CS 395T: Sublinear Algorithms	Fall 2014
Lecture 5-Sept. 11, 2014	
Prof. Eric Price	
Scribe: Alex Knaust	

In today's lecture, we will cover the following topics:

1. Complete our analysis of count-sketch point query [MP2014]
2. An algorithm with $O\left(k \log ^{2} n\right)$ recovery time due to [GLPS2012]

1 Count-sketch Analysis Continued

Recall we had the following definitions

$$
\begin{aligned}
& h_{u}:[n] \rightarrow[B] \begin{array}{l}
\text { A family of independent hash } \\
\text { functions }
\end{array} \\
& s_{u}:[n] \rightarrow+1,-1 \quad \begin{array}{l}
\text { A family of random sign func- } \\
\text { tions }
\end{array}
\end{aligned}
$$

A hashtable Y with R rows and B columns, being used as follows:

$$
\begin{gathered}
Y_{u, v}=\sum_{i: h(i)=v} s_{u}(i) x_{i} \\
\hat{x}_{i}^{(u)}=s_{u}(i) Y_{u, h(i)} \\
\hat{x}_{i}=\operatorname{median}_{u \in[R]}^{\hat{x}_{i}}{ }^{(u)} \\
\hat{x}_{i}=s_{u}(i) Y_{u, h(i)}
\end{gathered}
$$

We would like to estimate the error

$$
\Delta_{i}^{u}=\hat{x}_{i}{ }^{(u)}-x_{i}
$$

Which we can rewrite as

$$
\Delta_{i}^{u}=\sum_{j \neq i} \underbrace{s_{u}(j) x_{j} \underset{h_{u}(i)=h_{u}(j)}{\mathbb{I}}}_{z_{u, j}}
$$

Splitting into the largest coordinates $H=(1 \ldots k)$ and the rest $T=(k+1 \ldots n)$

$$
\Delta_{i}^{u}=\underbrace{\sum_{H \backslash\{i\}} z_{u, j}}_{=0 \text { with prob. . } 9}+\sum_{T \backslash\{i\}} z_{u, j}
$$

and by the same argument from lecture 4 (cross terms cancelling due to s_{u} being independent)

$$
\mathbb{E}\left[\left(\sum_{T \backslash\{i\}} z_{u, j}\right)^{2}\right] \leq \frac{\left\|x_{T}\right\|_{2}^{2}}{B}
$$

$$
\begin{gathered}
\Rightarrow\left|\Delta_{i}^{u}\right| \leq \frac{\left\|x_{T}\right\|_{2}^{2}}{k} \quad \text { with } \frac{4}{5} \text { prob. } \\
\Rightarrow\left|\Delta_{i}\right|=\left|x-\hat{x}_{i}\right| \leq \frac{\left\|x_{T}\right\|_{2}^{2}}{k} \quad \text { with } 1-e^{-\Omega(R)} \text { prob. }
\end{gathered}
$$

1.1 Using the Fourier Transform

Recall for a symmetric random variable we defined the Fourier transform as

$$
\underset{X}{\mathcal{F}}(t)=\underset{x \sim X}{\mathbb{E}}[\cos (2 \pi x t)]
$$

For $z_{u, i}$ we then have

$$
z_{u, i}=s_{u}(j) x_{j} \underset{h_{u}(i)=h_{u}(j)}{\mathbb{I}}
$$

Which is 0 (no collision) with prob. $1-\frac{1}{B}$, and $\pm x_{i}$ with prob. $\frac{1}{2 B}$

$$
\begin{aligned}
\mathbb{E}\left[\cos \left(2 \pi z_{u, i} t\right)\right] & =\left(1-\frac{1}{B}\right) \cos 0+\frac{1}{B} \cos \left(2 \pi t x_{i}\right) \\
& \geq\left(1-\frac{2}{B}\right) \geq 0
\end{aligned}
$$

Furthermore, since adding PDFs is equivalent to convolving them, we can write

$$
\underset{\sum_{T \backslash\{i\}}^{\mathcal{F}} z_{u, j}}{\mathcal{F}}(t)=\prod_{j \in T \backslash\{i\}} \underset{z_{u, j}}{\mathcal{F}}(t) \geq 0
$$

Since the sum has a non-negative fourier transform, we can apply our previous lemma (Lemma 3.1 in [MP2014])

$$
\begin{equation*}
\Rightarrow \mathbb{P}\left[\left|\sum_{T \backslash\{i\}} z_{u, j}\right| \leq \epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}\right] \gtrsim \epsilon \tag{1}
\end{equation*}
$$

The sets H and T are independent, thus

$$
\begin{equation*}
\mathbb{P}\left[\left|\Delta_{i}^{u}\right| \leq \epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}\right] \geq \underbrace{\mathbb{P}\left[\sum_{H \backslash i\}} z_{u, j}=0\right]}_{.9 \text { with prev. }} \cdot \underbrace{\mathbb{P}\left[\left|\sum_{T \backslash \backslash i\}} z_{u, j}\right| \leq \epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}\right]}_{\Omega(\epsilon) \text { due to Equation } 1} \gtrsim \epsilon \tag{2}
\end{equation*}
$$

Question: So what happens to the median of the errors, $\Delta_{i}=\hat{x_{i}}-x_{i}=\operatorname{median}_{u} \Delta_{i}^{u}$?
Lemma 1.1. (Lemma 3.3 from [MP2014]) Let Δ_{i}^{u} for $u \in[R]$ be symmetric independent random variables. And let equation 2 apply, then

$$
\begin{equation*}
\mathbb{P}\left[\left|\operatorname{median}_{u \in[R]} \Delta_{i}^{u}\right| \geq \epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}\right]<2 e^{-\Omega\left(R \epsilon^{2}\right)} \tag{3}
\end{equation*}
$$

Proof. Let \mathbb{I}_{u} denote the indicator of the event $\Delta_{i}^{u} \geq \epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}$. These \mathbb{I}_{u} are bounded and therefore subgaussian, so their sum $\sum_{u}^{R} \mathbb{I}_{u}$ is also subgaussian with parameter $\sigma=\frac{\sqrt{R}}{2}$ and mean $\mu=$ $\frac{R}{2}(1-\Omega(\epsilon))$. Hence using the Chernoff bound (see lecture 1) we have

$$
\begin{equation*}
\mathbb{P}\left[\sum_{u}^{R} \mathbb{I} \geq \mu+\Omega(\epsilon R)\right] \leq e^{\frac{-\Omega(\epsilon R)^{2}}{R / 4}}=e^{-\Omega\left(2 \epsilon^{2} R\right)} \tag{4}
\end{equation*}
$$

Equation 4 also applies if $\mathbb{I}_{u}=\Delta_{i}^{u} \leq-\epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}$. If neither of the events occurs then the median must lie in $\left(-\epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}, \epsilon \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}\right)$.

If we let $\epsilon=\sqrt{\frac{t}{R}}$ and use 1.1, we arrive at

$$
\begin{equation*}
\mathbb{P}\left[\left|\Delta_{i}\right| \geq \sqrt{\frac{t}{R}} \frac{\left\|x_{T}\right\|_{2}}{\sqrt{B}}\right]<2 e^{-\Omega(t)} \tag{5}
\end{equation*}
$$

2 Gilbert-Li-Porat-Strauss Fast Recovery

The methods we have looked at so far optimize for space only. Gilbert-Li-Porat-Strauss proposed an alternate method in 2009 [GLPS2012] that only take $O\left(k \log ^{2} n\right)$ time as well as space.
For their paper, they use the the constraint $\|\hat{x}-x\|_{2} \leq(1+\epsilon) \underbrace{\left\|x_{T}\right\|_{2}}_{\operatorname{Err}_{2}(x, k)}$. (Reminder that x_{T} is the vector x with the k largest elements zeroed out)
In class we prove it for a weaker L_{1} constraint instead, $\|\hat{x}-x\|_{1} \leq(1+\epsilon) \operatorname{Err}_{1}(x, k)$.
Definition 2.1. Let H be the set of "heavy-hitters"

$$
H=\left\{i \quad|\quad| x_{i} \left\lvert\, \geq \frac{\operatorname{Err}_{1}(x, k)}{k}\right.\right\}
$$

There can be at most $2 k$ heavy hitters $|H| \leq 2 k$
It suffices to find a superset S such that $|S| \leq o(k), S \supset H$. If we had such a set, the we could estimate x_{S} using count-min and get

$$
\begin{equation*}
\left\|\hat{x}_{S}-x_{S}\right\|_{1} \leq|S| \frac{\operatorname{Err}_{1}(x, k)}{k}=O\left(\frac{\operatorname{Err}_{1}(x, k)}{k}\right) \tag{6}
\end{equation*}
$$

If we split the error $\left\|\hat{x_{S}}-x\right\|_{1}$ into the heavy-hitters and non-heavy hitters that are not in S

$$
\begin{equation*}
\left\|\hat{x_{S}}-x\right\|_{1}=\underbrace{\left\|\hat{x_{S}}-x_{S}\right\|_{1}}_{=O\left(\operatorname{Err}_{1}(x, k)\right)}+\underbrace{\left\|x_{(\operatorname{top} k) \cap \bar{S}}\right\|_{1}}_{=k \cdot \frac{\operatorname{Err}_{1}(x, k)}{k}}+\underbrace{\left\|x_{(\text {not top } k) \cap \bar{S}}\right\|_{1}}_{=\operatorname{Err}_{1}(x, k)}=O\left(\operatorname{Err}_{1}(x, k)\right) \tag{7}
\end{equation*}
$$

Unfortunately, it is still a bit difficult to find such an $S \supset H$. We can at least find a set S that has 'most' of the heavy hitters.

Lemma 2.2. In $O(k \log n)$ time and space we can recover

$$
S, \quad|S| \leq o(k) \quad \forall i \in H, i \in S \text { with } 4 / 5 \text { probability }
$$

Proof. Idea: Use a hashtable with some clever signing.
Let $h:[n] \rightarrow[B]$ be a hash function, and let $c_{i}=\{j \quad \mid h(j)=h(i), \quad j \neq i\}$
We know from previous arguments about the number of heavy hitter collisions in a hashtable that

$$
\begin{equation*}
\left\|x_{c_{i}}\right\| \leq \frac{\operatorname{Err}_{1}(x, k)}{k} \quad \text { with } 4 / 5 \text { probability } \tag{8}
\end{equation*}
$$

Also, by definition

$$
\begin{equation*}
\frac{\operatorname{Err}_{1}(x, k)}{k} \leq\left\|x_{i}\right\|_{1} \quad \forall i \in H \tag{9}
\end{equation*}
$$

For each bucket, make $O(\log n)$ measurements that sum the contents with different signs

$$
\begin{array}{cc}
i=0 & ++++++++++ \\
i=1 & +++++++++- \\
i=2 & ++++++++-+ \\
\vdots & \vdots
\end{array}
$$

The signs are the bit representation of the index. i.e.

$$
\begin{gathered}
Y_{1, v}=\sum_{h(j)=v} x_{j} \cdot(-1)^{j \& 1} \\
Y_{t, v}=\sum_{h(j)=v} x_{j} \cdot(-1)^{(j \gg t-1) \& 1}
\end{gathered}
$$

If i dominates a bucket:

$$
\operatorname{sign}\left(Y_{t, h(i)}\right)=(-1)^{(i \gg t-1) \& 1} \quad \forall t \in[R]
$$

So we can recover i with good probability.
For an L_{2} approximation we can instead use an error correcting code [GLPS2012]
Idea: If S really contains H, we previously showed

$$
S \supset H \Rightarrow\left\|\hat{x}_{S}-x\right\|_{1} \leq(1+\epsilon) \operatorname{Err}_{1}(x, k)
$$

But S only mostly contains H. So instead, the first time we get at least $k / 2$ of the top k, if we subtract these from x we can try again to get half of the remaining top $k / 2$

$$
\operatorname{Err}_{1}\left(x-\hat{x}_{S}, \frac{k}{2}\right) \leq(1+\epsilon) \operatorname{Err}_{1}(x, k)
$$

So in $O(k \log n)$ time and space we get a linear sketch $A x \rightarrow \hat{x}_{S}$. The trick is to repeatedly perform this algorithm on \hat{x}_{S}. I.e. we compute a new $A^{\prime} x$ with $k / 2$ and also $A^{\prime} \hat{x}_{S}$ to get $A^{\prime}\left(x-\hat{x}_{S}\right) \rightarrow \hat{x}_{S^{\prime}}$.

$$
\begin{equation*}
\operatorname{Err}_{1}\left(x-\hat{x}_{S}-\hat{x}_{S^{\prime}}, k / 4\right) \leq(1+\epsilon) \operatorname{Err}_{1}\left(x-\hat{x}_{S}, k / 2\right) \leq(1+\epsilon)^{2} \operatorname{Err}_{1}(x, k) \tag{10}
\end{equation*}
$$

Now we can repeatedly perform the algorithm for $i=1, \ldots, \log n$

- Let $k_{i}=\frac{k}{2^{i}}$
- Let $\epsilon_{i}=\frac{1}{10}\left(\frac{2}{3}\right)^{i}$ decay exponentially
- Compute $A^{(i)}$ with k_{i} and ϵ_{i}

Since ϵ_{i} are decaying, their sum forms a geometric series, and

$$
\begin{equation*}
\prod_{i=1}^{\log n}\left(1+\epsilon_{i}\right) \leq e^{\sum \epsilon_{i}}=e^{O(1)}=O(1) \tag{11}
\end{equation*}
$$

Then using the same argument as in Equation 10, and Equation 11

$$
\begin{equation*}
\left\|x-\sum_{i=1}^{\log n} \hat{x}_{S_{i}}^{(i)}\right\|_{1} \leq \prod_{i=1}^{\log n}\left(1+\epsilon_{i}\right) \operatorname{Err}_{1}(x, k) \lesssim \operatorname{Err}_{1}(x, k) \tag{12}
\end{equation*}
$$

Question: So what are the total costs of this algorithm?
The space needed to perform this algorithm is $\sum \frac{k_{i}}{\epsilon_{i}} \log n=O(k \log n)$
The analysis of the running time has two different parts

- The time to do the recovery algorithm : $O(k \log n)$
- The time to perform the subtractions $A^{\prime}\left(x-\hat{x}_{S}\right): O\left(k \log ^{2} n\right)$

References

[GLPS2012] Anna C. Gilbert, Yi Li, Ely Porat, Martin J. Strauss. Approximate Sparse Recovery: Optimizing Time and Measurements SIAM Journal on Computing 41(2):436-453, 2012
[MP2014] Gregory T. Minton, Eric Price Improved Bounds for Count-Sketch Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms 51:669-686, 2014

