CS 395T: Sublinear Algorithms

Fall 2014

Lecture: Oct 23, 2014

Prof. Eric Price Scribe: Tianyang Li

1 Overview

- adaptive algorithms for compressed sensing
- Fourier transform

2 Adaptive algorithms for compressed sensing

2.1 Adaptive sparse recovery

For some $x \in \mathbb{R}^n$

- choose $v_1 \in \mathbb{R}^n$, observe $y_1 = \langle v_1, x \rangle$
- then $v_2 \in \mathbb{R}^n$, get $y_2 = \langle v_2, x \rangle$
- v_m , get $y_m = \langle v_m, x \rangle$

Output \hat{x} such that $||x - \hat{x}||_2 \le (1 + \epsilon) \min_{k-\text{sparse } x'} ||x - x'||_2$ with $\frac{3}{4}$ probability.

Number of samples required:

- $\Omega(\frac{k}{\epsilon} + \log \log n)$ (known)
- $O(\frac{k}{\epsilon} + k \log \log \frac{n}{k})$
- $m = O(k \log \log \frac{n}{k})$

2.1.1

For a vector $x = (x_1 x_2 \dots x_n)^T$ that satisfies $|x_i| \propto i^{-\alpha}$

- if $\alpha > 1$ then $||x||_1$ is bounded
- if $\alpha > 0.5$ then $||x||_2$ is bounded

2.1.2

We showed $\Omega(\log \log n)$ bound for k=1, then by embedding k copies we can a bound for a general

2.2

$$||x - \hat{x}||_1 \le C \min_{k-\text{sparse}x'} ||x - x'||_1$$

Suppose k=1

Let i^* be the largest coordinate $|x_{i^*}|$, and $|x_{i^*}| > R||x_{-i^*}||_1$ where x_{-i^*} is x with coordinate i^* set

Take

$$v_1 = (1, 1, 1, ...)^T$$
 $y_1 = \sum x_i$ (1)
 $v_2 = (1, 2, 3, ...)^T$ $y_2 = \sum ix_i$ (2)

$$v_2 = (1, 2, 3, \dots)^T$$
 $y_2 = \sum ix_i$ (2)

If $R = \infty$, then $\frac{y_2}{y_1} = i^*$.

In general,

$$y_1 = x_{i^*} (1 \pm \frac{1}{R}) \tag{3}$$

$$y_2 = i^* \pm \frac{nx_{i^*}}{R} \tag{4}$$

Then we have

$$\frac{y_2}{y_1} = i^* \frac{1}{1 \pm \frac{1}{R}} \pm \frac{\frac{n}{R}}{1 \pm \frac{1}{R}} \tag{5}$$

$$=i^* \pm O(\frac{n}{R})\tag{6}$$

2.3 An algorithm

Algorithm 1

```
1: permute x randomly

2: \bar{i} \leftarrow \frac{n}{2}, \Delta \leftarrow \frac{n}{2}

3: S \leftarrow \{j \mid |\bar{i} - j| < \Delta\}

4: given R \leftarrow \Theta(1)

5: t \leftarrow 0

6: while \Delta \geq 1 do

7: t \leftarrow t + 1

8: \bar{i} \leftarrow \frac{\sum_{i \in S} i x_i}{\sum_{i \in S} x_i}

9: \Delta \leftarrow O(\frac{\Delta}{R} 2^t)

10: R \leftarrow \Theta(R^2 2^{-t})

11: S \leftarrow \{j \mid |\bar{i} - j| < \Delta\}

12: end while
```

At each stage $\bar{i} = i^* \pm \Delta$ (i.e. $i^* \in S$).

$$||x_{S\setminus i^*}||_1 \le ||(i^* \pm 2\Delta)\setminus i^*||_1$$
 (7)

$$E[\|(i^* \pm 2\Delta) \setminus i^*\|_1] = \frac{4\Delta}{n-1} \|x_{-i^*}\|_1$$
(8)

$$\Rightarrow$$

$$\frac{|x_{i^*}|}{\|x_{S\setminus i^*}\|_1} \text{ (at stage } t)$$

$$\geq R_t \tag{9}$$

 \Rightarrow if Δ_t , R_t , \bar{i}_t are "good" then so are Δ_{t+1} , R_{t+1} , \bar{i}_{t+1} .

$$R \leftarrow \frac{R^2}{2^t} \tag{10}$$

$$\log R \leftarrow 2\log R - t \tag{11}$$

 $\log R \text{ grows} \approx 2^t$

$$t = O(\log \log n)$$
$$\Rightarrow R \approx n$$

then $\Delta < 1 \Rightarrow S = -\{i^*\}.$

For a general k Hash [n] to [B] where B=O(k), and solve individual buckets.

Each *i* is alone with probability $1 - \frac{k}{B} \ge \frac{3}{4}$.

 $O(k \log \log \frac{n}{k}) \Rightarrow \text{find } \frac{1}{2} \text{ of heavy hitter.}$

Repeat on rest of coordinates.

Time is

$$k \log \log \frac{n}{k} + \frac{k}{2} \log \log \frac{n}{\frac{k}{2}} + \frac{k}{4} \log \log \frac{n}{\frac{k}{4}} + \dots$$
$$= O(k \log \log \frac{n}{k})$$

2.4 An alternative algorithm

1: $k' \leftarrow k$ \triangleright current sparsity estimate 2: **while** $k' \ge 1$ **do** 3: choose random $\frac{n}{k}$ coordinates 4: run the subroutine, set i^* 5: remove i^* from set 6: $k' \leftarrow k' - \frac{1}{10}$ 7: **end while**

Intuition As algorithm progresses, it's unlikely for k' to be less than the current sparsity parameter after i^* has been removed.

2.5

$$L^1 \to L^2 \text{ for } \|x - \hat{x}\|_2 \le (1 + \epsilon) \min_{k-\text{sparse } x'} \|x - x'\|_2$$

Basic idea Change \bar{i} to $\frac{\sum \pm ix_i}{\sum_p mx_i}$ in Algorithm 1.

3 Discrete Fourier transform

- original $x \in \mathbb{C}^n$
- Fourier transform \hat{x} denotes $\mathcal{F}(x) = Fx$

The discrete Fourier transform is given by

$$\hat{x}_i = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \omega^{ij} x_j \tag{12}$$

$$F = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & \cdots \\ \omega & \omega^2 & \omega^3 & \cdots \\ \omega^2 & \omega^4 & \omega^6 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
(13)

$$(F)_{ij} = \frac{1}{\sqrt{n}}\omega^{ij} \tag{14}$$

where

$$\omega = e^{-\frac{2\pi\sqrt{-1}}{n}} \tag{15}$$

F is unitary, and its inverse F^{-1} is

$$F^{-1} = F^{H} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & \cdots \\ \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots \\ \omega^{-2} & \omega^{-4} & \omega^{-6} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
(16)

$$(F^{-1})_{ij} = \frac{1}{\sqrt{n}}\omega^{-ij} \tag{17}$$

3.1 Properties

Convolution For $a = (a_1, a_2, \dots)^T \in \mathbb{C}^n$ and $b = (b_1, b_2, \dots)^T \in \mathbb{C}^n$

- $\bullet \ a \cdot b = (a_1b_1, a_2b_2, \dots)$
- $a * b = (c_1, c_2, ...)$ where $c_i = \sum_{j=0}^{n-1} a_j b_{i-j}$ (convolution)

then

- $\bullet \ \widehat{a \cdot b} = \hat{a} * \hat{b}$
- $\bullet \ \widehat{a * b} = \hat{a} \cdot \hat{b}$

Parseval's theorem $||x||_2 = ||\hat{x}||_2$

Plancherel's theorem $< x, y > = < \hat{x}, \hat{y} >$

References

- [IPW11] Piotr Indyk, Eric Price, David P. Woodruff. On the Power of Adaptivity in Sparse Recovery. $FOCS\ 2011.$
- [PW12] Eric Price, David P. Woodruff. Lower Bounds for Adaptive Sparse Recovery. http://arxiv.org/abs/1205.3518.