Problem Set 6

Sublinear Algorithms

Due Tuesday, October 20

1. In this problem we show that matrices that satisfy the RIP-2 cannot be very sparse. Let $A \in \mathbb{R}^{m \times n}$ satisfy the (k, 1/2) RIP for m < n. Suppose that the average column sparsity of A is d, i.e., A has nd nonzero entries.

Furthermore, suppose that $A \in \{0, \pm \alpha\}^{m \times n}$ for some parameter α .

- (a) By looking at the sparsest column, give a bound for α in terms of d.
- (b) By looking at the densest row, give a bound for α in terms of n, m, d and k.
- (c) Conclude that either $d \gtrsim k$ or $m \gtrsim n$. (Recall that this means: there exists a constant C for which $d \geq k/C$.)
- 2. Let T to be a 1/4-cover of the unit ℓ_2 ball $\mathcal{B} \subset \mathbb{R}^n$, meaning that $T \subset \mathcal{B}$ and, for every $x \in \mathcal{B}$, there exists an x' in T such that $||x' x||_2 \leq \frac{1}{4}$.
 - (a) Show that it is possible to pick such a T with $|T| \leq 9^n$.
 - (b) Let $M \in \mathbb{R}^{n \times n}$ be a real matrix. Show that, for any $y \in \mathbb{R}^n$ with $||y|| \le 1$,

$$|y^T M y| \le 2 \cdot \max_{x_1, x_2 \in T} |x_1^\top M x_2|$$

(c) Prove the following lemma:

Lemma. There exists a set $T' \subset \mathbb{R}^n$ of $2^{O(n)}$ unit vectors such that, for any symmetric matrix $M \in \mathbb{R}^{n \times n}$,

$$\|M\| \le 4 \max_{x \in T'} |x^\top M x|.$$

Hint: Yrg G' vapyhqr gur fhz, naq qvssrerapr, bs nal gjb irpgbef va G (fpnyrq qbja gb yvr ba gur onyy).

- (d) Show that $A \in \mathbb{R}^{m \times n}$ with i.i.d. N(0, 1/m) entries with high probability satisfies the (k, ϵ) -RIP with $m = O(\frac{1}{\epsilon^2} k \log \frac{n}{k})$. [For comparison, in class we only proved $O(\frac{1}{\epsilon^2} k \frac{n}{\epsilon k})$.] **Hint:** Hfr gur fcrpgeny punenpgrevmngvba bs EVC, cvpx n qvssrerag Z sbe rnpu fvmr-x flocbeg, naq fubj gur fcrpgeny abez bs rnpu flop Z vf ng zbfg rcf.
- 3. Final project. Brainstorm ideas for what your final project will be on, and write a paragraph describing what you might do and who you might work with.