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1 Overview

In this course, we focus on the following three main areas of computer science

1. Streaming Algorithm - when there’s a constraint on space availability. Typically considered
when data arrives in streams and we want to compute some property of the data using o(n)
space.

2. Compressed Sensing - constraint on the number of measurements we can make. When making
complete observation on data is costly, we aim to make o(n) measurements of data and
compute some property.

3. Property testing - constraint on time. When we have enormous amount of data but we can’t
look at the entire data. So we aim to quickly find some property by querying a few points in
o(n) time

2 Property Testing

A few examples of property testing include:

1. Given a function, determine if it’s monotonic

2. Given a graph, find if it’s bipartite

3. Given a distribution, determine if it’s uniform

Generally, the worst case sample complexity bound for determining the required property requires
Ω(n) points to be sampled. Hence, we re-define our goal as follows. We aim to ascertain one of the
two properties

1. f satisfies the property P with high probability; OR

2. f is ε-far from satisfying P with high probability

For any specific problem, we need to define the function f , the property P , and the definition of
ε-far.
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2.1 Testing function monotonicity

Given a function f : [n] → [0, 1], our goal is to find if f is monotonically increasing. That is, to
check whether the following property holds

f(x) ≤ f(y) ∀x < y, where x, y ∈ [n]

Observation: In the worst case we need to query all the points. For example, if only one point
x ∈ [n] is out of the monotonic order. Therefore, worst case sample complexity lower bound is
Ω(n).

We thus rather aim to determine if f : [n]→ [0, 1] is monotonically increasing (with high probabil-
ity), or it requires ≥ εn values to be changed to become monotonic.

To understand the problem better, we consider a few algorithms and instances.
Algorithm 1 : We sample k = O(1) random points and check monotinicity among them.
Instance-1 : All the points except εn fraction follow the monotonic property. For example, the
first (1− ε)n points are monotonically increasing, while the last εn points are decreasing. For this
instance, the above proposed Algorithm 1 fails.
Instance-2 : Consider the function which is monotonic on all even numbers and odd numbers sep-
arately, and satisfies f(2r + 1) < f(2r) ∀r ∈ [bn/2c]. For example, f(x) for x ∈ [10] having values
{2, 1, 4, 3, 6, 5, 8, 7, 10, 9}. This function is 1/2-far from being monotonic. And any algorithm would
need to sample at least one pair of consecutive numbers. The number of samples k needed for such
an event to happen is O(

√
n) (refer Birthday paradox)

We’ll later see in the course an algorithm which requires only O(log(n)/ε) samples and gives error

probability at most O
(

1
log(n)

)
2.2 Distribution Testing

Given n samples {X1, · · · , Xn} from a distribution D, we need to determine if D is uniform or
ε-far in Total Variation from uniform. Total Variation from Uniform distribution is defined as
||p− Un||TV =

∑n
i=1 |pi −

1
n |.

We again consider a few instances to understand the problem better.
Instance: Consider set S ⊆ [n] of size n/2 chosen at random. Let D′ be a uniform distribution on
S. For this instance, we won’t be able to distinguish between D′ and a uniform distribution on
[n] unless we see at least one collision. Hence, again by Birthday paradox we need at least Ω(

√
n)

samples.
Algorithm: Count the number of collisions in the sample (of size m = O(

√
n)). If it’s greater than

the expected number of collisions by some quantity, say, r (to be determined later), then output
”Non-uniform”. Else, output ”Uniform”.

We analyze the above algorithm. Consider a distribution P = [p1, p2, · · · , pn] on the n points.
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Considering m samples,

E[#collisions] =

(
m

2

)
P[first and second sample collide]

=

(
m

2

)(
p21 + · · · p2n

)
Note that

(
p21 + · · · p2n

)
is convex, and minimized at pi = 1

n ∀i.

E[#collisions] =

(
m

2

)(
p21 + · · ·+ p2n

)
=

(
m

2

)∑
i

((
pi −

1

n

)2

+
2

n
pi −

1

n2

)

=

(
m

2

)∑
i

(
pi −

1

n

)2

+

(
m
2

)
n

=

(
m

2

)
||p− Un||22 +

(
m
2

)
n

≥
(
m
2

)
n

(
1 + ||p− Un||22

)
≥
(
m
2

)
n

(
1 + ||p− Un||21

)
where Un represents uniform distribution on n items. And the last inequality comes from the fact
that l2-norm squared is at least as large as l1-norm squared. Note that ||p − S||21 = ||p − S||2TV .
Therefore, for a distribution D′ which is ε-far from Un, the expected number of collisions is at
least (1 + ε2)µU . We’ll later see in the course using the above result, concentration inequality, and

measuring the variance of #collisions to come up with an algorithm which uses O(
√
n
ε2

) samples.

An intuition is as follows. We’ll measure the number of collisions observed. If the #collisions are
much more than the expected #collisions for uniform case, then the distribution is not uniform
with high probability. Else it is uniform with high probability.
Let the #collisions be a sum of independent {0, 1} variables (this assumption is just to give an
intuition. In actual case, they are dependent). Let {X1, · · · , Xn} denote these variables. In this
case, the expectation and variance would be:

µ = E

[∑
i

Xi

]
=
∑
i

E[Xi] =
∑
i

P[Xi]

σ2 = V ar

(∑
i

Xi

)
=
∑
i

var(Xi) =
∑
i

P[Xi](1− P[Xi]) ≤ µ

We want the gap in the number of observed collisions and expected collisions (ε2µ) to be large, say,
> 10σ (if we want to bound the error probability using Chebyshev inequality). Which implies

ε2µ ≥ 10
√
µ

=⇒ µ ≥ 100

ε4
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Also recall that the expected number of collisions for uniform case is
(m2 )
n . Therefore,(

m
2

)
n

=
100

ε4

=⇒ m = O

(√
n

ε2

)

3 Streaming Algorithms

An example could be an order processing system. Where orders are being streamed, and the
required information could be stored on disk/external memory. In such a scenario, we can’t store
all the stream, as we don’t know how long the stream is, etc. Therefore, the goal is to compute
some function of the data stream in o(n) memory, like O(logc(n)) or ideally O(nε) memory.

3.1 Counting distinct elements

We see a stream {X1, X2, · · · , Xn} ∈ U of n elements, where U is some giant universe. Our goal is
to estimate the number of distinct values.

An exact, deterministic algorithm would require Ω(n) words space. We’ll see later in the course
that in order to get (1±ε) approximate solution, there exists randomized algorithms which requires

O
(
log(n)
ε

)
. We’ll also see another algorithm which further improves this to O

(
1
ε2
loglog(n)

)
4 Compressed Sensing

An example includes taking M.R.I of the brain. Rather than observing every pixel, only observe
a few projections and include some prior information to get more information from the limited
observations.
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