CS 395T: Sublinear Algorithms Fall 2014

Lecture 5 — Sept. 11, 2014
Prof. Eric Price Scribe: Aler Knaust

In today’s lecture, we will cover the following topics:

1. Complete our analysis of count-sketch point query [MP2014]

2. An algorithm with O(klog?n) recovery time due to [GLPS2012]

1 Count-sketch Analysis Continued

Recall we had the following definitions
he : [n] — [B] A fanflily of independent hash
functions

A family of random sign func-
tions
A hashtable Y with R rows and B columns, being used as follows:

Yo = Z Su(i)x;

i:h(i)=v
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Z; = median x}-(“)
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T = su (i)Y, Jh(3)

We would like to estimate the error

A;L = fl(u) — Xy
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Which we can rewrite as
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Splitting into the largest coordinates H = (1...k) and the rest T'= (k + 1...n)
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and by the same argument from lecture 4 (cross terms cancelling due to s, being independent)
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1.1 Using the Fourier Transform

Recall for a symmetric random variable we defined the Fourier transform as

g—;(t) = xINEX [cos (2mxt)]

For z,; we then have

I

Zug = Su(j)xj ha (i) =hu(5)

Which is 0 (no collision) with prob. 1 — £, and +a; with prob. 55
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Elcos(2mzy;t)] = <1 — B) cos 0 + 5 cos(2mtx;)
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Furthermore, since adding PDF's is equivalent to convolving them, we can write

Fow= [ Fwz=0
2o\ (i) Zug ey

Since the sum has a non-negative fourier transform, we can apply our previous lemma (Lemma 3.1
in [MP2014))
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The sets H and T are independent, thus
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Question: So what happens to the median of the errors, A; = #; — x; = median,, A}'?

Lemma 1.1. (Lemma 3.3 from [MP2014]) Let A} for u € [R] be symmetric independent random
variables. And let equation 2 apply, then
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Proof. Let I,, denote the indicator of the event A¥ > e%. These I, are bounded and therefore

subgaussian, so their sum Zf I, is also subgaussian with parameter ¢ = @ and mean py =
£(1 - Q(e)). Hence using the Chernoff bound (see lecture 1) we have
& —QLem)? Q(22R
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Equation 4 also applies if I, = A} < —GH%Q. If neither of the events occurs then the median
must lie in (—EHQCTH2 e”xTHQ). O
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If we let € = \/% and use 1.1, we arrive at
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2 Gilbert-Li-Porat-Strauss Fast Recovery

P

The methods we have looked at so far optimize for space only. Gilbert-Li-Porat-Strauss proposed
an alternate method in 2009 [GLPS2012] that only take O(klog?n) time as well as space.

For their paper, they use the the constraint || — z||l2 < (14+¢€) ||zr|l2 . (Reminder that xp is
~——

= Erra(z,k)
the vector z with the k largest elements zeroed out)

In class we prove it for a weaker L; constraint instead, ||Z — z||1 < (1 + €)Erri(x, k).
Definition 2.1. Let H be the set of "heavy-hitters”

E k
H:{i | ‘xi|2”"1]ix’)}

There can be at most 2k heavy hitters |H| < 2k

It suffices to find a superset S such that |S| < o(k),S D H. If we had such a set, the we could
estimate xg using count-min and get

s —asl < IsI= R — o (B o

k

If we split the error ||2s — x||1 into the heavy-hitters and non-heavy hitters that are not in .S

s — x|y = [|€s = x5l + 12 top £)n51 1L+ |2 mot top k)nsllL = O(Erri(z, k)) (7)
—————
:O(Errl (.Z’,k’)) :k.Errléz,k) =Erry (.’IJ,k)

Unfortunately, it is still a bit difficult to find such an S O H. We can at least find a set .S that has
‘most‘ of the heavy hitters.



Lemma 2.2. In O(klogn) time and space we can recover

S, |S| <o(k) Vie H,ie€S with 4/5 probability

Proof. Idea: Use a hashtable with some clever signing.
Let h : [n] — [B] be a hash function, and let ¢; = {j |h(j) = h(i), Jj #i}

We know from previous arguments about the number of heavy hitter collisions in a hashtable that

E k
\qu\yggl"1ém’) with 4/5 probability (8)
Also, by definition
Erri(x, k .
lli)§||xi|1 Vie H (9)

For each bucket, make O(logn) measurements that sum the contents with different signs

i=0 ++++++++++
i=1 +++++++++-
i=2 A+ttt

The signs are the bit representation of the index. i.e.

Vo= Y a1y

h(j)=v

Yt,v _ Z ;- (_1)(j>>t—1)&1
h(j)=v

If i dominates a bucket:
sign(Yy p(p)) = (1) 7D¢ vt e [R]
So we can recover i with good probability. O

For an Ly approximation we can instead use an error correcting code [GLPS2012]
Idea: If S really contains H, we previously showed

SDOH=||ts —z||l1 < (1+ ¢€)Erri(x,k)

But S only mostly contains H. So instead, the first time we get at least k/2 of the top k, if we
subtract these from = we can try again to get half of the remaining top k/2

k
Erry <x — Ig, 2> < (14 ¢)Errq(z, k)
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So in O(klogn) time and space we get a linear sketch Az — &g. The trick is to repeatedly perform
this algorithm on Zg. I.e. we compute a new A’z with k/2 and also A'#g to get A'(x —ig) — Zg.

Erry(z — 25 — 25, k/4) < (1 + €)Erry(z — g, k/2) < (1 + €)*Erry (x, k) (10)
Now we can repeatedly perform the algorithm for ¢ =1,...;logn

oLetki:§

o Let ¢; = % (%)l decay exponentially

e Compute AW with k; and ¢;

Since €; are decaying, their sum forms a geometric series, and

logn
[[a+e) ez =D =0(1) (11)

i=1

Then using the same argument as in Equation 10, and Equation 11

logn . logn
v @P|l < J]( +e)Emi(a, k) < Er(a, k) (12)
i=1 1 =1

Question: So what are the total costs of this algorithm?
The space needed to perform this algorithm is % logn = O(klogn)

The analysis of the running time has two different parts

e The time to do the recovery algorithm : O(klogn)

e The time to perform the subtractions A'(z — &g) : O(klog?n)
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