
CS 395T: Sublinear Algorithms Fall 2014

Lecture 5 — Sept. 11, 2014

Prof. Eric Price Scribe: Alex Knaust

In today’s lecture, we will cover the following topics:

1. Complete our analysis of count-sketch point query [MP2014]

2. An algorithm with O(k log2 n) recovery time due to [GLPS2012]

1 Count-sketch Analysis Continued

Recall we had the following definitions

hu : [n]→ [B]
A family of independent hash
functions

su : [n]→ +1,−1
A family of random sign func-
tions

A hashtable Y with R rows and B columns, being used as follows:

Yu,v =
∑

i:h(i)=v

su(i)xi

x̂i
(u) = su(i)Yu,h(i)

x̂i = median
u∈[R]

x̂i
(u)

x̂i = su(i)Yu,h(i)

We would like to estimate the error
∆u
i = x̂i

(u) − xi
Which we can rewrite as

∆u
i =

∑
j 6=i

su(j)xj I
hu(i)=hu(j)︸ ︷︷ ︸
zu,j

Splitting into the largest coordinates H = (1...k) and the rest T = (k + 1...n)

∆u
i =

∑
H\{i}

zu,j︸ ︷︷ ︸
=0 with prob. .9

+
∑
T\{i}

zu,j

and by the same argument from lecture 4 (cross terms cancelling due to su being independent)

E

∑
T\{i}

zu,j

2 ≤ ||xT ||22
B

1

⇒ |∆u
i | ≤

||xT ||22
k

with
4

5
prob.

⇒ |∆i| = |x− x̂i| ≤
||xT ||22
k

with 1− e−Ω(R) prob.

1.1 Using the Fourier Transform

Recall for a symmetric random variable we defined the Fourier transform as

F
X

(t) = E
x∼X

[cos (2πxt)]

For zu,i we then have
zu,i = su(j)xj I

hu(i)=hu(j)

Which is 0 (no collision) with prob. 1− 1
B , and ±xi with prob. 1

2B

E[cos(2πzu,it)] =

(
1− 1

B

)
cos 0 +

1

B
cos(2πtxi)

≥
(

1− 2

B

)
≥ 0

Furthermore, since adding PDFs is equivalent to convolving them, we can write

F∑
T\{i} zu,j

(t) =
∏

j∈T\{i}

F
zu,j

(t) ≥ 0

Since the sum has a non-negative fourier transform, we can apply our previous lemma (Lemma 3.1
in [MP2014])

⇒ P

∣∣∣∣∣∣
∑
T\{i}

zu,j

∣∣∣∣∣∣ ≤ ε ||xT ||2√
B

 & ε (1)

The sets H and T are independent, thus

P
[
|∆u

i | ≤ ε
||xT ||2√

B

]
≥ P

 ∑
H\{i}

zu,j = 0


︸ ︷︷ ︸

.9 with prev.

·P

∣∣∣∣∣∣
∑
T\{i}

zu,j

∣∣∣∣∣∣ ≤ ε ||xT ||2√
B


︸ ︷︷ ︸

Ω(ε) due to Equation 1

& ε (2)

Question: So what happens to the median of the errors, ∆i = x̂i − xi = medianu ∆u
i ?

Lemma 1.1. (Lemma 3.3 from [MP2014]) Let ∆u
i for u ∈ [R] be symmetric independent random

variables. And let equation 2 apply, then

P
[∣∣∣∣median

u∈[R]
∆u
i

∣∣∣∣ ≥ ε ||xT ||2√
B

]
< 2e−Ω(Rε2) (3)

2

Proof. Let Iu denote the indicator of the event ∆u
i ≥ ε ||xT ||2√

B
. These Iu are bounded and therefore

subgaussian, so their sum
∑R

u Iu is also subgaussian with parameter σ =
√
R

2 and mean µ =
R
2 (1− Ω(ε)). Hence using the Chernoff bound (see lecture 1) we have

P

[
R∑
u

I
u
≥ µ+ Ω(εR)

]
≤ e

−Ω(εR)2

R/4 = e−Ω(2ε2R) (4)

Equation 4 also applies if Iu = ∆u
i ≤ −ε

||xT ||2√
B

. If neither of the events occurs then the median

must lie in (−ε ||xT ||2√
B
, ε ||xT ||2√

B
).

If we let ε =
√

t
R and use 1.1, we arrive at

P

[
|∆i| ≥

√
t

R

||xT ||2√
B

]
< 2e−Ω(t) (5)

2 Gilbert-Li-Porat-Strauss Fast Recovery

The methods we have looked at so far optimize for space only. Gilbert-Li-Porat-Strauss proposed
an alternate method in 2009 [GLPS2012] that only take O(k log2 n) time as well as space.

For their paper, they use the the constraint ||x̂ − x||2 ≤ (1 + ε) ||xT ||2︸ ︷︷ ︸
= Err2(x,k)

. (Reminder that xT is

the vector x with the k largest elements zeroed out)

In class we prove it for a weaker L1 constraint instead, ||x̂− x||1 ≤ (1 + ε)Err1(x, k).

Definition 2.1. Let H be the set of ”heavy-hitters”

H =

{
i | |xi| ≥

Err1(x, k)

k

}

There can be at most 2k heavy hitters |H| ≤ 2k

It suffices to find a superset S such that |S| ≤ o(k), S ⊃ H. If we had such a set, the we could
estimate xS using count-min and get

||x̂S − xS ||1 ≤ |S|
Err1(x, k)

k
= O

(
Err1(x, k)

k

)
(6)

If we split the error ||x̂S − x||1 into the heavy-hitters and non-heavy hitters that are not in S

||x̂S − x||1 = ||x̂S − xS ||1︸ ︷︷ ︸
=O(Err1(x,k))

+ ||x(top k)∩S̄ ||1︸ ︷︷ ︸
=k·Err1(x,k)

k

+ ||x(not top k)∩S̄ ||1︸ ︷︷ ︸
=Err1(x,k)

= O(Err1(x, k)) (7)

Unfortunately, it is still a bit difficult to find such an S ⊃ H. We can at least find a set S that has
‘most‘ of the heavy hitters.

3

Lemma 2.2. In O(k log n) time and space we can recover

S, |S| ≤ o(k) ∀i ∈ H, i ∈ S with 4/5 probability

Proof. Idea: Use a hashtable with some clever signing.

Let h : [n]→ [B] be a hash function, and let ci = {j |h(j) = h(i), j 6= i}

We know from previous arguments about the number of heavy hitter collisions in a hashtable that

||xci || ≤
Err1(x, k)

k
with 4/5 probability (8)

Also, by definition
Err1(x, k)

k
≤ ||xi||1 ∀i ∈ H (9)

For each bucket, make O(log n) measurements that sum the contents with different signs

i = 0 + + + + + + + + ++
i = 1 + + + + + + + + +−
i = 2 + + + + + + + +−+

...
...

The signs are the bit representation of the index. i.e.

Y1,v =
∑
h(j)=v

xj · (−1)j&1

Yt,v =
∑
h(j)=v

xj · (−1)(j>>t−1)&1

If i dominates a bucket:

sign(Yt,h(i)) = (−1)(i>>t−1)&1 ∀t ∈ [R]

So we can recover i with good probability.

For an L2 approximation we can instead use an error correcting code [GLPS2012]

Idea: If S really contains H, we previously showed

S ⊃ H ⇒ ||x̂S − x||1 ≤ (1 + ε)Err1(x, k)

But S only mostly contains H. So instead, the first time we get at least k/2 of the top k, if we
subtract these from x we can try again to get half of the remaining top k/2

Err1

(
x− x̂S ,

k

2

)
≤ (1 + ε)Err1(x, k)

4

So in O(k log n) time and space we get a linear sketch Ax→ x̂S . The trick is to repeatedly perform
this algorithm on x̂S . I.e. we compute a new A′x with k/2 and also A′x̂S to get A′(x− x̂S)→ x̂S′ .

Err1(x− x̂S − x̂S′ , k/4) ≤ (1 + ε)Err1(x− x̂S , k/2) ≤ (1 + ε)2Err1(x, k) (10)

Now we can repeatedly perform the algorithm for i = 1, ..., log n

• Let ki = k
2i

• Let εi = 1
10

(
2
3

)i
decay exponentially

• Compute A(i) with ki and εi

Since εi are decaying, their sum forms a geometric series, and

logn∏
i=1

(1 + εi) ≤ e
∑
εi = eO(1) = O(1) (11)

Then using the same argument as in Equation 10, and Equation 11∥∥∥∥∥x−
logn∑
i=1

x̂
(i)
Si

∥∥∥∥∥
1

≤
logn∏
i=1

(1 + εi)Err1(x, k) . Err1(x, k) (12)

Question: So what are the total costs of this algorithm?

The space needed to perform this algorithm is
∑ ki

εi
log n = O(k log n)

The analysis of the running time has two different parts

• The time to do the recovery algorithm : O(k log n)

• The time to perform the subtractions A′(x− x̂S) : O(k log2 n)

References

[GLPS2012] Anna C. Gilbert, Yi Li, Ely Porat, Martin J. Strauss. Approximate Sparse Recovery:
Optimizing Time and Measurements SIAM Journal on Computing 41(2):436–453, 2012

[MP2014] Gregory T. Minton, Eric Price Improved Bounds for Count-Sketch Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms 51:669–686, 2014

5

