
CS 395T: Sublinear Algorithms Fall 2014

Lecture 4 — Sept. 9, 2014

Prof. Eric Price Scribe: Zhao Song

1 Overview

In today’s lecture, we will discuss the following problems:

1. Count-Min [CM05]

2. Count-Sketch [CCF02]

3. Fourier analysis of Count-Sketch [MP14]

Motivation All these things are dominated by top few elements

1. URLS on the web

2. Words in Shakespeare

3. IPs in router

2 Preliminaries

Definition 2.1. Let x denote a vector of length n, x(i) = the ith largest term.

Definition 2.2. Let x(1,··· ,k) denote the vector that zeros every coordinates but takes top-k largest
terms, and x(k+1,··· ,n) = x− x(1,··· ,k).

Definition 2.3. Let H = (1, · · · , k) (Head set) and T = (k + 1, · · · , n) (Tail set).

Observation Many kinds of data come from power law distributions, such as x(i) ∝ i−α, where
α ≈ .8.

Claim 2.4.
‖x(k+1,··· ,n)‖2

‖x‖2 ∝ 1

k
2α−1

2

Make a sketch A ∈ Rm×m, and m ≈ k logc n.

Given y = Ax, we want an estimate x̂ of x such that

‖x̂− x‖ ≤ c‖x− x(1,··· ,k)‖ = c‖x(k+1,··· ,n)‖

where c is a constant factor. (What norm do you care about? You can choose `1, `2, `∞...)
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For `1 norm:

‖x̂− x‖∞ ≤
ε

k
‖x(k+1,··· ,n)‖1 =⇒ ‖x− x‖1 ≤ (1 + ε)‖x(k+1,··· ,n)‖1, where m ≈ O(

k

ε
log n)

where x contains the largest k coordinates of x̂. Similarly, for `2, we have

‖x̂− x‖∞ ≤
ε√
k
‖x(k+1,··· ,n)‖2 =⇒ ‖x− x‖2 ≤ (1 + ε)‖x(k+1,··· ,n)‖2, where m ≈ O(

k

ε2
log n)

where x contains the largest k coordinates of x̂. (You will prove these in your homework.)

What’s the difference between these norms? Well, for power law distributions we get:

Claim 2.5.
‖x(k+1,··· ,n)‖1

‖x‖1 ≈ 1
kα−1 this is true if α > 1

Claim 2.6.
‖x(k+1,··· ,n)‖1

‖x‖1 ≈ 1

k
2α−1

2
this is true if α > 1

2

Note that in the common case of 0.5 ≤ α ≤ 1, only the `2 guarantee is useful.

In this class we will give a Θ(n log n) time algorithm to do recovery. Next class we will improve
this to o(n) time(≈ Θ(k · poly(log n)).

3 Count-Min

Some other lecture notes also provide the details of Count-Min.

Lecture 3 of Course “Sublinear Algorithms for Big Data” at the University of Buenos Aires,

http://grigory.github.io/files/teaching/sublinear-big-data-3.pdf .

Lecture 5 of Course “Algorithm for Big Data” at Harvard University,

http://people.seas.harvard.edu/ minilek/cs229r/lec/lec5.pdf .

Sketch:

We think about storing a “table” with R rows and B columns, and a counter y
(u)
v for each cell

(u, v) of the table.

1. Choose R pair-wise independent hash functions h1, h2, · · · , hR : [n]→ [B].

2. For each hash function/row hu, we need B counters.

3. ∀u ∈ [R],∀v ∈ [B], y
(u)
v =

∑
i,hu(i)=v

xi.

This is a linear function of x, so it can be expressed as a matrix.

Recovery Algorithm

Given y, we recover our estimate x̂ of x by:
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1. In each row, estimate x̂
(u)
i = y

(u)
hu(i).

2. Overall, estimate x̂i = minu x̂
(u)
i .

The intution of this algorithm is trying to separate large terms from small terms.

Analysis:

Let H = (1, · · · , k) and T = (k + 1, · · · , n). For a particular hash function hu:

‖x̂(u)
i − xi‖ =

∑
j∈H,hu(i)=hu(j)

xj +
∑

j∈T,hu(i)=hu(j)

xj

≤ 0︸︷︷︸
with probability 1− k

B

+ ‖xT ‖1/B︸ ︷︷ ︸
in expectation

≤ 0︸︷︷︸
with probability 9

10

+
‖xT ‖1
k︸ ︷︷ ︸

with probability 9
10

where we set B = 10k.

Thus for each u and i, by a union bound we have

‖x̂(u)
i − xi‖ ≤

‖xT ‖1
k

with probability
8

10
.

then it implies that

x̂i = min
u

x̂
(u)
i ≤ xi +

‖xT ‖1
k

with probability 1− (
1

5
)R

Choose R = O(log n), then

BR = O(k log n), 1− (
1

5
)R = 1− n−c, where c is a constant value.

What if some coordinates are negative?

For some error σ = O(‖xT ‖1/k), we have that Pr[|x̂(u)
i − xi| ≤ σ] ≥ 4

5 . Then after R samples, with

1 − e−O(R) probability we will have that at least n
2 of the x̂

(u)
i will land in xi ± σ. Their median

then to land in that region.

4 Count-Sketch

4.1 Other references

Some other lecture notes also provide the details of Count-Sketch.
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Lecture 3 of Course “Sublinear Algorithms for Big Data” at the University of Buenos Aires,

http://grigory.github.io/files/teaching/sublinear-big-data-3.pdf .

Lecture 5 of Course “Algorithm for Big Data” at Harvard University,

http://people.seas.harvard.edu/ minilek/cs229r/lec/lec5.pdf .

4.2 Setup

One issue with count-min is that if the vector is positive everywhere, then all the errors go in the
same direction. The idea of count-sketch is to introduce random signs in the summation, so that
the errors tend to cancel each other out. This converts the bound from `1 to `2, which is more
useful.

Sketch:

We think about storing a “table” with R rows and B columns, and a counter y
(u)
v for each cell

(u, v) of the table.

1. Choose R pair-wise independent hash functions h1, h2, · · · , hR : [n] → [B] and s1, . . . , sR :
[n]→ {±1}.

2. For each hash function/row hu, we need B counters.

3. ∀u ∈ [R],∀v ∈ [B], y
(u)
v =

∑
i,hu(i)=v

su(i)xi.

This is a linear function of x, so it can be expressed as a matrix.

Recovery Algorithm

Given y, we recover our estimate x̂ of x by:

1. In each row, estimate x̂
(u)
i = su(i)y

(u)
hu(i).

2. Overall, estimate x̂i = medianux̂
(u)
i .

The only difference from Count-Min is the introduction of the signs su, and the use of the median
for estimation.

Analysis:

Let’s bound the term ‖x̂(u)
i − xi‖ for every u ∈ [R] :

‖x̂(u)
i − xi‖ =

∑
j∈H,hu(i)=hu(j)

xj +
∑

j∈T,hu(i)=hu(j)

xj

≤ 0︸︷︷︸
with probability 1− k

B

+ ∆︸︷︷︸
E
h
E
s

[∆2]=E
∑
x2j=‖xT ‖22/B
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Then, we have

∆2 ≤ ‖xT ‖
2
2

k
with probability

9

10

=⇒ ‖x̂(u)
i − xi‖ ≤

‖xT ‖2√
k

with probability
4

5

=⇒ ‖x̂i − xi‖ ≤
‖xT ‖2√

k
with probability 1− n−c (by setting R = O(log n))

5 Fourier Analysis of [MP14]

You can actually give a tighter analysis of Count-Sketch, which shows that most coordinates are
estimated to higher precision, if your hash functions are fully independent. As we described in
an earlier class, the assumption of fully independent hash functions is unfortunate, but it can
be justified using cryptographic hash functions and computational assumptions on the adversarial
input, or assuming the input has high entropy.

Note that the details of this analysis also can be found in Eric Price’s presentation slide of
SODA’2015. Here is the link : http://www.cs.utexas.edu/ ecprice/slides/concentration-slides.pdf.

Theorem 5.1. Assume that h and s are fully independent hash functions, and consider the output
x̂ of Count-Sketch. Then ∀t ≤ R, we have

|x̂i − xi| ≤
√

t

R
· ‖xT ‖2√

k

with probability 1− e−Ω(t).

This implies that E[x̂i − xi] ≤ 1√
R
· ‖xT ‖2√

k
after excluding e−Ω(R) events.

Before we get into the prove, let’s look at a simpler problem:

5.1 Estimating a symmetric random variable’s point of symmetry

Suppose we have an unknown distribution X over R, which is symmetric about unknown µ. How
can we best recover µ from a set of samples x1, . . . , xR ∼ X ?

For example, you might consider the following distribution:

X =

{
mean µ, standard deviation σ with probability 1

2
µ±∞ with probability 1

2

1. Mean

(a) Converges to µ as σ√
R

(b) No robustness to outliers

2. Median
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(a) Extremely robust

(b) Doesn’t necessarily converge to µ

We show that it will work if you take the median of pairwise means:

median
i∈{1,3,5,··· }

xi + xi+1

2

which converges as O(σ/
√
R). (Similar to Hodges-Lehmann estimator1)

Why does median converge for (X + X )/2?

1. Without loss of generality, assume that µ = 0.

2. Define the Fourier transform FX of X : FX (t) = Ex∼X [cos(τxt)], where τ = 2π ≈ 6.28.

3. Convolution ⇐⇒ multiplication: FX+X (t) = (FX (t))2 ≥ 0 for all t.

Theorem 5.2. Let Y be symmetric about 0 with FY(t) ≥ 0 ∀t and E[Y 2] = σ2. Then ∀ε ≤ 1

Pr[|y| ≤ εσ] & ε.

Let’s consider the proof when σ = 1.

Proof.

FY(t) = E[cos(τyt)] ≥ 1− τ2

2
t2

Pr[|y| ≤ ε] = Y· 1
ε

≥ Y· 1
ε

= FY · ε
1
ε

≥ 1
0.2

· ε
1
ε

& ε

where we use that the Fourier transform of the triangle function is ( sinx
x )2 is positive.

1http://en.wikipedia.org/wiki/HodgesLehmann estimator
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