Problem Set 9

Sublinear Algorithms

Due Thursday, November 19

Recall from class that, given m samples each from two distributions P and Q over [n], we can distinguish between P = Q and $||P - Q||_{TV} \ge \varepsilon$ with $O((n/\varepsilon^2)^{2/3} + \sqrt{n}/\varepsilon^2)$ samples.

- 1. Let (X, Y) be a pair of random variables drawn from a distribution P_{XY} over $[n] \times [m]$. Let P_X , P_Y be the marginal distributions of X and Y over [n] and [m], respectively. The goal of this question is, given samples of (X, Y) from an unknown distribution, to test if X and Y are mutually independent (i.e., P_{XY} is a product distribution) or ε -far from mutually independent.
 - (a) Show how to simulate a sample from $P_X \times P_Y$ using two samples from P.
 - (b) Show how to distinguish $P = P_X \times P_Y$ from $||P P_X \times P_Y||_{TV} \ge \varepsilon$ using $O(n^{2/3}m^{2/3}/\varepsilon^2)$ samples of P.
 - (c) Show how to distinguish between (X, Y) being independent, and ε -far in total variation distance from *any* independent distribution, with $O(n^{2/3}m^{2/3}/\varepsilon^2)$ samples. (This is sublinear in the number of possible outcomes, nm).
 - (d) Now consider the problem of distinguishing between I(X;Y) = 0 and $I(X;Y) \ge \varepsilon$. Show that, for any two distributions $(X,Y) \sim P_{XY}$ and $(X',Y') \sim P'_{XY}$ with total variation distance ε , then

$$I(X;Y) \le I(X';Y') + O(\varepsilon \log(mn/\varepsilon)).$$

Hint: pbhcyr gur qvfgevohgvbaf, naq pbaqvgvba ba gur rirag M gung gurl ner rdhny.

- (e) Show how to distinguish between I(X;Y) = 0 and $I(X;Y) \geq \varepsilon$ with $O(\frac{1}{\varepsilon^2}n^{2/3}m^{2/3}\log^{O(1)}(mn/\varepsilon))$ samples.
- (f) [Optional] Improve the dependence on mn and/or ε .