CS 395T: Sublinear Algorithms	Fall 2014
Lecture 22— Nov 11, 2014	
Prof. Eric Price	
Scribe: Taewan Kim	

1 Overview

In the last few lectures we covered

1. Fourier Transform
2. Sparse Fourier Transform
3. Fourier RIP

In this lecture, a new topic 'Oblivious Subspace Embeddings' is covered, especially algorithms introduced by Clarkson and Woodruff [CW13] for regression and low rank approximation problems.

2 Application

Oblivious Subspace Embedding (OSE) is a tool for faster numerical linear algebra. There are two possible applications where OSE can be applied: regression and low rank approximation.

2.1 Regression

Problem Statement Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$, Find $x \in \mathbb{R}^{d}$ minimizing $\|A x-b\|_{2} .(n \gg d)$
A is given data composed of n rows of size d which indicates the d different features. And for those n items, vector b is composed of n outcomes corresponding to each $1 \times d$ feature vector. By finding solution $x \in$ minimizing $\|A x-b\|_{2}$, we can find an approximate linear mapping between A and b via $x: A x \approx b$.

This problem can be relaxed by allowing ϵ error:

$$
\text { Find } x^{\prime} \text { s.t. }\left\|A x^{\prime}-b\right\|_{2} \leq(1+\epsilon) \min _{x}\|A x-b\|_{2}
$$

An algorithm to find optimal solution of the regression problem $(\epsilon=0)$ is using Moore-Penrose pseudoinverse ${ }^{1}$.

Algorithm

1. $x=A^{+} b,\left(A^{+}\right.$is pseudoinverse of $\left.A\right)$

[^0]2. When $\operatorname{rank}(A)=d$ and $d \ll n, A^{+}=\left(A^{T} A\right)^{-1} A^{T}$

Time complexity of this algorithm to calculate $x=A^{+} b$ is $\mathcal{O}\left(d^{2} n+d^{3}\right)=\mathcal{O}\left(d^{2} n\right)$ when $d \ll n$. To speed up, sparsity of A can be utilized when A is sparse. If $n n z(A)$ represents the number of nonzero elements in A, time complexity can be improved to $\mathcal{O}\left(d \cdot n n z(A)+d^{3}\right)$. The actual computation should be done as follows: compute $A^{T} x$ first, which gives $\mathcal{O}(n n z(A))$, then compute $\left(A^{T} A\right)^{-1}$ which gives $\mathcal{O}\left(d^{3}\right)$, and finally compute $\left(A^{T} A\right)^{-1}\left(A^{T} x\right)$.

However, by using OSE of [CW13] one can achieve:

- $\mathcal{O}(n n z(A))+\tilde{\mathcal{O}}\left(d^{3} / \epsilon^{2}\right)$
- $\mathcal{O}\left(n n z\left(\tilde{\sim}(\log (1 / \epsilon))+\tilde{\mathcal{O}}\left(d^{3} \log (1 / \epsilon)\right)\right.\right.$
$\left(\right.$ Here, $\left.\tilde{\mathcal{O}}(f) \triangleq f \cdot \log ^{\mathcal{O}(1)}(f)\right)$

2.2 Low Rank Approximation

Problem Statement Given a matrix $A \in \mathbb{R}^{n \times n}$, find a matrix B with $\operatorname{rank}(B)=k$ which minimizes $\|A-B\|_{F}^{2}$.

This low rank approximation problem with Frobenius norm can also be relaxed by allowing ϵ error:

$$
\text { Find } B^{\prime} \text { s.t. }\left\|A-B^{\prime}\right\|_{F}^{2} \leq(1+\epsilon) \min _{\substack{B \\ \operatorname{rank}(B)=k}}\|A-B\|_{F}^{2}
$$

When $\epsilon=0$, Singular Value Decomposition (SVD) gives the best rank- k approximation of A by selecting top k singular values and corresponding singular vectors. SVD requires $\mathcal{O}\left(n^{3}\right)$ of computational time.

However by using Power method/subspace iteration:

- Each iteration takes $\mathcal{O}\left(n^{2} k\right)$ time.
- For Frobenius norm approximation, bound is not known.
- By allowing spectral error, $\tilde{\mathcal{O}}\left(n^{2} k / \epsilon^{2}\right)$ is possible per iteration.

Also, utilizing OSE can give better time bound:

- $\mathcal{O}(n n z(A))+\tilde{\mathcal{O}}\left(n k^{2} / \epsilon^{4}+k^{3} / \epsilon^{5}\right)$

For a dense matrix A, rank- k matrix approximation using random projection was introduced by [Sarlos06, CW09].

3 Oblivious Subspace Embedding

Definition 1. Defined on parameters ($m, n, d, \epsilon, \delta$). An Oblivious Subspace Embedding (OSE) is a distribution on matrices $S \in \mathbb{R}^{m \times n}$, s.t. $\forall d$-dimensional subspace U of \mathbb{R}^{n}, with probability $1-\delta$ over S, we have $\forall x \in U$ that $\|S x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$

3.1 Regression with OSE

Now, we can solve the problem in easier way with lower dimension using OSE. Rather than solving $x^{*}=\arg \min _{x}\|A x-b\|$, solve:

$$
\begin{aligned}
x^{\prime} & =\arg \min _{x}\|S A x-S b\| \\
& =\arg \min _{x}\|S(A x-b)\|
\end{aligned}
$$

where $(A x-b) \in \operatorname{Col}(A \circ b)$.
$(\operatorname{Col}(A \circ b)$ means a column space of A adjoined with the vector $b)$
Then from the definition of OSE,

$$
\begin{equation*}
\frac{\left\|A x^{\prime}-b\right\|}{\left\|A x^{*}-b\right\|} \leq\left(\frac{1+\epsilon}{1-\epsilon}\right) \frac{\left\|S\left(A x^{\prime}-b\right)\right\|}{\left\|S\left(A x^{*}-b\right)\right\|} \leq\left(\frac{1+\epsilon}{1-\epsilon}\right) \lesssim 1+3 \epsilon \tag{1}
\end{equation*}
$$

Computational time is determined by "Embedding time $+\operatorname{Solve}(m, d)$ ", where $\operatorname{Solve}(m, d)$ represents the time to solve new regression problem with size $m \times d$ of $S A$ and $m \times 1$ vector $S b$.

One example of OSE is Gaussian random matrix which can be defined as:

$$
\begin{equation*}
S_{i, j}=\mathcal{N}(0,1 / m) \tag{2}
\end{equation*}
$$

With Gaussian OSE, $m=\mathcal{O}\left(d / \epsilon^{2}\right)$. Therefore, embedding requires $\mathcal{O}(m n d)=\mathcal{O}\left(d^{2} n / \epsilon^{2}\right)$ and Solve (d, m) requires $\mathcal{O}\left(d^{3} / \epsilon^{2}\right)$ computational time. So, total time is $\mathcal{O}\left(d^{2} n / \epsilon^{2}+d^{3} / \epsilon^{2}\right)$.

3.2 Fast Johnson-Lindenstrauss

Now, we introduce an important lemma, which is called Johnson-Lindenstrauss (JL) lemma.
Definition 2 (Johnson-Lindenstrauss Lemma). If $m=\mathcal{O}\left(\left(1 / \epsilon^{2}\right) \log (1 / \delta)\right)$, then

$$
\forall x,\|A x\|_{2}^{2}=(1 \pm \epsilon)\|x\|_{2}^{2} \quad \text { w.p. } 1-\delta
$$

Think as this way: given d-dim. subspace U, take ϵ-net: $C=(1+1 / \epsilon)^{d}$ points. If $m=$ $\mathcal{O}\left(\left(1 / \epsilon^{2}\right) \log (1 / \delta)\right)$, then all are preserved, i.e. C can be covered.

$$
\begin{aligned}
& x=x_{1}+\epsilon x_{2}+\epsilon^{2} x_{3}+\cdots \text { for } x_{1}, \cdots \in C \\
& \Rightarrow\|A x\|_{2} \geq\left\|A x_{1}\right\|-\epsilon\left\|A x_{2}\right\|-\epsilon^{2}\left\|A x_{3}\right\|-\cdots \\
& \quad \geq 1-\epsilon-(1+\epsilon)\left(\epsilon+\epsilon^{2}+\cdots\right) \\
& \quad \geq 1-3 \epsilon
\end{aligned}
$$

Faster version of Johnson-Lindenstrauss embedding technique was introduced by [KW11]:
If A has RIP of order k, then $A D$ has $\left(\epsilon, 2^{-k}\right)$ JL property, where

$$
D=\left[\begin{array}{llll}
\pm 1 & & & \\
& \pm 1 & & \\
& & \ddots & \\
& & & \pm 1
\end{array}\right]
$$

Last class, it is shown that $F_{\Omega \in[n]}$ satisfies (k, ϵ) RIP if $|\Omega| \geq\left(1 / \epsilon^{2}\right) k \log ^{4} n$. So, if $m=|\Omega|$ is greater than $\left(d / \epsilon^{2}\right) \log (1 / \epsilon) \log ^{4} n$, then subspace embeddings with $m=\left(d / \epsilon^{2}\right) \log ^{5} n$, and computational time is $n \log n$. So, with Fast JL, embedding requires $\mathcal{O}(d n \log n)$ and $\operatorname{Solve}(m, d)$ requires $\mathcal{O}\left(\left(d^{3} / \epsilon^{2}\right) \log ^{5} n\right)$.

3.3 [CW13]

To improve the complexity, [CW13] used the sparsity of A. In each column of S, exactly one element has ± 1 value defined with hash functions:

$$
\begin{array}{ll}
h:[n] \rightarrow[m] & \leftarrow 2 \text {-independent } \\
\sigma:[n] \rightarrow\{ \pm 1\} & \leftarrow 4 \text {-independent }
\end{array}
$$

therefore OSE matrix S is defined as,

$$
S_{h(i), i}=\sigma_{i}
$$

Let's prove that above S is OSE by showing:

$$
a, b \in \mathbb{R}^{n} \Rightarrow\langle S a, S b\rangle \approx\langle a, b\rangle
$$

Proof. Denote $\delta_{r, i}=\mathbb{I}_{h(i)=r}$ (indicator function).

$$
\begin{aligned}
\langle S a, S b\rangle & =\sum_{r=1}^{m}\left[\left(\sum_{i=1}^{n} \delta_{r, i} \sigma_{r, i} a_{i}\right)\left(\sum_{j=1}^{n} \delta_{r, j} \sigma_{r, j} b_{i}\right)\right] \\
& =\left[\sum_{i=1}^{n} a_{i} b_{i}\left(\sum_{r=1}^{m} \delta_{r, i}^{2} \sigma_{r, i}^{2}\right)\right]+\sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, i} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} a_{i} b_{j} \\
& =\langle a, b\rangle+\sum_{r=1}^{m} \sum_{i \neq j} \delta_{r, i} \delta_{r, j} \sigma_{r, i} \sigma_{r, j} a_{i} b_{j} \\
\Rightarrow \mathbb{E}[\langle S a, S b\rangle] & =\langle a, b\rangle
\end{aligned}
$$

Now let's consider the variance, $\operatorname{Var}[\langle S a, S b\rangle]$. (This proof can be referred to [NN13])

$$
\left.\begin{array}{rl}
(\operatorname{Var}[\langle S a, S b\rangle])^{2} & =\sum_{r=1}^{m} \sum_{i \neq j} \mathbb{E}\left[\sigma_{r, i}^{2} \delta_{r, j}^{2}\left(a_{i}^{2} b_{j}^{2}+a_{i} b_{j} a_{j} b_{i}\right)\right] \\
\Rightarrow \operatorname{Var}[\langle S a, S b\rangle] & =\frac{1}{m} \sum_{i \neq j}\left(a_{i}^{2} b_{j}^{2}+a_{i} b_{j} a_{j} b_{i}\right) \\
\quad \text { Consider }(r, i),(r, j),\left(r^{\prime}, i^{\prime}\right),\left(r^{\prime}, j^{\prime}\right) \\
r=r^{\prime} \text { or }\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\} & \rightarrow \mathbb{E}[\cdot] \neq 0 \\
& \rightarrow \mathbb{E}[\cdot]=0 \text { by independence. }
\end{array}\right)
$$

Let $U \in \mathbb{R}^{n \times d}$ have orthonormal columns. We want,

$$
\begin{aligned}
& \|S U x\|_{2}=(1 \pm \epsilon)\|x\|_{2} \quad \forall x \in \mathbb{R}^{d} \\
\Leftrightarrow & x^{T} U^{T} S^{T} S U x=(1 \pm \epsilon) x^{T} x \\
\Leftrightarrow & \left\|U^{T} S^{T} S U-I\right\|_{2} \leq \epsilon \\
\Leftrightarrow & \left\|U^{T} S^{T} S U-I\right\|_{F}^{2} \leq \epsilon^{2}
\end{aligned}
$$

So it is sufficient to show for Frobenius norm case.

$$
\begin{aligned}
\left(U^{T} S^{T} S U\right)_{i, j} & =\left\langle S U_{i}, S U_{j}\right\rangle \quad\left(U_{i}: i^{\text {th }} \text { column of } U\right) \\
I_{i, j} & =\left\langle U_{i}, U_{j}\right\rangle
\end{aligned}
$$

Also,

$$
\begin{gathered}
\forall i, j \mathbb{E}\left[\left(U^{T} S^{T} S U-I\right)_{i, j}^{2}\right] \leq \frac{2}{m} \\
\Rightarrow \mathbb{E}\left[\left\|U^{T} S^{T} S U-I\right\|_{F}^{2}\right] \leq \frac{2 d^{2}}{m} \leq 2 \epsilon^{2} \\
\Rightarrow\left\|U^{T} S^{T} S U-I\right\|_{2} \leq \epsilon
\end{gathered}
$$

which shows that $\|S U x\|_{2}=(1 \pm \epsilon)\|x\|_{2} \quad \forall x \in \mathbb{R}^{d}$, i.e. S is OSE.
With this setting of S by [CW13], complexity can be achieved to $\mathcal{O}\left(n n z(A)+\left(d^{3} / \epsilon^{2}\right) \log ^{5}(d / \epsilon)\right)$, which is $\mathcal{O}(n n z(A))+\tilde{\mathcal{O}}\left(d^{3} / \epsilon^{2}\right)$.

Following Table compares the computational time for introduced algorithms when applied to regression problem. (\mathcal{O} notation is omitted.)

$$
\begin{aligned}
& \text { No OSE: } \quad d \cdot n n z(A)+d^{3} / d^{2} n+d^{3} \\
& \text { with OSE: Embedding }+\quad \operatorname{Solve}(d, m) \\
& \text { Gaussian: } \quad m n d=d^{2} n / \epsilon+\quad d^{3} / \epsilon^{2} \\
& \text { Fast JL: } \quad d n \log n \quad+\quad\left(d^{3} / \epsilon^{2}\right) \log ^{5} n \\
& \text { C-W: } \quad n n z(A)+\operatorname{Solve}\left(d, d^{2} / \epsilon^{2}\right) \\
& =d^{4} / \epsilon^{2} \leftarrow \text { bad! } \\
& \rightarrow\left(d^{3} / \epsilon^{2}\right) \log ^{5}(d / \epsilon)
\end{aligned}
$$

Table 1: Comparing complexities for various algorithms for regression

References

[CW09] Clarkson, Kenneth L., and David P. Woodruff. Numerical linear algebra in the streaming model. Proceedings of the forty-first annual ACM symposium on Theory of computing, ACM, 2009.
[CW13] Clarkson, Kenneth L., and David P. Woodruff. Low rank approximation and regression in input sparsity time. Proceedings of the forty-fifth annual ACM symposium on Theory of computing, ACM, 2013.
[KW11] Krahmer, Felix, and Rachel Ward. New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property. SIAM Journal on Mathematical Analysis 43.3 (2011): 1269-1281.
[NN13] Nelson, Jelani, and Huy L. Nguyn. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on. IEEE, 2013.
[Sarlos06] Sarlos, Tamas. Improved approximation algorithms for large matrices via random projections. Foundations of Computer Science, 2006. FOCS'06. 4^{77} th Annual IEEE Symposium on, IEEE, 2006.

[^0]: ${ }^{1}$ Details of Moore-Penrose pseudoinverse can be found in Wikipedia or Chapter 4 of Laub, Alan J. Matrix analysis for scientists and engineers. Siam, 2005.

