Problem Set 7

Sublinear Algorithms

Due Thursday, October 29

1. In this problem, we show a lower bound for randomized ℓ_{2} / ℓ_{2} adaptive compressed sensing with Fourier measurements. Let $F \in \mathbb{C}^{n \times n}$ be a fixed orthogonal matrix with $\left|F_{i, j}\right|=1$ for all i, j. [Examples include the Fourier matrix, where $F_{i, j}=e^{2 \pi i j \sqrt{-1} / n}$, or the Hadamard matrix.]
An adaptive recovery algorithm with measurements from F will, for an unknown approximately sparse vector x, repeatedly choose an index i_{t} and see $z_{t}=(F x)_{i_{t}}$. Each choice of index may depend on previous observations. After m observations, the algorithm should return a vector \widehat{x} with

$$
\|\widehat{x}-x\|_{2} \leq C \min _{k \text {-sparse } x_{k}}\left\|x-x_{k}\right\|_{2}
$$

with $3 / 4$ probability, for some constant C. We will show that such an algorithm must have $m=\Omega(k \log (n / k) / \log \log n)$.
(a) Show that there exists a set $S \subset \mathbb{R}^{n}$ of k-sparse vectors such that (I) $\|x\|_{2}=\sqrt{k}$ for all $x \in S$, (II) $\|x-y\|_{2} \geq \sqrt{k}$ for all $x \neq y, x, y \in S$, (III) $\|F x\|_{\infty} \lesssim \sqrt{k \log n}$ for all $x \in S$, and (IV) $\log |S| \gtrsim k \log (n / k)$. (Hint: Recall the large set $S \subset\{0,1\}^{n}$ of k-sparse vectors from class, and flip the signs randomly.)
(b) Consider choosing a random $x \in S$ and $w \sim N\left(0, \sigma^{2} I_{n}\right)$ for $\sigma<\frac{1}{100 C} \sqrt{k / n}$, and setting $x^{\prime}=x+w$. Show that successful sparse recovery \widehat{x}^{\prime} of x^{\prime} is sufficient to uniquely identify x.
(c) Show that this implies $I\left(\widehat{x}^{\prime} ; x\right) \gtrsim k \log (n / k)$.
(d) Separately, use Gaussian channel capacity to show that, for every fixed i,

$$
I\left(\left(F x^{\prime}\right)_{i} ; x\right) \lesssim \log \log n
$$

(e) Show that this implies

$$
I\left(\left(z_{1}, \ldots, z_{m}\right) ; x\right) \lesssim m \log \log n
$$

(f) Conclude that $m \gtrsim k \log (n / k) / \log \log n$.

