Problem Set 9

Sublinear Algorithms

Due Thursday, November 19

Recall from class that, given m samples each from two distributions P and Q over [n], we can distinguish between $P=Q$ and $\|P-Q\|_{T V} \geq \varepsilon$ with $O\left(\left(n / \varepsilon^{2}\right)^{2 / 3}+\sqrt{n} / \varepsilon^{2}\right)$ samples.

1. Let (X, Y) be a pair of random variables drawn from a distribution $P_{X Y}$ over $[n] \times[m]$. Let P_{X}, P_{Y} be the marginal distributions of X and Y over $[n]$ and [m], respectively. The goal of this question is, given samples of (X, Y) from an unknown distribution, to test if X and Y are mutually independent (i.e., $P_{X Y}$ is a product distribution) or ε-far from mutually independent.
(a) Show how to simulate a sample from $P_{X} \times P_{Y}$ using two samples from P.
(b) Show how to distinguish $P=P_{X} \times P_{Y}$ from $\left\|P-P_{X} \times P_{Y}\right\|_{T V} \geq \varepsilon$ using $O\left(n^{2 / 3} m^{2 / 3} / \varepsilon^{2}\right)$ samples of P.
(c) Show how to distinguish between (X, Y) being independent, and ε-far in total variation distance from any independent distribution, with $O\left(n^{2 / 3} m^{2 / 3} / \varepsilon^{2}\right)$ samples. (This is sublinear in the number of possible outcomes, $n m$).
(d) Now consider the problem of distinguishing between $I(X ; Y)=0$ and $I(X ; Y) \geq \varepsilon$. Show that, for any two distributions $(X, Y) \sim P_{X Y}$ and $\left(X^{\prime}, Y^{\prime}\right) \sim P_{X Y}^{\prime}$ with total variation distance ε, then

$$
I(X ; Y) \leq I\left(X^{\prime} ; Y^{\prime}\right)+O(\varepsilon \log (m n / \varepsilon))
$$

Hint: pbhcyr gur qvfgevohgvbaf, naq pbaqvgvba ba gur rirag M gung gurl ner rdhny.
(e) Show how to distinguish between $I(X ; Y)=0$ and $I(X ; Y) \geq \varepsilon$ with $O\left(\frac{1}{\varepsilon^{2}} n^{2 / 3} m^{2 / 3} \log ^{O(1)}(m n / \varepsilon)\right)$ samples.
(f) [Optional] Improve the dependence on $m n$ and/or ε.

