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1 Overview

e adaptive algorithms for compressed sensing

e Fourier transform

2 Adaptive algorithms for compressed sensing

2.1 Adaptive sparse recovery

For some x € R™
e choose v; € R"™, observe y; =< vi,z >

e then vy € R", get yo =< vo,x >

® U, get Ym =< Uy, T >

Output & such that ||z — 2[]s < (1+€) min |z — 2/[]2 with 2 probability.

k—sparse z’

Number of samples required:

o Q(% + loglogn) (known)
o O(% + kloglog %)

e m = O(kloglog %)

2.1.1

For a vector z = (z1x3...2,)" that satisfies |z;| oc i™®

e if & > 1 then [|z||; is bounded

e if @ > 0.5 then ||z||2 is bounded



2.1.2

We showed €2(log logn) bound for £ = 1, then by embedding k copies we can a bound for a general

k.

2.2

|z =21 <C min |lz —2'|

k—sparsex

Suppose k=1

Let ¢* be the largest coordinate |z;«|, and |x;«| > Rl||z_;«||1 where z_;« is x with coordinate i* set

to 0.
Take

If R = oo, then £ ="

y
In general,

Then we have

v = (1,1,1,..

vy =(1,2,3,...)7T

-)T ylzzxi
Y2 Zziﬂb‘i




2.3 An algorithm

Algorithm 1

permute x randomly
i 5, A G
S {jlli—-jl <A}
given R + O(1)
t<+0
while A > 1 do

t t2+ 1

= ics Wi

L 2ies Ti

A+ O(52Y)

R+ O(R?*27Y)

S {jlli-jl <A}
: end while

== =
Y =2

At each stage i = i* £ A (i.e. i* € 9).

lzgislln < 17 £ 28)\" |

. . 4A
E[I(@" £ 28)\i*[l] = |2+ 1
n—1
= ] (at stage t)
HxS\i* 1
> Ry
= if Ay, Ry, iy are “good” then so are A1, Riy1, ip41-
R2
R+ o

log R+ 2logR —t

log R grows = 2!

t = O(loglogn)
= R~n
then A < 1= 8= —{i*}.
For a general k Hash [n] to [B] where B = O(k), and solve individual buckets.
Each i is alone with probability 1 — % > %.

O(kloglog %) = find % of heavy hitter.



Repeat on rest of coordinates.
Time is
k k
kloglogﬁ + floglogﬁ + floglogﬁ + ...
k2 g 4 %
n
=0(kloglog E)

2.4 An alternative algorithm

1. K« k > current sparsity estimate
2: while k¥’ > 1 do

n

3 choose random T coordinates
4 run the subroutine, set ¢*
5: remove ¢* from set
! / 1
6 K+ kK — o
7. end while

Intuition As algorithm progresses, it’s unlikely for £’ to be less then the current sparsity param-
eter after ¢* has been removed.

2.5

L' - L% for ||z — 2| <(14+¢) min |z -2
k—sparse z’

Basic idea Change i to % in Algorithm 1.
P k2

3 Discrete Fourier transform

e original x € C"

e Fourier transform Z denotes F(x) = Fx



The discrete Fourier transform is given by

1 n—1
Ti=—F= wijznj
1 1 1
1 |w w? W3
F — % w2 w4 (,UG
1
(Fij = —=w"
J \/ﬁ
where
_27T\/j
w=e n
F is unitary, and its inverse F~! is
1 1 1
-1 ,,-2 ,,-3

3.1 Properties

Convolution For a = (aj,as,...)T € C" and b= (b, bs,...)T € C®

e a-b= (albl,agbg,...)

e axb=(cy,ca,...) where ¢; = Z?;& a;b;—; (convolution)

then

Parseval’s theorem ||z||2 = [|Z]|2

Plancherel’s theorem < z,y>=<z,9y>

(14)

(15)

(16)

(17)
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