CS 395T: Sublinear Algorithms	Fall 2014		
Lecture 3— Sept. 4, 2014			
Prof. Eric Price		Scribe: Zhao Song	
:---			

In today's lecture, we will discuss the following problems:

1. Distinct elements
2. Turnstile model
3. AMS - sketch

1 Distinct elements

Given $1,5,4,4,19, \cdots, \quad \in[n]$.
Goal Estimate $k(=\#$ distinct elements) up to factor $(1 \pm \epsilon)$ with $1-\delta$ probability.
In order to solve the above problem, let's look at the following basic question:

Given t .

Goal Ask either $k \leq t$ or $k \geq 2 t$?
Choose a subset $S \subseteq[n]$, then $\forall i \in[n], i \in s$ with probability $\frac{1}{t}$. Record whether the intersection of "stream" and set S is empty, let x denote this event ($\operatorname{stream} \cap S$) $\neq \emptyset$. (Note that S is chosen before you see a stream of integers).

$$
\operatorname{Pr}[x \text { is true }]=\operatorname{Pr}[x]=1-\left(1-\frac{1}{t}\right)^{k}
$$

(Note that, $\operatorname{Pr}[x]$ is a monotonically increasing function on k when t is fixed)
For $k \leq t$, we have

$$
\operatorname{Pr}[x \mid k \leq t] \leq 1-\left(1-\frac{1}{t}\right)^{t} \approx 1-\frac{1}{e} \approx 0.63
$$

For $k \geq 2 t$, we have

$$
\operatorname{Pr}[x \mid k \geq 2 t] \geq 1-\left(1-\frac{1}{t}\right)^{2 t} \approx 1-\frac{1}{e^{2}} \approx 0.8
$$

Repeat to get $x_{1}, x_{2}, \cdots, x_{m}$ independent samples. Return whether $\sum_{i} x_{i} \geq 0.7 m$. Since $x_{i} \in\{0,1\}$ is subgaussian for $\sigma=\frac{1}{2}$, we have that $\sum_{i} x_{i}$ is also a subgaussian with $\sigma=\frac{\sqrt{m}}{2}$.

$$
\begin{aligned}
& \operatorname{Pr}\left[\sum_{i} x_{i} \geq \mu+t\right] \leq e^{\frac{t^{2}}{2 \sigma^{2}}}=e^{\frac{2 t^{2}}{m}} \\
& \operatorname{Pr}\left[\sum_{i} x_{i} \geq 0.63 m+0.07 m\right] \leq e^{2 \cdot 0.07^{2} m}
\end{aligned}
$$

Therefore with $m=\Theta(\log (1 / \delta))$, we can distinguish the to cases with $1-\delta$ probability.
Question: But: how do we store a concise description of S ? There can be 2^{n} such sets, and roughly $\binom{n}{k}$ "likely" sets. So storing S would dominate the space complexity.

Answer 1: Crypto h : SHA-256 [SHA256], or any other crypto hash, and choose roughly $S=$ $\left\{i \left\lvert\, \frac{h(i)}{2^{256}}<\frac{1}{t}\right.\right\}$. Then there would exist streams that break the algorithm, but it's (hopefully) computationally intractible to find them.

Answer 2: h : pair-wise independent, $s=\left\{i \left\lvert\, h(i)<\frac{1}{t}\right.\right\}$
Let's look at the general definition of some hash functions first,
Definition 1.1. Family H of functions from $[n] \rightarrow[m]$ is pair-wise independent if with probability

Example 1.2. Canonical example: $h(x)=a x+b(\bmod m)$, where $(a, b) \in[m]$ pair-wise independent if m is a prime $\geq n$.

Let's consider an algorithm that uses pair-wise independent hash function:
Algorithm: Let H denote a pairwise-independent hash function family, choose $h \in H$ such that $h:[n] \rightarrow[B]$, where $B=\Theta(t)$ (the constant will be decided later). Consider the set $S=\{i \mid h(i)=$ $0\}$.

Then, for the probability of any $x \in S$, we have an upper bound by the union bound:

$$
\operatorname{Pr}[a n y x \in s] \leq \sum_{i} \operatorname{Pr}[i \in s]=\frac{k}{B}
$$

And we have a lower bound by Inclusion-Exclusion ${ }^{1}$:

$$
\begin{aligned}
\operatorname{Pr}[\text { any } x \in s] & \geq \sum_{i} \operatorname{Pr}[i \in s]-\sum_{i, j} \operatorname{Pr}[i \in s \text { and } j \in s] \\
& =\frac{k}{B}-\frac{k(k-1)}{2 B^{2}} \\
& =\frac{k}{B}\left(1-\frac{k-1}{B}\right)
\end{aligned}
$$

Let's set $B=4 t$, for $k \leq t$, we have

$$
\operatorname{Pr}[\text { any } x \in S] \leq \frac{t}{B}=\frac{1}{4}
$$

For $k \geq 2 t$, we have

$$
\operatorname{Pr}[\text { any } x \in S] \geq \frac{1}{2}\left(1-\frac{1}{4}\right)=\frac{3}{8}
$$

For any t, do $\log \left(\frac{1}{\delta}\right)$ independent samples/examples, each uses $O(\log n)$ spaces. Since there are $O(\log n)$ different $t \mathrm{~s}$, then $O\left(\frac{1}{\epsilon^{2}} \cdot \log \left(\frac{\log n}{\delta}\right)\right)$ total space is used to perform distinct elements.

[^0]
Idealized streaming algorithm ${ }^{2}$

We now explain the LogLog algorithm of [DF03], which improves the space complexity from roughly $O\left(\frac{1}{\epsilon^{2}} \log n\right)$ to $O\left(\frac{1}{\epsilon^{2}} \log \log n\right)$. One algorithm you could use for distinct elements is the following:

1. Pick a random hash function $h:[n] \rightarrow[0,1]$
2. Define $z=\min _{i \in \text { stream }} h(i)$, then $\frac{1}{z}-1 \approx k$.

The observation is that you don't need to store z exactly; you only need to remember which of $\log n$ different scales z lies in.

LogLog algorithm

1. Pick a random hash function $h:[n] \rightarrow\{0,1\}$. (Note that h is able to convert a stream of integers to a binary string.)
2. For a string $x \in\{0,1\}^{\infty}$, define $\rho(x)$ to be the number of leading zeros from left. (In [DF03], they defined $\rho(x)$ in a similar way, where $\rho(x)$ denotes the position of its first 1-bit, e.g. $\rho(1 \cdots)=1$ and $\rho(001 \cdots)=3$.)
3. Separate elements into m buckets (Analysis in [DF03] shows that $\epsilon=\frac{1.3}{\sqrt{m}}$, here; $\epsilon=\frac{1.05}{\sqrt{m}}$, for HyperLogLog.)
4. Let $m=2^{t}$, then the first t binary bits of x denote the index of one of m buckets.
5. Let \mathcal{M} denote the multiset of hashed values, define $z(\mathcal{M})=\max _{x \in \mathcal{M}} \rho(x)$.
6. For each bucket j, ignore the first t bits and compute z_{j}.
7. Output $\alpha_{m} m 2^{\frac{1}{m} \sum z_{j}}$ to approximate n, where α_{m} is a constant value (defined in [DF03]).

Total Space : $O\left(\frac{1}{\epsilon^{2}} \log \log n+\log n\right)$, where the first term $\frac{1}{\epsilon^{2}} \log \log n$ is caused by m buckets and the second term $\log n$ is from hash function.

There exists a better algorithm :
Theorem 1.3. [KNW10] For a stream of indices in $\{1,2, \cdots, n\}$, the algorithm computes $(1 \pm \epsilon)$ approximation using an optimal $O\left(\frac{1}{\epsilon^{2}}+\log (n)\right)$ bits of space with $\frac{2}{3}$ success probability, where $0<$ $\epsilon<1$.

[^1]
2 Turnstile model

1. Pick a vector $x \in \mathbb{R}^{n}$, start at 0 .
2. Read a stream of updates $\left(\cdots,\left(i, \alpha_{i}\right), \cdots\right)$, where $i \in[n], \alpha_{i}$ is the number of elements to be added or deleted.
3. For each $\left(i, \alpha_{i}\right)$, we update $x_{i} \leftarrow x_{i}+\alpha_{i}$.
4. Compute $f(x)$.

A further restriction is the "strict" turnstile model, where x_{i} is always ≥ 0, which means the count of any item can not be negative at any time.

What are examples of f that you might want to compute? Well, distinct elements corresponds to

$$
\begin{equation*}
\left.f(x)=\left(\# i \mid x_{i} \neq 0\right)=\|x\|_{0} \quad \text { (also called the "sparsity of } \mathrm{x} "\right) \tag{1}
\end{equation*}
$$

One may also ask about other norms, e.g. $\|x\|_{1}$ and $\|x\|_{2}$, or finding spanning tree, or finding the largest entries.

Estimate $\|x\|_{2}$ in turnstile model

Let $A \in \mathbb{R}^{m \times n}$ be a Johnson-Lindenstrauss matrix, where $A_{i j} \sim \mu\left(0, \frac{1}{m}\right), m=O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$, $\|A x\|_{2}^{2}=(1 \pm \epsilon)\|x\|_{2}^{2}$ with probability $1-\delta$.

Given update (i, α), then we have :

$$
\begin{aligned}
& x \leftarrow x+\alpha \cdot e_{i} \\
& A x \leftarrow A x+A \cdot e_{i} \cdot \alpha \\
& y \leftarrow y+\alpha \cdot(\text { column } i \in A)
\end{aligned}
$$

where e_{i} is the "elementary unit vector", a vector of length n with $e_{i}=\underbrace{00 \cdots 0}_{i-1} \underbrace{00 \cdots 0}_{n-i}$. This means we can maintain the linear "sketch" $y=A x$ under streaming updates to x.

This would let us estimate $\|x\|_{2}$ from a small space sketch $A x$. The problem is, to do so requires us to remember A, which takes more than $m n$ bits. So how do we solve this? The same way we solved not being able to store S for distinct elements - with hashing and limited independence.

3 AMS - sketch [AMS99]

Definition 3.1. H is a k-wise independent hash family if

$$
\begin{gathered}
\forall i_{1} \neq i_{2} \neq \cdots i_{k} \in[n] \text { and } \forall j_{1}, j_{2}, \cdots, j_{k} \in[m] \\
\underset{h \in H}{\operatorname{Pr}}\left[h\left(i_{1}\right)=j_{1} \wedge \cdots \wedge h\left(i_{k}\right)=j_{k}\right]=\frac{1}{m^{k}}
\end{gathered}
$$

AMS Algorithm ${ }^{3}$:

1. Pick a random hash function $h:[n] \rightarrow\{-1,+1\}$ from a four-wise independent family.
2. Let $v_{i}=h(i)$.
3. Let $y=\langle v, x\rangle$, output y^{2}.
4. From Lemma 3.1 and 3.2 , we know that y^{2} is an unbiased estimator with variance big-Oh of the square of its expectation.
5. Sample $y^{2} m_{1}=O\left(\frac{1}{\epsilon^{2}}\right)$ independent times : $\left\{y_{1}^{2}, y_{2}^{2}, \cdots, y_{m_{1}}^{2}\right\}$. Use Chebyshev's inequality to obtain a ($1 \pm \epsilon$) approximation with $\frac{2}{3}$ probability.
6. Let $\bar{y}=\frac{1}{m_{1}} \sum_{i=1}^{m_{1}} y_{i}^{2}$.
7. Sample $\bar{y} m_{2}=O\left(\log \left(\frac{1}{\delta}\right)\right)$ independent times : $\left\{\bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{m_{2}}\right\}$. Take the median to get ($1 \pm \epsilon$)-approximation with probability $1-\delta$.

Space Analysis : Each of the hash function takes $O(\log n)$ bits to store, and there are $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$ hash functions in total.

Lemma 3.2. $E\left[y^{2}\right]=\|x\|_{2}^{2}$
Proof.

$$
\begin{aligned}
E\left[y^{2}\right] & =E\left[(<v, x>)^{2}\right] \\
& =E\left[\sum_{i=1}^{n} v_{i}^{2} x_{i}^{2}+\sum_{i \neq j} v_{i} v_{j} x_{i} x_{j}\right] \\
& =E\left[\sum_{i=1}^{n} v_{i}^{2} x_{i}^{2}\right]+E\left[\sum_{i \neq j} v_{i} v_{j} x_{i} x_{j}\right] \\
& =\sum_{i=1}^{n} x_{i}^{2}+0 \\
& =\|x\|_{2}^{2}
\end{aligned}
$$

where $E\left[v_{i} v_{j}\right]=E\left[v_{j}\right] \cdot E\left[v_{k}\right]=0$ since pair-wise independence.

[^2]Lemma 3.3. $E\left[\left(y^{2}-E\left[y^{2}\right]\right)^{2}\right] \leq 2\|x\|_{2}^{4}$
Proof.

$$
\begin{aligned}
E\left[\left(y^{2}-E\left[y^{2}\right]\right)^{2}\right] & =E\left[\left(\sum_{i \neq j} v_{i} v_{j} x_{i} x_{j}\right)^{2}\right] \\
& =E\left[4 \sum_{i<j} v_{i}^{2} v_{j}^{2} x_{i}^{2} x_{j}^{2}+4 \sum_{i \neq j \neq k} v_{i}^{2} v_{j} v_{k} x_{i}^{2} x_{j} x_{k}+24 \sum_{i<j<k<l} v_{i} v_{j} v_{k} v_{l} x_{i} x_{j} x_{k} x_{l}\right] \\
& =4 \sum_{i<j} x_{i}^{2} x_{j}^{2}+4 \sum_{i \neq j \neq k} E\left[v_{i}^{2} v_{j} v_{k} x_{i}^{2} x_{j} x_{k}\right]+24 E\left[\sum_{i<j<k<l} v_{i} v_{j} v_{k} v_{l} x_{i} x_{j} x_{k} x_{l}\right] \\
& =4 \sum_{i<j} x_{i}^{2} x_{j}^{2}+0+0 \\
& \leq 2\|x\|_{2}^{4}
\end{aligned}
$$

where $E\left[v_{i}^{2} v_{j} v_{k}\right]=E\left[v_{j}\right] \cdot\left[v_{k}\right]=0$ since pair-wise independence, and $E\left[v_{i} v_{j} v_{k} v_{l}\right]=E\left[v_{i}\right] E\left[v_{j}\right] E\left[v_{k}\right] E\left[v_{l}\right]=0$ since four-wise independence.

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci., 58(1):137-147, 1999.
[DF03] Marianne Durand and Philippe Flajolet. Loglog Counting of Large Cardinalities. ESA, LNCS 2832:605-617, 2003.
[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements problem. Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 2010.
[SHA256] Descriptions of SHA-256, SHA-384, and SHA-512. NIST, 2014-09-07, http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Inclusion-exclusion_principle

[^1]: ${ }^{2}$ The details of ISA can be found in Lecture 2 of Course Algorithm for Big Data at Harvard. http://people.seas.harvard.edu/ minilek/cs229r/lec/lec2.pdf

[^2]: ${ }^{3}$ More details also can be found in : Lecture 2 of Course Algorithm for Big Data at Harvard. http://people.seas.harvard.edu/ minilek/cs229r/lec/lec2.pdf ; Lecture 2 of Course Sublinear Algorithms for Big Datasets at the University of Buenos Aires. http://grigory.github.io/files/teaching/sublinear-big-data-2.pdf

