
CS 395T: Sublinear Algorithms Fall 2014

Lecture 8 — Sept 23, 2014

Prof. Eric Price Scribe: Xinyang Yi

1 Overview

In today’s class, we will talk about ’coresets’. Generally, coresets is a compressed representation
of the original data. The concept of coresets can be utilized to solve the following problems in a
streaming setting, if we only have insertion of elements and no deletions:

• Spectral approximation of a graph.

• k-median clustering.

• k-mean clustering.

• Principal component analysis (PCA).

For these problems, our task is to find a coreset for the original data and solve the problem on the
coreset. In addition, as we will see, using the technique ”merge and reduce” of coresets, we can
find streaming algorithms that solve these problems with insertions. In this class, we will focus on
the k-median problem.

2 K-median problem

In particular, we consider the k-median problem in a grid plane. Formally, let [4] denote the set
of natural numbers up to 4. Let Pn denote a set of n points on [4]2,i.e.,

Pn = {p1, p2, ..., pn ∈ [4]2}.

The k-median problem is to find k centers such that the total distance from any point to the nearest
center is minimized. Formally, we want to find k points c1, c2, ..., ck ∈ [4]2 such that the following
quantity is minimized:

n∑
j=1

min
j∈[k]
‖pi − cj‖.

Here ‖ · ‖ denote some distance metric. In the special case where ‖ · ‖ is l1 norm and points are
distributed in 1-D space, the center that minimizes the total distance is actually the coordinate-
wise median of the cluster assigned to that center. This is the reason why the problem is called
k-median. Departing from this problem, if we wanted to minimize the squared Euclidean distance,
then centers would be the mean of their clusters. This would be the k-means problem.

1

For any set of k points C = {c1, c2, ..., ck ∈ [4]2}, we define

d(P,C) =
n∑
j=1

min
j∈[k]
‖pi − cj‖.

For any optimal solution, the corresponding optimal summation of distance is denoted as

OPT (P, k) = min
C : C=k

d(P,C).

Generally, the k-median problem is NP-hard. The ε-approximate k-median problem is to find a C
such that

d(P,C) ≤ (1 + ε)OPT (P, k).

A nearly linear time approximation algorithm is proposed by Kolliopoulos and Rao in [KR99].

Theorem 1. ([KR99]) The exists an algorithm that solves ε-approximate in time O((1/ε)O(1/ε)n log n log k).

3 Coreset for k-median

We now introduce how to use coreset to solve k-median problem in a stream. The basic idea to
find a set of weighted points to replace the original potentially big set of points. Then we can
store the compressed point set (called coreset) and run any existing approximate algorithm on it.
So the coreset should capture the underlying structure such that the solution for coreset is also
good for original points. In particular, let (S,W) denote a set of points {s1, s2, ..., st} with weights
{w1, w2, ..., wt}.

Definition 2. A (k, ε)-coreset for P is a weighted set of points (S,W) such that

d(P, (S,W)) ≤ ε ·OPT (P, k).

The natural question is how to construct a coreset for a given set of points. We hope the constructed
coreset has small size t. From existing literature, we already know these exists one algorithm that
works with guarantee t = O(k

2

ε2
) and another one that works with t = O(k log4

ε2
). We will introduce

the second algorithm later. Before that, let’s investigate the following property of coreset.

Theorem 3. Let (S,W) be an (k, ε)-coreset for P . Suppose set C̃ is an optimal solution for
k-median problem on (S,W), i.e.,

d((S,W), C̃) = OPT ((S,W), k).

Then we have
d(P, C̃) ≤ (1 + 2ε) ·OPT (P, k).

Remarks. (1) For weighted set (S,W), d(·, ·) is similarly defined as

d((S,W), C) =

t∑
i=1

min
j∈[k]

wi‖si − cj‖

2

and

d(P, (S,W)) =
n∑
i=1

min
j∈[t]
‖pi − sj‖.

(2) Consequently, Theorem 3 tells us an optimal solution for coreset is also a good approximate
solution for the original problem.

Now we prove Theorem 3.

Proof. First, by triangle inequality, we observe that for any set of points C,

d((S,W), C) ≤ d(P,C) + d(P, (S,W)) (1)

and
d(P,C) ≤ d((S,W), C) + d(P, (S,W)). (2)

Suppose C is an optimal solution for k-median on P , plug C into (1) results in

d((S,W), C) ≤ (1 + ε) ·OPT (P, k).

By utilizing (2) and plug C̃ into it, we have

d(P, C̃) ≤ d((S,W), C̃) + d(P, (S,W))

≤ d((S,W), C) + d(P, (S,W))

≤ (1 + ε) ·OPT (P, k) + ε ·OPT (P, k)

≤ (1 + 2ε) ·OPT (P, k).

4 Coreset Construction

Now we show how to construct coreset with t ≤ O(k log4
ε2

). Let’s first consider the slightly easier

case when we know an optimal solution for P , say C = {c1, c2, ..., ck}. Then we are able to construct
coreset based on C. (We will in fact show that any constant factor approximation to C is sufficient.)
The basic idea is to construct a finite number of points Sj for each point cj such that for any points
p ∈ [4]2,

min
p′∈Sj

‖p− p′‖ ≤ ε‖p− cj‖.

In order to meet our target O(k log4
ε2

), we expect |Sj | = O(log4
ε2

). One way to achieve this is to
construct a heterogeneous scale grid around cj such that the length of grid side is proportional
to the distance of its center from cj . Without loss of generality, let’s assume cj is the center of
[4]2, i.e., (4/2,4/2). Let T (S) denote the square with side length S centered at (4/2,4/2). Let
E(T (S)) denote the set points uniformly distributed on the edge of T (S) and separate the edge
into O(1ε) segments. Then Sj can be explicitly constructed as the following set of points:

Sj = {(x, y) : (x, y) ∈ E(T ((1 + ε)k)), k ∈ [log1+ε(4)]}.

3

Then it’s easy to show that for any point p, there exists an absolute constant such that

min
p′∈Sj

‖p− p′‖ ≤ Cε‖p− cj‖.

In addition we note that |Sj | = O(1ε
log4

log(1+ε)) = O(log4
ε2

). We summarize our analysis in the following
results.

Lemma 4. Using C, an optimal solution for k-median problem on P , there exists a method to
construct a set of points S such that

d(P, S) ≤ ε · d(P,C)

and

|S| ≤ O(
k log p

ε2
).

We will discuss the concept of covering and packing number in the future. At that time we may
have a more intuitive understanding of the construction.

Now the unsolved problem is that we do not know the optimal solution C. But suppose we know
an approximate solution C such that for some c > 1

d(p, C) ≤ cd(p, C),

then we can construct a coreset S based on C using the techniques we discussed before. Then we
have

d(P, S) ≤ εd(P,C)

≤ cεd(P,C)

= cε ·OPT (P, k).

Therefore a constant approximate solution C is enough for constructing a (k, ε)-coreset. Recall that
in Theorem 3, we there exists an algorithm that solves approximate k-median problem efficiently.
We now have the following result.

Theorem 5. For P , there exists an algorithm that returns a (k, ε)-coreset with size O(k log4
ε2

) in
time O(n log n log k).

5 Merge and Reduce

We have shown how to construct coreset for k-median problem. Next, we introduce a merge and
reduce technique for coreset. This method will help us compress incoming data points sequentially
thus results in a streaming algorithm for k-median with insertions.

For notation simplicity, we drop the subscript and superscript of (weighted) point set, say P (S,W),
just use P, (S,W). We use A+B denote the union of two set of points.

Suppose (S(1),W (1)) is (k, ε)-coreset for P (1) and (S(2),W (2)) is (k, ε)-coreset for P (2). Consider
the problem how to get a coreset for P (1) + P (2) using their own coresets. A simple way would be
running algorithm to construct (k, ε′)-coreset, denoted as (S,W), for (S(1) + S(2),W (1) + W (2)).
We expect that (S,W) is a good coreset for P (1) + P (2).

4

Theorem 6. Suppose (S,W) is (k, ε′)-coreset for (S(1),W (1)) and (S(2),W (2)) which are (k, ε)-
coresets for P (1), P (2) respectively. Then it’s (k, ε+ (1 + 2ε)ε′)-coreset for P (1) + P (2).

Proof. First, we note that

OPT (P (1), k) +OPT (P (2), k) ≤ OPT (P (1) + P (2), k). (3)

Then

d(P (1) + P (2), (S,W))

(a)

≤d(P (1) + P (2), (S(1) + S(2),W (1) +W (2))) + d((S(1) + S(2),W (1) +W (2)), (S,W))

=d(P (1), (S(1) + S(2),W (1) +W (2))) + d(P (2), (S(1) + S(2),W (1) +W (2)))

+ d((S(1) + S(2),W (1) +W (2)), (S,W))

≤d(P (1), (S(1),W (1))) + d(P (2), (S(2),W (2))) + d((S(1) + S(2),W (1) +W (2)), (S,W))

(b)

≤ε ·OPT (P (1), k) + ε ·OPT (P (2), k) + ε′ ·OPT ((S(1) + S(2),W (1) +W (2)), k)

(c)

≤ε ·OPT (P (1) + P (2), k) + ε′ ·OPT ((S(1) + S(2),W (1) +W (2)), k).

Here (a) follows from triangle inequality. (b) follows from the definition of coreset. (c) follows
from (3). We need to provide an upper bound for OPT ((S(1) + S(2),W (1) + W (2)), k). Note that
(S(1) + S(2),W (1) +W (2)) is a (ε, k)-coreset for P (1) + P (2). By using Theorem 3, we have

OPT ((S(1) + S(2),W (1) +W (2)), k) ≤ (1 + 2ε)OPT (P (1) + P (2), k).

Finally we conclude that

d(P (1) + P (2), (S,W)) ≤ (ε+ (1 + 2ε)ε′)OPT (P (1) + P (2), k)

Streaming Algorithm. Suppose we have total n points and our points come in batches with size
m. We construct a series of coresets in multiple levels and each level maintain a coreset with size
m. Level 0 contains the raw points. Each level at most keep one batch except for the level 0. If
level i receives a coreset from level i − 1, if it already has one coreset, merge them to be a new
coreset with size m and send it to level i+ 1. If it has empty coreset, just keep the received coreset.
Each level apply the same (ε′, k)-coreset construction algorithm. Hence we have

m =
k log4
ε′2

.

This procedure will result in O(log n) levels. Following from Theorem 6, the coreset constructed in
the top level a (ε′ log n, k)-coreset for the total n points. Equivalently, if we want a (ε, k)-coreset
at the end of our streaming algorithm, we can set ε′ = ε/ log n, then the space complexity of our

streaming algorithm turns out to be O(k log4 log3 n
ε2

).

References

[KR99] Stavros G. Kolliopoulos, Satish Rao. A Nearly Linear-Time Approximation Scheme for the
Euclidean kappa-median Problem. ESA 1999:378-389.

5

