Problem Set 8

Sublinear Algorithms

Due Thursday, November 12

1. In class we have shown various algorithms for sparse recovery that tolerate noise and use $O(k \log(n/k))$ measurements, and shown that any ℓ_1/ℓ_1 sparse recovery algorithm must use this many measurements. But what if we don't care about tolerating noise, and only want to recover x from Ax when x is exactly k-sparse?

Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{2k-1} & \alpha_2^{2k-1} & \cdots & \alpha_n^{2k-1} \end{pmatrix}$$

for distinct α_i .

- (a) Prove that any $2k \times 2k$ submatrix of A is invertible. (Hint: look up the Vandermonde determinant.)
- (b) Give an $n^{O(k)}$ time algorithm to recover x from Ax under the assumption that x is k-sparse.
- (c) [Optional] Give an $n^{O(1)}$ time algorithm to recover x from Ax under the assumption that x is k-sparse. You may choose specific values for the α_i . Hint: look up syndrome decoding of Reed-Solomon codes.
- 2. In order to show that SSMP makes progress in each stage, we used a lemma that we will show in this problem.

Let $x_1, \ldots, x_k \in \mathbb{R}^d$, and suppose that

$$\sum_{i=1}^{k} \|x_i\|_1 \le (1+\delta) \|\sum_{i=1}^{k} x_i\|_1$$

for some small enough δ (say, $\delta = 1/10$). In some sense, this is saying that there is not much "slack" in they are lined up head-to-tail.

- (a) Let $z = \sum_{i=1}^{k} x_i$. Show that $E_{i \in [k]} ||z x_i||_1 \le (1 \frac{\Omega(1)}{k}) ||z||_1$.
- (b) Now suppose $z = \sum_{i=1}^{k} x_i + w$ for some $w \in \mathbb{R}^d$ with $||w||_1 \le \epsilon ||z||_1$ for small enough constant ϵ . Again, show that there exists an i such that $||z x_i||_1 \le (1 \frac{\Omega(1)}{k}) ||z||_1$.