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1 Markov and Chebyshev Inequalities

Let X ≥ 0 be a nonnegative random variable. For all t ≥ 0, E[X] ≥ t · P[X ≥ t], so

P[X ≥ t] ≤ E[x]

t
. (1)

Although it is trivial, this bound appears all over the place. Hence it gets a name: Markov’s
inequality.

Let µ := E[X],Var(X) := E[(x− µ)2]. We have that

P[|x− µ| ≥ t] = P[(x− µ)2 ≥ t2] ≤ Var(X)

t2
(2)

which is known as Chebyshev’s inequality. This will appear very often throughout the course.

In general, one can take arbitrary moments:

P[|x− µ| ≥ t] = P[|x− µ|k ≥ tk] ≤ E[|x− µ|k]
tk

(3)

and doing so for k ≥ 3 is known as a higher moment method.

As an example for how these moment methods work, consider X ∼ N(0, 1) (with PDF p(t) =
1√
2π
e−

t2

2 ). Then E[xk] ≈ k
k
2 , so the kth moment method gives:

P[x ≥ t] . (
k

t2
)
k
2 (4)

Therefore the best moment k in this case depends on t: choosing k = t2/2 gives a bound of
P[x ≥ t] . 2−t

2/4, while substantially larger or substantially lower values of k give worse bounds.

In most cases, a simpler method than optimizing the choice of k in a higher moment method is to
use a moment generating function.

2 Moment Generating Functions

Define the moment generating function Φ(λ) like this:

Φ(λ) = E[eλ(x−µ)]
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By Markov’s inequality,

P[x− µ ≥ t] = P[eλ(x−µ) ≥ eλt] ≤ Φ(λ)

eλt
(5)

where we can optimize over λ.

Note that eλx = 1 + λx+ λ2x2

2 + λ3x3

3! + · · · is a weighted average of the moments of x. Therefore
optimizing λ in (5) is analogous to optimizing k in (4). It’s actually slightly weaker: the best higher
moment bound is at least as good as the best moment generating function bound. However, we
shall see that the moment generating bound is much more convenient, and usually does a good
enough job.

Example: Gaussian Variables. Consider the normal distribution N(0, σ2), given by the

PDF p(t) = 1√
2πσ2

e−
t2

2σ2 . The moment generating function is

Φ(λ) =

∫ −∞
−∞

1√
2πσ2

e−
t2

2σ2 eλtdt =

∫ ∞
−∞

1√
2πσ2

e−[
(t−σ2λ)2

2σ2
+σ2λ2

2
]dt = e

σ2λ2

2 (6)

Thus

P[x ≥ t] ≤ inf
λ

Φ(λ)

eλt
= inf

λ
e
λ2σ2

2
−λt = inf

λ
e

1
2
(λσ− t

σ
)2 · e−

t2

2σ2

But of course infλ e
1
2
(λσ− t

σ
)2 = 1, so this gives us

P[x ≥ t] ≤ e−
t2

2σ2 (7)

with the choice of λ = t
σ2 .

3 Subgaussian variables

We say a random variable is “subgaussian” if its moment generating function is bounded by that
of a gaussian:

Definition 1. A variable X is subgaussian with parameter σ if for all λ,

Φ(λ) ≤ e
λ2σ2

2 .

As with (7), for subgaussian X we have

P[x ≥ µ+ t] ≤ e−
t2

2σ2

and (by replacing X with −X) we also have

P[x ≤ µ− t] ≤ e−
t2

2σ2 .
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Example: bounded random variables. If x ∈ {−1, 1} uniformly at random, then x is
subgaussian with parameter σ = 1. More generally, if x ∈ [a, b], then x is subgaussian with
parameter σ = b−a

2 . The proof is left as an exercise.

If X1 and X2 are independent and subgaussian with parameters σ1 and σ2, then X1 + X2 is
subgaussian with parameter σ =

√
σ21 + σ22. Proof:

E[eλ(X1+X2)] = E[eλX1eλX2 ] = E[eλX1 ]E[eλX2 ] ≤ eλ2σ2
1eλ

2σ2
2 = eλ

2(σ2
1+σ

2
2)

This property is why the moment generating function is so nice to work with.

Example: coin flips. suppose we flip n coins, getting x1, . . . , xn ∈ {0, 1}. We expect the
number of heads

∑
xi to be about n/2, but how well does it concentrate about the mean?

What is a bound on

P[Σ ≥ (
1

2
+ ε)n]?

Well, each xi is bounded, so it is subgaussian with parameter σ = 1
2 . Since the xi are indepen-

dent, the sum has parameter σ =
√
n
2 . Therefore

P[
∑

xi ≥
n

2
+ εn] ≤ e

−(εn)2

2(

√
n
2 ) = e−2ε

2n

How many samples do we need to determine µ to ±ε with (1− δ) probability?

n =
1

2ε2
log

2

δ
= Θ(

1

ε2
log

1

δ
)

The logic in this example is general, giving the hoeffding bound :

Theorem 2 (Hoeffding). Let Xi for i = 1, . . . , n be independent subgaussian variables with mean
µi and parameter σi (for example, be bounded in the range [ai − σi, ai + σi]). Then

P[
∑
i

(xi − µi) > t] ≤ e
− t2

2
∑
i σ

2
i

4 Alternate definitions of subgaussian variables

One might try to define “subgaussian” variables to be ones that are bounded by a Gaussian in
other ways than the moment generating function. For instance, you might consider bounding the
tail probability or the individual moments:

(Bounded Tail): X is subgaussian if for some constant C and parameter σ, with Z ∼ N(0, σ2) and
for all t,

P[|X| ≥ t] ≤ C P[|Z| ≥ t].
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(Moments): X is subgaussian if for some parameter θ, for all k we have

E[X2k] ≤ (2k)!

(2kk!)
θ2k.

Fortunately, these definitions are equivalent (up to constants). So it suffices to prove that any of
these properties hold.

5 Sub-exponential variables

Some variables do not concentrate as well as a gaussian. A useful subset of these are variables that
concentrate as well as exponential random variables.

Definition 3. A variable X is sub-exponential with parameters σ, B if E[eλ(x−µ)] ≤ e
σ2λ2

2 for all
|λ| ≤ B.

Example: exponential random variable. Let X be a continuous variable with p(x) =
ce−cx, for x ≥ 0, so that E[x] = 1

c . Then

E[eλx] = c

∫ ∞
0

eλxe−cxdx =
c

c− λ

when λ < c, and so

E[eλ(x−µ)] =
ce−

λ
c

c− λ
Plotting it, we see that for all |λ| ≤ 1

2 .

E[eλ(x−µ)] ≤ eλ2 .

Therefore X is subexponential with parameters (
√

2, 1/2).

Example: square of a gaussian. Example: let Z ∼ N(0, 1) and X = Z2.

E[eλ(x−1)] =
1√
2π

∫ −∞
−∞

eλ(z
2−1)e−

z2

2 dz =
e−λ√
1− 2λ

(8)

Plotting the function, we can observe that for all |λ| ≤ 1
4 ,

E[eλ(x−1)] ≤ e
4λ2

2 .

Therefore X is subexponential with parameters (2, 1/4).

Using the same idea as the proof of (7), but requiring |λ| ∈ [−B,B], we get a tail bound that
contains two terms: the same as for subgaussian random variables if the optimal λ = t/σ2 ∈
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[−B,B], and a simple exponential otherwise. In particular, we have

P[x ≥ µ+ t] ≤

{
e−

t2

2σ2 if 0 ≤ t ≤ Bσ2

e−
Bt
2 if t ≥ Bσ2

and a similar bound for the lower tail, after negating t.

Just as for subgaussians, if X1, X2 are sub-exponential with parameters (σ1, B1), (σ2, B2), then
X1 +X2 is sub-exponential with parameters (

√
σ21 + σ22,min(B1, B2)).

6 Johnson-Lindenstrauss Theorem

Lemma 4 (Johnson-Lindenstrauss ’84). Let x1, . . . , xn ∈ Rd. There exist y1, . . . , yn ∈ Rm such
that

‖yi − yj‖2 = (1± ε)‖xi − xj‖2∀i, j

with m = O( 1
ε2

log n). Moreover, such yi can be computed efficiently.

Proof. Let A ∈ Rm×d, Aij ∼ N(0, 1
m). We simply set yi = Axi.

To see this works, consider any z ∈ Rd. We have for each coordinate i that

(Az)i =
∑
j

Aijzi ∼ N(0,
‖z‖22
m

),

and the coordinates are independent.

Let w = N(0, Im) = (Az) ·
√
m
‖z‖2 . We would like to show that ‖w‖22 concentrates about its mean.

Recall from the example that for each i, w2
i is the square of a standard normal, and hence subex-

ponential with parameters (2, 1/4). Therefore ‖w‖22 =
∑
w2
i is sub-exponential with parameters

(2
√
m, 14). Then

P[‖w‖22 ≥ m+ εm] ≤ e
−ε2m2

2·4m = e
−ε2m

8

So ‖Az‖22 = (1± ε)‖z‖22 with probability 1− 2e
−ε2m

8 . This is true for any z, including z = xi − xj
for each i, j. Setting m = 8

ε2
log n3

2 = Θ( 1
ε2

log n) gives probability 1− 1
n that for all i, j

‖yi − yj‖22 = (1± ε)‖xi − xj‖22
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