RIP of Subsampled Fourier Matrix Based off Rudelson-Vershynin

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 1 / 45

- Compressive sensing
- Johnson Lindenstrauss Transforms

A (10) > A (10) > A

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

- Overview
- Covering Number

-27 2/45

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

2 Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

- Overview
- Covering Number

Conclusion

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

- Overview
- Covering Number

Conclusion

3/45

Compressive Sensing

Given: A few linear measurements of an (approximately) *k*-sparse vector $x \in \mathbb{R}^n$.

Goal: Recover *x* (approximately).

Frio	Drico	11

RIP of Subsampled Fourier Matrix

2020-10-27 5/45

Structure-aware Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

2020-10-27 5 / 45

Structure-aware Recovery algorithm tied to matrix structure (e.g. Count-Sketch) Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^T (e.g. L1 minimization)

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch) Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^T (e.g. L1 minimization)

Faster

Often: Sparse matrices Less robust

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Faster Often: Sparse matrices Less robust Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^T (e.g. L1 minimization)

Slower Dense matrices More robust

2020-10-27 5/45

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Faster Often: Sparse matrices Less robust Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^T (e.g. L1 minimization)

Today

Slower Dense matrices More robust

• Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.

RIP of Subsampled Fourier Matrix

2020-10-27 6 / 45

A (1) > A (2) > A

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min ||x||_1$
s.t. $\Phi x = y$

A (10) × A (10) × A (10)

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min \|x\|_1$
s.t. $\Phi x = y$

• Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min ||x||_1$
s.t. $\Phi x = y$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
 - the time it takes to multiply by Φ or Φ^T is the bottleneck.

- 4 回 ト 4 ヨ ト 4 ヨ

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min ||x||_1$
s.t. $\Phi x = y$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
 - the time it takes to multiply by Φ or Φ^T is the bottleneck.
 - the *Restricted Isometry Property* is a sufficient condition.

A (10) × (10) × (10) ×

Restricted Isometry Property (RIP)

L	Drigo	
	FILCE	
		~

RIP of Subsampled Fourier Matrix

2020-10-27 7 / 45

Restricted Isometry Property (RIP)

$$(1-\epsilon)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\epsilon)\|x\|_2^2$$

for all *k*-sparse $x \in \mathbb{R}^n$.

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 7/45

What properties should an RIP matrix have?

イロト イヨト イヨト イヨト

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log(n/k))$ rows.

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.

* Talk will assume $n^{0.1} < k < n^{0.9}$, so $\log k \simeq \log n \simeq \log(n/k)$.

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
 - Reconstruction dominated by $\log n$ multiplications by Φ, Φ^T .

* Talk will assume $n^{0.1} < k < n^{0.9}$, so $\log k \simeq \log n \simeq \log(n/k)$.

< ロ > < 同 > < 回 > < 回 >

2020-10-27 8 / 45

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
 - Reconstruction dominated by $\log n$ multiplications by Φ, Φ^T .
 - Random Gaussian matrix: $\Theta(nk \log n)$ time.

* Talk will assume $n^{0.1} < k < n^{0.9}$, so $\log k \simeq \log n \simeq \log(n/k)$.

< ロ > < 同 > < 回 > < 回 >

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
 - Reconstruction dominated by $\log n$ multiplications by Φ, Φ^T .
 - Random Gaussian matrix: $\Theta(nk \log n)$ time.
- Goal: an RIP matrix with $O(n \log n)$ multiplication and small *m*.

* Talk will assume
$$n^{0.1} < k < n^{0.9}$$
, so $\log k \simeq \log n \simeq \log(n/k)$.

A B F A B F

8/45

Let A contain random rows from a Fourier matrix.

RIP of Subsampled Fourier Matrix

2020-10-27 9 / 45

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

< 6 b

2020-10-27 9 / 45

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

2020-10-27 9 / 45

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

• $m = O(k \log n \log^2 k)$ [CT06,RV08,CGV13,B14,HV15].

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

• $m = O(k \log n \log^2 k)$ [CT06,RV08,CGV13,B14,HV15].

• Today:
$$m = O(k \log^4 n)$$

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

• $m = O(k \log n \log^2 k)$ [CT06,RV08,CGV13,B14,HV15].

• Today:
$$m = O(k \log^4 n)$$

• Ideal: $m = O(k \log n)$

9/45

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

• $m = O(k \log n \log^2 k)$ [CT06,RV08,CGV13,B14,HV15].

• Today:
$$m = O(k \log^4 n)$$

- Ideal: $m = O(k \log n)$
- Subsampled Hadamard lower bound: $m = O(k \log n \log k)$ [BLLMR19].

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

• $m = O(k \log n \log^2 k)$ [CT06,RV08,CGV13,B14,HV15].

• Today:
$$m = O(k \log^4 n)$$

- Ideal: $m = O(k \log n)$
- Subsampled Hadamard lower bound: $m = O(k \log n \log k)$ [BLLMR19].

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

• $m = O(k \log n \log^2 k)$ [CT06,RV08,CGV13,B14,HV15].

• Today:
$$m = O(k \log^4 n)$$

- Ideal: $m = O(k \log n)$
- Subsampled Hadamard lower bound: $m = O(k \log n \log k)$ [BLLMR19].

(Related: how about partial circulant matrices?)

•
$$m = O(k \log^4 n)$$
 [RRT12,KMR12].

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

- Overview
- Covering Number

Conclusion

(4) (5) (4) (5)

A .

2020-10-27 11 / 45

Low dimensional sketch $\Phi(\mathcal{S}) \in \mathbb{R}^m$

 Φ preserves the geometry of *S*

Low dimensional sketch $\Phi(S) \in \mathbb{R}^m$

2020-10-27 11/45

• preserves the geometry of 3

 $(1-\epsilon)\|x\|_2 \le \|\Phi x\|_2 \le (1+\epsilon)\|x\|_2$

Low dimensional sketch $\Phi(S) \in \mathbb{R}^m$

Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss '84) Let $x \in \mathbb{R}^n$. A random Gaussian matrix Φ will have $(1 - \epsilon) \|x\|_2 \le \|\Phi x\|_2 \le (1 + \epsilon) \|x\|_2$ with probability $1 - \delta$, so long as $m \gtrsim \frac{1}{\epsilon^2} \log(1/\delta)$

_		
Frio	Drico	11
	L LICE	

2020-10-27 12/45

Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss '84) Let $x \in \mathbb{R}^n$. A random Gaussian matrix Φ will have $(1 - \epsilon) \|x\|_2 \le \|\Phi x\|_2 \le (1 + \epsilon) \|x\|_2$ with probability $1 - \delta$, so long as $m \gtrsim \frac{1}{\epsilon^2} \log(1/\delta)$

Set $\delta = 1/2^k$: embed 2^k points into O(k) dimensions.

What do we want in a JL matrix?

RIP of Subsampled Fourier Matrix 2020-10-27 13 / 45

イロト イヨト イヨト イヨト

æ

Eric Price ()

What do we want in a JL matrix?

• Target dimension should be small (close to $\frac{1}{\epsilon^2}k$ for 2^k points).

2020-10-27 13 / 45

A I > A = A A

What do we want in a JL matrix?

- Target dimension should be small (close to $\frac{1}{\epsilon^2}k$ for 2^k points).
- Fast multiplication.
 - Approximate numerical algebra problems (e.g., linear regression, low-rank approximation)
 - k-means clustering

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

イロト イヨト イヨト イヨト

æ

Eric Price ()

- Gaussians
 - Dimension $O(\frac{1}{\epsilon^2}k)$.

Gaussians

- Dimension $O(\frac{1}{\epsilon^2}k)$.
- $\frac{1}{\epsilon^2}$ nk multiplication time.

- Gaussians
 - Dimension $O(\frac{1}{\epsilon^2}k)$.
 - $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.

A (10) A (10) A (10)

Gaussians

- Dimension $O(\frac{1}{\epsilon^2}k)$.
- $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.
 - Known results: dimension $O(\frac{1}{\epsilon^2}k \log^3 n)$.

(4) (5) (4) (5)

Gaussians

- Dimension $O(\frac{1}{\epsilon^2}k)$.
- $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.
 - Known results: dimension $O(\frac{1}{\epsilon^2}k \log^3 n)$.
 - n log n multiplication time.

< 回 > < 三 > < 三 >

Gaussians

- Dimension $O(\frac{1}{\epsilon^2}k)$.
- $\frac{1}{\epsilon^2}$ nk multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.
 - Known results: dimension $O(\frac{1}{\epsilon^2}k \log^3 n)$.
 - n log n multiplication time.
- And by [BDDW '08], $JL \Rightarrow RIP$; so equivalent.¹

¹Round trip loses log *n* factor in dimension

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E}\sup_{\boldsymbol{x}\in\boldsymbol{\Sigma}_{k}}\left|\|\boldsymbol{\Phi}\boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|<\epsilon,$$

< 6 k

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E} \sup_{x \in \Sigma_k} \left| \| \Phi x \|_2^2 - \| x \|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

< 6 k

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E}\sup_{x\in\Sigma_k} \left| \|\Phi x\|_2^2 - \|x\|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

Expected deviation of $\Phi^T \Phi$ from mean I_n, in a funny norm.

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E}\sup_{x\in\Sigma_k} \left| \|\Phi x\|_2^2 - \|x\|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

Expected deviation of $\Phi^T \Phi$ from mean I_n, in a funny norm.

Probabilists have lots of tools to analyze this.

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

Overview

• Covering Number

Conclusion

2020-10-27 16 / 45

(4) (5) (4) (5)

Erio	Drico	Λ

RIP of Subsampled Fourier Matrix

2020-10-27 17/45

◆□> ◆圖> ◆理> ◆理> 「理

Screwdriver

E set a	Duite -	~
Eric	Price	
	1100	

RIP of Subsampled Fourier Matrix

► ব ≅ ► য় ৩ ৭ ৫

 2020-10-27
 17 / 45

イロト イロト イヨト イヨト

Screwdriver

Erio	Drigo	\mathbf{n}
	FILCE	
		×.

RIP of Subsampled Fourier Matrix

2020-10-27 17/45

2

▲□▶ ▲圖▶ ▲国▶ ▲国≯

Screwdriver

Bit sets

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 17/45

2

イロト イロト イヨト イヨト

Screwdriver

Bit

イロト イロト イヨト イヨト

RIP of Subsampled Fourier Matrix

► ব ≅ ► য় ৩ ৭ ৫

 2020-10-27
 17 / 45

イロト イロト イヨト イヨト

Common interface: *m* drivers, *n* bits \implies *mn* combinations.

 ▶
 ■
 •
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Common interface: *m* drivers, *n* bits \implies *mn* combinations.

Common interface for drill bits

Hex shanks

Common interface: *m* drivers, *n* bits \implies *mn* combinations.

Hex shanks

Common interface for drill bits

Common interface for probability

Gaussians

_		
Frio	Drico	- 1 \
	I IICE	

RIP of Subsampled Fourier Matrix

2020-10-27 18 / 45

A Probabilist's Toolbox

Convert to Gaussians

Gaussian concentration

RIP of Subsampled Fourier Matrix

2020-10-27 19 / 45

イロト イポト イヨト イヨト

A Probabilist's Toolbox

Gaussian concentration

Will prove: symmetrization and Dudley's entropy integral.

		· · 문· 문	4) Q (4
Eric Price ()	RIP of Subsampled Fourier Matrix	2020-10-27	19 / 45

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

- Overview
- Covering Number

Conclusion

(4) (5) (4) (5)

Symmetrization

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

< 日 > < 同 > < 回 > < 回 > < □ > <

Symmetrization

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

How well does X concentrate about its mean?

イロト イポト イヨト イヨト
Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

How well does X concentrate about its mean?

Example (RIP) For some norm $\|\cdot\|$, RIP constant of subsampled Fourier $\|A^TA - I\|$

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

How well does X concentrate about its mean?

Example (RIP)

For some norm $\|\cdot\|$, RIP constant of subsampled Fourier

$$||A^T A - I|| = ||\sum A_i^T A_i - I||.$$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Eric Price ()

Proof.

イロト 不得 トイヨト イヨト

2020-10-27 21/45

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

2020-10-27 21/45

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|\frac{1}{t}\sum X_i - \mathbb{E}[\frac{1}{t}\sum X_i']\|]$$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|\frac{1}{t}\sum X_i - \mathbb{E}[\frac{1}{t}\sum X_i']\|] \leq \mathbb{E}[\|\frac{1}{t}\sum (X_i - X_i')\|]$$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|rac{1}{t}\sum X_i - \mathbb{E}[rac{1}{t}\sum X_i']\|] \leq \mathbb{E}[\|rac{1}{t}\sum (X_i - X_i')\|] \ = \mathbb{E}[\|rac{1}{t}\sum s_i(X_i - X_i')\|]$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|\frac{1}{t}\sum X_{i} - \mathbb{E}[\frac{1}{t}\sum X_{i}']\|] \leq \mathbb{E}[\|\frac{1}{t}\sum (X_{i} - X_{i}')\|]$$
$$= \mathbb{E}[\|\frac{1}{t}\sum s_{i}(X_{i} - X_{i}')\|]$$

and apply the triangle inequality.

_	-	
Lrio	Drigo	· / \
	FILLE	

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

2020-10-27 21 / 45

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

2020-10-27 21 / 45

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

 $2\mathbb{E}[\|\sum s_iX_i\|]$

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 21 / 45

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

$$2 \mathbb{E}[\|\sum s_i X_i\|] \leq 3 \mathbb{E}[\|\sum s_i \mathbb{E}[|\mathbf{g}_i|] X_i\|]$$

2020-10-27 21 / 45

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

$$egin{aligned} &2\,\mathbb{E}[\|\sum s_iX_i\|]\leq 3\,\mathbb{E}[\|\sum s_i\mathbb{E}[|\mathbf{g}_i|]X_i\|]\ &\leq 3\,\mathbb{E}[\|\sum s_i|\mathbf{g}_i|X_i\|] \end{aligned}$$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

$$\begin{split} 2\,\mathbb{E}[\|\sum s_iX_i\|] &\leq 3\,\mathbb{E}[\|\sum s_i\mathbb{E}[|\mathbf{g}_i|]X_i\|] \\ &\leq 3\,\mathbb{E}[\|\sum s_i|\mathbf{g}_i|X_i\|] \\ &= 3\,\mathbb{E}[\|\sum \mathbf{g}_iX_i\|]. \end{split}$$

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes

3 Proof

Overview

• Covering Number

Conclusion

(4) (5) (4) (5)

• Gaussian process G_x : a Gaussian at each point $x \in T$.

• Gaussian process G_x : a Gaussian at each point $x \in T$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

Eric Price ()

• Gaussian process G_x : a Gaussian at each point $x \in T$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle uv^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|A\|_{2} = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} u^{T}Av = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} G_{u,v}$$

(4) (5) (4) (5)

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|A\|_{2} = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} u^{T}Av = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} G_{u,v}$$

2020-10-27 23 / 45

< ロ > < 同 > < 回 > < 回 >

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|A\|_{2} = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} u^{T}Av = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} G_{u,v}$$

• Depends on the geometry of *T*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2020-10-27 23 / 45

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|\boldsymbol{A}\|_{2} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{v} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{G}_{\boldsymbol{u}, \boldsymbol{v}}$$

• Depends on the geometry of *T*.

• Distance: ||x - y|| is standard deviation of $G_x - G_y$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|\boldsymbol{A}\|_{2} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{v} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{G}_{\boldsymbol{u}, \boldsymbol{v}}$$

- Depends on the geometry of *T*.
- Distance: ||x y|| is standard deviation of $G_x G_y$.
- In example: $||(u, v) (u', v')|| = ||uv^T u'v'^T||_F$.

• Goal:
$$\mathbb{E} \sup_{x \in T} G_x$$
, where $G_x - G_y \sim N(0, \|x - y\|^2)$.

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 24 / 45

æ

イロト イヨト イヨト イヨト

• Goal:
$$\mathbb{E} \sup_{x \in T} G_x$$
, where $G_x - G_y \sim N(0, \|x - y\|^2)$.

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:

•
$$\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$$

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, \|x y\|^2)$.
- Ignoring geometry:

•
$$\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$$

• Union bound: with high probability, $G_x \lesssim \sigma_{max} \sqrt{\log n}$.

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:
 - $\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$
 - Union bound: with high probability, $G_x \leq \sigma_{max} \sqrt{\log n}$.
 - $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_{max} \sqrt{\log n}$

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:
 - $\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$
 - Union bound: with high probability, $G_x \lesssim \sigma_{max} \sqrt{\log n}$.
 - $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_{max} \sqrt{\log n}$

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:
 - $\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$
 - Union bound: with high probability, $G_x \lesssim \sigma_{max} \sqrt{\log n}$.
 - $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_{max} \sqrt{\log n}$
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

Т

• • • • • • • • • • • •

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

Т

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

A B F A B F
- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E} \sup_{x \in \mathcal{T}} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} +$$

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_2 \sqrt{\log$$

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

 $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_3 \sqrt{\log N(\sigma_4)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_3 \sqrt{\log N(\sigma_4)} + \sigma_4 \sqrt{\log$

• • • • • • • • • • • • •

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

 $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_3 \sqrt{\log N(\sigma_4)} + \cdots$

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E} \sup_{x \in T} G_x \lesssim \sum_{r=0}^{\infty} \frac{\sigma_1}{2^r} \sqrt{\log N\left(\frac{\sigma_1}{2^{r+1}}\right)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E}\sup_{x\in T} G_x \lesssim \sum_{r=0}^{\infty} \frac{\sigma_1}{2^r} \sqrt{\log N\left(\frac{\sigma_1}{2^{r+1}}\right)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E}\sup_{x\in T} G_x \lesssim \int_0^\infty \sqrt{\log N(\sigma)} d\sigma$$

Gaussian Processes

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)

Define the norm $\|\cdot\|$ of a Gaussian process G by

$$\|x - y\| = standard deviation of (G_x - G_y).$$

Then

$$\mathbb{E}\sup_{x\in\mathcal{T}}G_x\lesssim\int_0^\infty\sqrt{\log N(\mathcal{T},\|\cdot\|,u)}du$$

_		
Frio	Drico	71
	L LICE	

2020-10-27 26 / 45

Gaussian Processes

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)

Define the norm $\|\cdot\|$ of a Gaussian process G by

$$\|x - y\| = standard deviation of (G_x - G_y).$$

Then

$$\gamma_2(T, \|\cdot\|) := \mathbb{E} \sup_{x \in T} G_x \lesssim \int_0^\infty \sqrt{\log N(T, \|\cdot\|, u)} du$$

2020-10-27 26 / 45

< ロ > < 同 > < 回 > < 回 >

Gaussian Processes

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)

Define the norm $\|\cdot\|$ of a Gaussian process G by

$$\|x - y\| = standard deviation of (G_x - G_y).$$

Then

$$\gamma_2(T, \|\cdot\|) := \mathbb{E} \sup_{x \in T} G_x \lesssim \int_0^\infty \sqrt{\log N(T, \|\cdot\|, u)} du$$

Bound a random variable using geometry.

Erio	Drigo	73
	FILCE	
		~

2020-10-27 26 / 45

A Probabilist's Toolbox (recap)

Convert to Gaussians

Gaussian concentration

RIP of Subsampled Fourier Matrix

2020-10-27 27 / 45

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- 3 Proof

Overview

Covering Number

Conclusion

0-27 28/45

(4) (5) (4) (5)

Goal

Let $\Omega \subset [n]$ have each $i \in [n]$ independently with probability m/n. Let

$$A=\frac{1}{\sqrt{m}}F_{\Omega}$$

For Σ_k denoting unit-norm k-sparse vectors, we want

$$\mathbb{E} \sup_{\Omega} \sup_{x \in \Sigma_k} \left| \|Ax\|_2^2 - \|x\|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

< ロ > < 同 > < 回 > < 回 >

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

$$\begin{array}{c} \mathbb{E} \sup \\ x^T (A^T A - \mathbf{I}) x \end{array} \quad \begin{array}{c} \text{Expected} \\ \text{sup deviation} \end{array}$$

2020-10-27 30 / 45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

$$\begin{array}{c} \mathbb{E} \sup \\ x^T (A^T A - I) x \end{array} \xrightarrow{\text{Expected} \\ \text{sup deviation} \\ \end{array}$$

RIP of Subsampled Fourier Matrix

2020-10-27 30 / 45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

- γ_2 : supremum of Gaussian process
- Σ_k : *k*-sparse unit vectors
- ||·|| : a norm that depends on A (specified in a few slides)

A (10) × A (10) × A (10)

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

- γ_2 : supremum of Gaussian process
- Σ_k : *k*-sparse unit vectors
- ||·|| : a norm that depends on A (specified in a few slides)

2020-10-27 30 / 45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

- γ_2 : supremum of Gaussian process
- Σ_k : *k*-sparse unit vectors
- ||·|| : a norm that depends on A (specified in a few slides)

< ロ > < 同 > < 回 > < 回 >

30/45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

2020-10-27 30 / 45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

RIP of Subsampled Fourier Matrix 2020-10-27

30/45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

30/45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

RIP of Subsampled Fourier Matrix 2020-10-27

0-27 30/45

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price ()

27 30 / 45

Setup

Let $\delta_i = \mathbf{1}_{i \in \Omega}$. Then $\Pr[\delta_i] = m/n$, independently for all *i*.

$$Ax = \frac{1}{\sqrt{m}} \sum_{i=1}^{n} \delta_i F_i x.$$

where $F_{ij} = e^{2\pi\sqrt{-1}ij/n}$. We would like to analyze the RIP constant $R_{\Omega} := \sup_{x \in \Sigma_k} |x^T A^T A x - 1|$.

Now, for any fixed *x*,

$$\mathop{\mathbb{E}}_{\Omega}[x^{T}A^{T}Ax] = \frac{1}{n}x^{T}F^{T}Fx = \|x\|_{2}^{2}$$

and hence

$$\mathbb{E}_{\Omega}[R_{\Omega}] = \mathbb{E}_{\Omega} \sup_{x \in \Sigma_{k}} \left| \|Ax\|_{2}^{2} - \|x\|_{2}^{2} \right| = \mathbb{E}_{\Omega} \sup_{x \in \Sigma_{k}} \left| \|Ax\|_{2}^{2} - \mathbb{E}[\|Ax\|_{2}^{2}] \right|$$

イロト 不得 トイヨト イヨト

Proof part 1: symmetrization

$$\mathbb{E}[R_{\Omega}] = \mathbb{E}\sup_{\Omega} \sup_{x \in \Sigma_{k}} \left| \|Ax\|_{2}^{2} - \|x\|_{2}^{2} \right|$$

$$= \frac{1}{m} \mathbb{E}\sup_{\lambda \in \Sigma_{k}} \left| \sum_{i=1}^{n} \delta_{i} \langle F_{i}, x \rangle^{2} - \mathbb{E}[\sum_{i=1}^{n} \delta_{i} \langle F_{i}, x \rangle^{2}] \right|$$

$$\leq \frac{1}{m} 3 \mathbb{E}\sup_{\delta, g} \sup_{x \in \Sigma_{k}} \left| \sum_{i=1}^{n} g_{i} \delta_{i} \langle F_{i}, x \rangle^{2} \right|$$

$$\leq \frac{1}{m} 3 \mathbb{E} \mathbb{E}\sup_{\Omega} g_{x \in \Sigma_{k}} \left| \sum_{i \in \Omega} g_{i} \langle F_{i}, x \rangle^{2} \right|.$$

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 32/45

2

イロト イヨト イヨト イヨト

The Gaussian Process

So by symmetrization,

$$m \mathbb{E}[R_{\Omega}] \lesssim \underset{\Omega}{\mathbb{E}} \underset{g}{\mathbb{E}} \underset{x \in \Sigma_k}{\sup} \left| \sum_{i \in \Omega} g_i \langle F_i, x \rangle^2 \right|.$$

Now fix Ω , and define the Gaussian process

$$G_{x} = \sum_{i \in \Omega} g_{i} \langle F_{i}, x \rangle^{2}.$$

which induces the norm

$$\|x-y\|_G^2 = \mathbb{E}[(G_x - G_y)^2] = \sum_{i \in \Omega} (\langle F_i, x \rangle^2 - \langle F_i, y \rangle^2)^2$$

so that

$$m\mathbb{E}[R] \lesssim \underset{\alpha}{\mathbb{E}} \underset{x \in \Sigma_{k}}{\sup} G_{x} =: \underset{\alpha}{\mathbb{E}} \gamma_{2}(\Sigma_{k}, \|\cdot\|_{G})$$
$$\leq \underset{\alpha}{\mathbb{E}} \int_{0}^{\infty} \sqrt{\log N(\Sigma_{k}, \|\cdot\|_{G}, u) du}$$

by Dudley's entropy integral.

Eric Price ()

2020-10-27 33 / 45

Simplifying the norm

$$\begin{split} \|x - y\|_{G}^{2} &= \sum_{i \in \Omega} (\langle F_{i}, x \rangle^{2} - \langle F_{i}, y \rangle^{2})^{2} \\ &= \sum_{i \in \Omega} (\langle F_{i}, x + y \rangle \cdot \langle F_{i}, x - y \rangle)^{2} \\ &\leq (\sum_{i \in \Omega} \langle F_{i}, x + y \rangle^{2}) \max_{i \in \Omega} \langle F_{i}, x - y \rangle^{2} \\ &\leq (4 \sup_{x' \in \Sigma_{k}} \sum_{i \in \Omega} \langle F_{i}, x' \rangle^{2}) \max_{i \in [n]} \langle F_{i}, x - y \rangle^{2} \\ &\leq 4m(1 + R_{\Omega}) \|F(x - y)\|_{\infty}^{2}. \end{split}$$

If we define $\|x\|_{F} := \|Fx\|_{\infty}$, this means
 $m \mathbb{E}[R_{\Omega}] \lesssim \mathbb{E} \int_{0}^{\infty} \sqrt{\log N(\Sigma_{k}, \|\cdot\|_{F}, u/\sqrt{1 + R_{\Omega}}) du} \\ &\leq \mathbb{E} \sqrt{m(1 + R_{\Omega})} \int_{0}^{\infty} \sqrt{\log N(\Sigma_{k}, \|\cdot\|_{F}, u) du} \end{split}$

Eric Price ()

New goal

Have:

$$m \mathbb{E}[R_{\Omega}] \lesssim \left(\mathbb{E}_{\Omega} \sqrt{m(1+R_{\Omega})} \right) \int_{0}^{\infty} \sqrt{\log N(\Sigma_{k}, \|\cdot\|_{F}, u) du}$$

Will show:

$$\int_0^\infty \sqrt{\log N(\Sigma_k, \|\cdot\|_F, u) du} \lesssim \epsilon \sqrt{m}$$

for $\epsilon < 1$. This implies that $\mathbb{E}[R_{\Omega}] \lesssim \epsilon \mathbb{E}[\sqrt{1 + R_{\Omega}}]$, and hence $\mathbb{E}[R_{\Omega}] \lesssim \epsilon$.

2020-10-27 35 / 45

イロト イポト イヨト イヨト

Progress

Expected Esup Expected $\mathbb{E} \| \mathbf{z} - \mathbb{E} [\mathbf{z}] \|$ $x^{T}(A^{T}A-I)x$ deviation Symmetrization Expected Expected Maurey: $\gamma_2(\Sigma_k, \|\cdot\|)$ $\mathbb{E} \|\mathbf{g}\|$ norm randomize of Gaussian Union bound log *n* loss log² n loss Dudley Answer! Covering $N(\Sigma_k, \|\cdot\|, u)$ number

イロト イヨト イヨト イヨト

э

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- 3 Proof

Overview

Covering Number

Conclusion

(4) (5) (4) (5)

37/45
$N(\Sigma_k, \|\cdot\|_F, u)$

 $\Sigma_k = \{k \text{-sparse } x \mid ||x||_2 \leq 1\}$

Eric Price ()

RIP of Subsampled Fourier Matrix

2020-10-27 38/45

э

イロト イポト イヨト イヨト

$$N(\Sigma_k, \|\cdot\|_F, u) \leq N(B_1, \|\cdot\|_F, u/\sqrt{k})$$

$$\Sigma_k = \{k \text{-sparse } x \mid ||x||_2 \le 1\}$$

$$\subset \sqrt{k}B_1 = \{x \mid ||x||_1 \le \sqrt{k}\}$$

Eric Price ()

RIP of Subsampled Fourier Matrix

২ ≣ ► ৗ = ৩ ৭ ৫
2020-10-27 38 / 45

イロト イヨト イヨト イヨト

$N(B_1,\|\cdot\|_F,u)$

RIP of Subsampled Fourier Matrix

イロト イヨト イヨト イヨト

 $N(B_1,\|\cdot\|_F,u)$

• Simpler to imagine: what about ℓ_2 ?

RIP of Subsampled Fourier Matrix

2020-10-27 39 / 45

 $N(B_1,\|\cdot\|_F,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1,\|\cdot\|_2,u)$

A (1) > A (2) > A

2020-10-27 39 / 45

 $N(B_1, \|\cdot\|_F, u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1, \|\cdot\|_2, u) \lesssim \left\{egin{array}{cc} (1/u)^{O(n)} & ext{by an easy volume argument} \end{array}
ight.$

A (1) > A (2) > A

 $N(B_1,\|\cdot\|_F,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

$$N(B_1, \|\cdot\|_2, u) \lesssim \left\{ egin{array}{cc} (1/u)^{O(n)} & ext{by array} \ n^{O(1/u^2)} & ext{trickie} \end{array}
ight.$$

by an easy volume argument trickier; next few slides

A (10) A (10)

 $N(B_1, \|\cdot\|_F, u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1, \|\cdot\|_2, u) \lesssim \begin{cases} (1/u)^{O(n)} & \text{by an easy volume argument} \\ n^{O(1/u^2)} & \text{trickier; next few slides} \end{cases}$

• Latter bound is better when $u \gg 1/\sqrt{n}$.

2020-10-27 39 / 45

 $N(B_1, \|\cdot\|_F, u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1, \|\cdot\|_2, u) \lesssim \begin{cases} (1/u)^{O(n)} & \text{by an easy volume argument} \\ n^{O(1/u^2)} & \text{trickier; next few slides} \end{cases}$

- Latter bound is better when $u \gg 1/\sqrt{n}$.
- Maurey's empirical method: generalizes to arbitrary norms

2020-10-27 39 / 45

• # • • • • • • • •

 $N(B_1, \|\cdot\|_F, u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1, \|\cdot\|_F, u) \lesssim \begin{cases} (\sqrt{\log n}/u)^{O(n)} & \text{by an easy volume argument} \\ n^{O(\log n/u^2)} & \text{trickier; next few slides} \end{cases}$

- Latter bound is better when $u \gg 1/\sqrt{n}$.
- Maurey's empirical method: generalizes to arbitrary norms

2020-10-27 39 / 45

不同 トイモトイモ

• How many balls of radius u required to cover B_1 ?

RIP of Subsampled Fourier Matrix

2020-10-27 40 / 45

• How many balls of radius *u* required to cover B_1^+ ?

RIP of Subsampled Fourier Matrix

2020-10-27 40 / 45

A (10) A (10)

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.

A (1) > A (2) > A

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

★ ∃ >

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

< ∃ ►

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

2020-10-27 40 / 45

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

$$\mathbb{E}[\|\mathbf{Z}-\mathbf{X}\|] \leq \mathbf{U}.$$

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

 $\mathbb{E}[\|\mathbf{Z}-\mathbf{X}\|] \leq u.$

All x lie within u of at least one possible z.

- How many balls of radius u required to cover B_1^+ ?
- Consider any $x \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

 $\mathbb{E}[\|\mathbf{Z}-\mathbf{X}\|] \leq \mathbf{U}.$

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq$ number of **z**

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let t be large enough that, regardless of x,

 $\mathbb{E}[\|\mathbf{Z}-\mathbf{X}\|] \leq u.$

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \Longrightarrow \mathbf{z}_{t}$

Eric Price ()

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let t be large enough that, regardless of x,

$\mathbb{E}[\|\mathbf{Z} - \mathbf{X}\|] \le \mathbf{U}.$

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \Longrightarrow \mathbf{z}_{t}$

Will show: $\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_F] \leq \sqrt{1/t}$

- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

$\mathbb{E}[\|\mathbf{Z} - \mathbf{X}\|] \le \mathbf{U}.$

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \Longrightarrow \mathbf{z}$.

Eric Price ()

Will show: $\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_F] \le \sqrt{1/t} \implies N(T, \|\cdot\|_F, u) \le n^{1/u^2}$

- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let t be large enough that, regardless of x,

$\mathbb{E}[\|\mathbf{Z} - \mathbf{X}\|] \le \mathbf{U}.$

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \implies \mathbf{z}_{t-1}$

Eric Price ()

• Goal: $\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.

イロト イポト イヨト イヨト

э

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \boldsymbol{X}\|_F]$$

イロト イヨト イヨト イヨト

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_F] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_F]$$

イロト イヨト イヨト イヨト

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_F] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_F]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_F]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim N(0, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_F] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_F]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_F]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim N(\mathbf{0}, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

For each *i*, (*Fg*)_{*i*} ∼ *N*(0, 1).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

27 41/45
- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_F] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_F]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_F]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim \mathcal{N}(0, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

- For each i, $(Fg)_i \sim N(0, 1)$.
- Hence ||g||_F = ||Fg||_∞ ≤ √log n with high probability (& in expectation).

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_F] \lesssim \sqrt{\log n/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_F] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_F]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_F]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim \mathcal{N}(0, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

- For each *i*, (*Fg*)_{*i*} ∼ *N*(0, 1).
- Hence ||g||_F = ||Fg||_∞ ≤ √log n with high probability (& in expectation).
- Thus $t = \log n/u^2$ suffices, for $N(B_1, \|\cdot\|_F, u) \le n^{O(\log n)/u^2}$.

Progress

Eric Price ()

RIP of Subsampled Fourier Matrix	2020-10-27	42 / 45
----------------------------------	------------	---------

イロン イ理 とく ヨン イヨン

Э.

Progress

Eric Price ()

RIP of Subsampled Fourier Matrix	2020-10-27	42 / 45
----------------------------------	------------	---------

イロン イ理 とく ヨン イヨン

Э.

$$\log N(B_1, \|\cdot\|_F, u) \lesssim rac{1}{u^2} \log^2 n$$

 $\log N(\Sigma_k, \|\cdot\|_F, u) \lesssim rac{k}{u^2} \log^2 n$

And hence

$$\int_{1/n^{100}}^{n} \sqrt{\log N(\Sigma_k, \|\cdot\|_F, u)} du \lesssim \sqrt{k \log^4 n} \le \epsilon \sqrt{m}$$

if $m \ge \frac{1}{c^2} k \log^4 n$, which is what we needed. [Note: Small *u* are negligible by the volume argument:

$$\int_{0}^{1/n^{100}} \sqrt{\log N(\Sigma_k, \|\cdot\|_F, u)} du \lesssim \sqrt{k \log^2 n} \int_{0}^{1/n^{100}} n \log(1/u) du \ll 1/n^{97}$$

Eric Price ()

Union bound of [n] uses log n factor

_	-	
Erio	Drico	Λ
	I IICE	

RIP of Subsampled Fourier Matrix

 ▶ ▲ ■ ▶ ■
 ⊅ へ ○

 2020-10-27
 44/45

A D F A B F A B F A B F

Sample mean **z** expects to lie within *u* of **x** for $t \ge \log n/u^2$

	4 日 > 4 部 > 4 言	▶ ▲ 문 ▶ 문	500
Eric Price ()	RIP of Subsampled Fourier Matrix	2020-10-27	44 / 45

Covering number of B_1 is $(n+1)^{\log n/u^2}$

_		
Erio	Drico	

 ▶ < ≣ >
 ≥

 <th</th>

 </

(a)

Entropy integral is
$$\sqrt{\frac{k \log^4 n}{m}}$$

_		
Lrio		11
	гисе і	

 ▶ < ≣ </th>
 ■

 </th<

ヘロト ヘアト ヘビト ヘビト

$$\mathsf{RIP} \text{ constant } \epsilon \lesssim \sqrt{\frac{k \log^4 n}{m}}$$

Eric Price ()

2020-10-27 44 / 45

3

A D > A B > A B > A B >

• Symmetrization and covering numbers are very general tools!

7 45/45

RIP of Subsampled Fourier Matrix	2020-10-27 46 / 45
----------------------------------	--------------------

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Eric Price ()

Recall that

$$N(B_1,\ell_2,u) \le n^{1/u^2}$$

RIP of Subsampled Fourier Matrix

イロト イヨト イヨト イヨト

Recall that

$$N(B_1,\ell_2,u) \le n^{1/u^2}$$

• So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \leq \log^{3/2} n.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Eric Price ()

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g,x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$

< ロ > < 同 > < 回 > < 回 >

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g, x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$ • We can compute this directly:

$$\mathbb{E}\sup_{x\in B_1}\langle g,x\rangle = \|g\|_{\infty} = \sqrt{\log n}.$$

< ロ > < 同 > < 回 > < 回 >

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g, x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$ • We can compute this directly:

$$\mathbb{E}\sup_{x\in B_1}\langle g,x\rangle = \|g\|_{\infty} = \sqrt{\log n}.$$

• Generic chaining: there exists a partition A_1, A_2, \ldots such that

$$\gamma_2 \simeq \sup_x \sum \sqrt{\log|A_{i+1}|} d(x, A_i)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g, x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$ • We can compute this directly:

$$\mathbb{E}\sup_{x\in B_1}\langle g,x\rangle = \|g\|_{\infty} = \sqrt{\log n}.$$

• Generic chaining: there exists a partition A_1, A_2, \ldots such that

$$\gamma_2 \simeq \sup_x \sum \sqrt{\log|A_{i+1}|} d(x, A_i)$$

• Dudley: choose A_i so sup $d(x, A_i) \leq \sigma_1/2^i$.

Maurey's empirical method

• Answer is n^t , where t is such that

$$\boldsymbol{E} := \mathbb{E}[\|\frac{1}{t}\sum \boldsymbol{z}_i - \boldsymbol{x}\|] \leq \boldsymbol{u}.$$

• • • • • • • • • • • • •

2020-10-27 48 / 45

Maurey's empirical method

• Answer is n^t , where t is such that

E

is such that
$$\mathbb{E}[\frac{1}{t}\sum z_i]$$
$$:=\mathbb{E}[\|\frac{1}{t}\sum z_i - \check{\mathbf{x}}\|] \le u.$$

Maurey's empirical method

- Answer is n^t , where t is such that $E := \mathbb{E}[\|\frac{1}{t}\sum_{i=1}^{\infty} z_i - \check{x}\|] \le u.$
- Symmetrize:

$$E \lesssim rac{1}{t} \mathbb{E}[\|\sum g_i z_i\|]$$

for $g_i \sim N(0, 1)$ i.i.d.

A (10) × A (10) × A (10)

Maurey's empirical method

- Answer is n^t , where t is such that $E := \mathbb{E}[\|\frac{1}{t}\sum_{i=1}^{\infty} z_i - \dot{x}\|] \le u.$
- Symmetrize:

$$E \lesssim rac{1}{t} \mathbb{E}[\|\sum g_i Z_i\|]$$

for $g_i \sim N(0, 1)$ i.i.d.

• Then $g := \sum g_i z_i$ is an independent Gaussian in each coordinate.

A B b 4 B b

Maurey's empirical method

- Answer is n^t , where t is such that $E := \mathbb{E}[\|\frac{1}{t}\sum z_i - \dot{x}\|] \le u.$
- Symmetrize:

$$E \lesssim rac{1}{t} \mathbb{E}[\|\sum g_i Z_i\|]$$

for $g_i \sim N(0, 1)$ i.i.d.

Then g := ∑ g_iz_i is an independent Gaussian in each coordinate.
In ℓ₂,

$$\frac{1}{t} \mathbb{E}[\|\boldsymbol{g}\|_2] \leq \frac{1}{t} \mathbb{E}[\|\boldsymbol{g}\|_2^2]^{1/2} = \frac{\sqrt{\text{number nonzero } \boldsymbol{z}_i}}{t} \leq \frac{1}{\sqrt{t}}.$$

giving an $n^{O(1/u^2)}$ bound.

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}\limits_{z,g} \lVert g \rVert_{\mathcal{A}}$$

2020-10-27 49 / 45

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}\limits_{z,g} \lVert g
Vert_{\mathcal{A}}$$

• First: split x into "large" and "small" coordinates.

$$\mathcal{G}(x) \leq \mathcal{G}(x_{\textit{large}}) + \mathcal{G}(x_{\textit{small}})$$

• x_{large} : Locations where $x_i > (\log n)/k$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}_{z,g} \|g\|_{\mathcal{A}}$$

• First: split x into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|X_{large}\|_1$

A (10) A (10) A (10)

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}\limits_{z,g} \lVert g \rVert_{\mathcal{A}}$$

• First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|X_{large}\|_1$

• Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.

4 4 5 4 5 5 4 5

49/45

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}_{z,g} \|g\|_{A}$$

• First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|X_{large}\|_1$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k

4 **A** N A **A** N A **A** N

49/45

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}_{z,g} \|g\|_{\mathcal{A}}$$

• First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|x_{large}\|_1 \leq 1/\log n.$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k

4 **A N A A B N A B N**

49/45

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}_{z,g} \|g\|_{\mathcal{A}}$$

• First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|x_{large}\|_1 \leq 1/\log n.$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k
- Absorbs the loss from union bound.

A D N A D N A D N A D N

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

$$\mathcal{G}(x) = \mathop{\mathbb{E}}\limits_{z,g} \lVert g \rVert_{\mathcal{A}}$$

• First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|x_{large}\|_1 \leq 1/\log n.$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- $k/(\log^2 n)$ of value $(\log n)/k$
- Absorbs the loss from union bound.
- So can focus on $||x||_{\infty} < (\log n)/k$.

不同 医子宫 医子宫

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$

イロト イポト イヨト イヨト

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\#z_j \text{ at vertex } e_i\}/t^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *k*-sparse *x* rounded to *z*₁,...,*z*_{*t*} symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\#z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

- *k*-sparse *x* rounded to *z*₁,...,*z*_{*t*} symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t}$$

2020-10-27 50 / 45

A (10) × A (10) × A (10)
- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

2020-10-27 50 / 45

A (10) × A (10) × A (10)

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\#z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \leq \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

• "Very weak" RIP bound:

 $\|A_i\|_{\it RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k})$

50/45

- *k*-sparse *x* rounded to *z*₁,...,*z*_{*t*} symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \leq \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

• "Very weak" RIP bound: for some $B = \log^c n$,

 $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \leq \|A_i\|_F / \log n.$

< 回 ト < 三 ト < 三

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t.$
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \leq \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

Gives

$$C \lesssim \sqrt{B/(t\log n)}$$

2020-10-27 50 / 45

< 回 > < 三 > < 三 >

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

- Gives
- $C \lesssim \sqrt{B/(t \log n)}$ • So with high probability, $\|A_ig\|_2 \lesssim \sqrt{B/t} + C\sqrt{\log n} \lesssim \sqrt{B/t}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *k*-sparse *x* rounded to *z*₁,...,*z*_{*t*} symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

Gives

$$C \lesssim \sqrt{B/(t \log n)}$$

- So with high probability, $\|A_ig\|_2 \lesssim \sqrt{B/t} + C\sqrt{\log n} \lesssim \sqrt{B/t}$.
- So $\mathbb{E} \|g\|_{\mathcal{A}} = \max \|\mathcal{A}_i g\|_2 \lesssim \sqrt{B/t}.$

RIP of Subsampled Fourier Matrix	2020-10-27	51 / 45
----------------------------------	------------	---------

◆□> ◆□> ◆豆> ◆豆> ・豆・ 釣べ⊙

Eric Price ()