
CS 395T: Sublinear Algorithms Fall 2014

Lecture 3 — Sept. 4, 2014

Prof. Eric Price Scribe: Zhao Song

In today’s lecture, we will discuss the following problems:

1. Distinct elements

2. Turnstile model

3. AMS - sketch

1 Distinct elements

Given 1, 5, 4, 4, 19, · · · , ∈ [n].

Goal Estimate k(= # distinct elements) up to factor (1± ε) with 1− δ probability.

In order to solve the above problem, let’s look at the following basic question:

Given t.

Goal Ask either k ≤ t or k ≥ 2t?

Choose a subset S ⊆ [n], then ∀i ∈ [n], i ∈ s with probability 1
t . Record whether the intersection

of “stream” and set S is empty, let x denote this event (stream ∩ S) 6= ∅. (Note that S is chosen
before you see a stream of integers).

Pr[x is true] = Pr[x] = 1− (1− 1

t
)k

(Note that, Pr[x] is a monotonically increasing function on k when t is fixed)

For k ≤ t, we have

Pr[x|k ≤ t] ≤ 1− (1− 1

t
)t ≈ 1− 1

e
≈ 0.63

For k ≥ 2t, we have

Pr[x|k ≥ 2t] ≥ 1− (1− 1

t
)2t ≈ 1− 1

e2
≈ 0.8

Repeat to get x1, x2, · · · , xm independent samples. Return whether
∑

i xi ≥ 0.7m. Since xi ∈ {0, 1}
is subgaussian for σ = 1

2 , we have that
∑

i xi is also a subgaussian with σ =
√
m
2 .

Pr[
∑
i

xi ≥ µ+ t] ≤ e
t2

2σ2 = e
2t2

m

Pr[
∑
i

xi ≥ 0.63m+ 0.07m] ≤ e2·0.072m

1

Therefore with m = Θ(log(1/δ)), we can distinguish the to cases with 1− δ probability.

Question: But: how do we store a concise description of S? There can be 2n such sets, and
roughly

(
n
k

)
“likely” sets. So storing S would dominate the space complexity.

Answer 1: Crypto h : SHA-256 [SHA256], or any other crypto hash, and choose roughly S =

{i| h(i)
2256

< 1
t }. Then there would exist streams that break the algorithm, but it’s (hopefully)

computationally intractible to find them.

Answer 2: h : pair-wise independent, s = {i|h(i) < 1
t }

Let’s look at the general definition of some hash functions first,

Definition 1.1. Family H of functions from [n]→ [m] is pair-wise independent if with probability

Pr
h∈H x,y∈[n] c,d∈[m]

[h(x) = c and h(y) = d] =
1

m2

Example 1.2. Canonical example: h(x) = ax+ b (mod m), where (a, b) ∈ [m] pair-wise indepen-
dent if m is a prime ≥ n.

Let’s consider an algorithm that uses pair-wise independent hash function:

Algorithm: Let H denote a pairwise-independent hash function family, choose h ∈ H such that
h : [n] → [B], where B = Θ(t)(the constant will be decided later). Consider the set S = {i|h(i) =
0}.

Then, for the probability of any x ∈ S, we have an upper bound by the union bound:

Pr[any x ∈ s] ≤
∑
i

Pr[i ∈ s] =
k

B

And we have a lower bound by Inclusion-Exclusion1:

Pr[any x ∈ s] ≥
∑
i

Pr[i ∈ s]−
∑
i,j

Pr[i ∈ s and j ∈ s]

=
k

B
− k(k − 1)

2B2

=
k

B
(1− k − 1

B
)

Let’s set B = 4t, for k ≤ t, we have

Pr[any x ∈ S] ≤ t

B
=

1

4

For k ≥ 2t, we have

Pr[any x ∈ S] ≥ 1

2
(1− 1

4
) =

3

8

For any t, do log(1δ) independent samples/examples, each uses O(log n) spaces. Since there are

O(log n) different ts, then O(1
ε2
· log(lognδ)) total space is used to perform distinct elements.

1http://en.wikipedia.org/wiki/Inclusion-exclusion principle

2

Idealized streaming algorithm2

We now explain the LogLog algorithm of [DF03], which improves the space complexity from roughly
O(1

ε2
log n) to O(1

ε2
log log n). One algorithm you could use for distinct elements is the following:

1. Pick a random hash function h : [n]→ [0, 1]

2. Define z = min
i∈stream

h(i), then 1
z − 1 ≈ k.

The observation is that you don’t need to store z exactly; you only need to remember which of
log n different scales z lies in.

LogLog algorithm

1. Pick a random hash function h : [n] → {0, 1}. (Note that h is able to convert a stream of
integers to a binary string.)

2. For a string x ∈ {0, 1}∞, define ρ(x) to be the number of leading zeros from left. (In [DF03],
they defined ρ(x) in a similar way, where ρ(x) denotes the position of its first 1-bit, e.g.
ρ(1 · · ·) = 1 and ρ(001 · · ·) = 3.)

3. Separate elements into m buckets (Analysis in [DF03] shows that ε = 1.3√
m

, here; ε = 1.05√
m

, for

HyperLogLog.)

4. Let m = 2t, then the first t binary bits of x denote the index of one of m buckets.

5. Let M denote the multiset of hashed values, define z(M) = max
x∈M

ρ(x).

6. For each bucket j, ignore the first t bits and compute zj .

7. Output αmm2
1
m

∑
zj to approximate n, where αm is a constant value (defined in [DF03]).

Total Space : O(1
ε2

log log n + log n), where the first term 1
ε2

log logn is caused by m buckets and
the second term log n is from hash function.

There exists a better algorithm :

Theorem 1.3. [KNW10] For a stream of indices in {1, 2, · · · , n}, the algorithm computes (1± ε)-
approximation using an optimal O(1

ε2
+ log(n)) bits of space with 2

3 success probability, where 0 <
ε < 1.

2The details of ISA can be found in Lecture 2 of Course Algorithm for Big Data at Harvard.
http://people.seas.harvard.edu/ minilek/cs229r/lec/lec2.pdf

3

2 Turnstile model

1. Pick a vector x ∈ Rn, start at 0.

2. Read a stream of updates (· · · , (i, αi), · · ·), where i ∈ [n], αi is the number of elements to be
added or deleted.

3. For each (i, αi), we update xi ← xi + αi.

4. Compute f(x).

A further restriction is the “strict” turnstile model, where xi is always ≥ 0, which means the count
of any item can not be negative at any time.

What are examples of f that you might want to compute? Well, distinct elements corresponds to

f(x) = (#i|xi 6= 0) = ‖x‖0 (also called the “sparsity of x”) (1)

One may also ask about other norms, e.g. ‖x‖1 and ‖x‖2, or finding spanning tree, or finding the
largest entries.

Estimate ‖x‖2 in turnstile model

Let A ∈ Rm×n be a Johnson-Lindenstrauss matrix, where Aij ∼ µ(0, 1
m), m = O(1

ε2
log(1δ)),

‖Ax‖22 = (1± ε)‖x‖22 with probability 1− δ.

Given update (i, α), then we have :

x← x+ α · ei
Ax← Ax+A · ei · α
y ← y + α · (column i ∈ A)

where ei is the “elementary unit vector”, a vector of length n with ei = 00 · · · 0︸ ︷︷ ︸
i−1

1 00 · · · 0︸ ︷︷ ︸
n−i

. This

means we can maintain the linear “sketch” y = Ax under streaming updates to x.

This would let us estimate ‖x‖2 from a small space sketch Ax. The problem is, to do so requires
us to remember A, which takes more than mn bits. So how do we solve this? The same way we
solved not being able to store S for distinct elements – with hashing and limited independence.

4

3 AMS - sketch [AMS99]

Definition 3.1. H is a k-wise independent hash family if

∀i1 6= i2 6= · · · ik ∈ [n] and ∀j1, j2, · · · , jk ∈ [m]

Pr
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

mk

AMS Algorithm3:

1. Pick a random hash function h : [n]→ {−1,+1} from a four-wise independent family.

2. Let vi = h(i).

3. Let y =< v, x >, output y2.

4. From Lemma 3.1 and 3.2, we know that y2 is an unbiased estimator with variance big-Oh of
the square of its expectation.

5. Sample y2 m1 = O(1
ε2

) independent times : {y21, y22, · · · , y2m1
}. Use Chebyshev’s inequality to

obtain a (1± ε) approximation with 2
3 probability.

6. Let y = 1
m1

m1∑
i=1
y2i .

7. Sample y m2 = O(log(1δ)) independent times : {y1, y2, · · · , ym2
}. Take the median to get

(1± ε)-approximation with probability 1− δ.

Space Analysis : Each of the hash function takes O(log n) bits to store, and there are O(1
ε2

log(1δ))
hash functions in total.

Lemma 3.2. E[y2] = ‖x‖22

Proof.

E[y2] = E[(< v, x >)2]

= E[
n∑
i=1

v2i x
2
i +

∑
i 6=j

vivjxixj]

= E[

n∑
i=1

v2i x
2
i] + E[

∑
i 6=j

vivjxixj]

=

n∑
i=1

x2i + 0

= ‖x‖22

where E[vivj] = E[vj] · E[vk] = 0 since pair-wise independence.

3More details also can be found in : Lecture 2 of Course Algorithm for Big Data at Harvard.
http://people.seas.harvard.edu/ minilek/cs229r/lec/lec2.pdf ; Lecture 2 of Course Sublinear Algorithms for Big
Datasets at the University of Buenos Aires. http://grigory.github.io/files/teaching/sublinear-big-data-2.pdf

5

Lemma 3.3. E[(y2 − E[y2])2] ≤ 2‖x‖42

Proof.

E[(y2 − E[y2])2] = E[(
∑
i 6=j

vivjxixj)
2]

= E[4
∑
i<j

v2i v
2
jx

2
ix

2
j + 4

∑
i 6=j 6=k

v2i vjvkx
2
ixjxk + 24

∑
i<j<k<l

vivjvkvlxixjxkxl]

= 4
∑
i<j

x2ix
2
j + 4

∑
i 6=j 6=k

E[v2i vjvkx
2
ixjxk] + 24E[

∑
i<j<k<l

vivjvkvlxixjxkxl]

= 4
∑
i<j

x2ix
2
j + 0 + 0

≤ 2‖x‖42

where E[v2i vjvk] = E[vj] · [vk] = 0 since pair-wise independence,

and E[vivjvkvl] = E[vi]E[vj]E[vk]E[vl] = 0 since four-wise independence.

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating
the Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[DF03] Marianne Durand and Philippe Flajolet. Loglog Counting of Large Cardinalities. ESA,
LNCS 2832:605–617, 2003.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 2010.

[SHA256] Descriptions of SHA-256, SHA-384, and SHA-512. NIST, 2014-09-07,
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

6

