i ∈ [n] and sets x = ei + w. She transmits y = Ax =
Aei +w′. Bob receives y and recovers y → x̂ ≈ x→ î ≈ i. In this one-way conversation, we showed

4

in last class that

I (̂i; i) ≤I(y; i)

≤m(0.5 log(1 + SNR))

.m

H(i)−H(i|̂i) .m
log n− (0.25 log n+ 1) .m

m & log n.

In the adaptive case, we have something more of a conversation. Alice knows x. Bob sends v1 and
Alice sends back 〈v1, x〉. Then, Bob sends v2 and Alice sends back 〈v2, x〉. And then, Bob sends v3

and Alice sends back 〈v3, x〉, and so on.

To show a lower bound, consider stage r. Define P as the distribution of (i|y1, . . . , yr−1). Then,
the observed information by round r is b = log n−H(P) = Ei∼P log(npi). For a fixed v depending
on P , as i ∼ P , we know that

I(〈v, x〉 ; i) ≤ 1

2
log

(
1 +

Ei∼P v2
i

‖vi‖22/n

)
.

With some algebra (Lemma 3.1 in [?]), we can bound the above expression by O(b+ 1). It means
that on average the number of bits that you get at the next stage is . 2 times what you had at
the previous stage. This implies that R rounds take Ω(R log1/R n) measurements. And in general,
it takes Ω(log log n) measurements.

References

[BR11] M. Braverman, A. Rao. Information Equals Amortized Communication. FOCS 2011: 748-
757

[GKR14] A. Ganor, G. Kol, R. Raz. Exponential Separation of Information and Communication.
ECCC, Revision 1 of Report No. 49 (2014)

[Huf52] D. A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Pro-
ceedings of the IRE, vol.40, no.9, pp.1098,1101, Sept. 1952

[PW13] Eric Price, David P. Woodruff. Lower Bounds for Adaptive Sparse Recovery. SODA 2013:
652-663.

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal
vol.27, no.4, pp.623-656, Oct. 1948

5

