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1 Overview

Goal of Compressed Sensing: want to estimate a structured signal x ∈ Rn from m << n linear
measurements

y = Ax (+ noise)

Examples for this model include

� x is image of bottom through murky water

� Single pixel camera, takes in an n x n dimensional array of inputs, applies some masking and
convolution to give one output (could be less expensive then megapixel camera)

� MRIs: look at inner product of measurements with Fourier transform from magnets

� Strata of Earth: Thump the ground in certain locations and have microphones in other areas
that determine strength of vibrations. Want to minimize number of measurements.

� Audio: High resolution estimation

� Spectrum sensing: want to find empty band that isn’t in use for radio. Want Sampling rate <<
8GHz

m < n =⇒ x not uniquely determined by y

These images are compressible because x can be sparse in some basis (ie images are sparse in
wavelet/DFT basis)

Definitions
x is “exactly” k-sparse iff x has k nonzero values
x is “approximately” k-sparse iff ||x− x(k)|| is ”small”

If x is “exactly” k-sparse we can represent x with log(
(
n
k

)
) bits for locations and k “words”

=⇒ hope for m = k or m = k log(n) to suffice
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2 Basic Result of Candes, Romberg, Tao ’06

A has iid N(0, 1/m) entries =⇒ can reconstruct x̂ from y = Ax s.t. x̂ = x if x is k-sparse

m = O(k log (n/k))

||x̂− x||1 ≤ 3||x− x(k)||1 ∀x

||x̂− x||2 ≤ 3||x− x(k)||2 w.h.p.

||x̂− x||2 ≤ O(||e||2) ∀ k-sparse x ∀ noise e

L1 minimization: This holds for x̂ = argmin||x̂||1 s.t. ||y −Ax̂|| ≤ ε for appropriate ε
LASSO: This holds for x̂ = argmin(λ||x̂||1 + ||y −Ax̂||2) for appropriate λ
Iterative Hard Thresholding: Holds for

x0 = 0

xi+1 = Hk(xi +AT (y −Axi))

Hk is the function which restricts to the largest k entries, and y−Axi is the residual error at each step

The above methods work for any RIP matrix A. RIP includes

� iid subgaussian

� subsampled Fourier

� partial circulent

� incoherent

3 RIP Matrices

Definition of Restricted Isometry Property (RIP)

A ∈ Rm∗n satisfies (k, ε)-RIP if

||Ax||2 = (1 + ε)||x||2 ∀ k-sparse x

(2k, 1/2)-RIP =⇒ ||Ax−Ax′|| ≥ 1/2||x− x′|| ∀ k-sparse x, x′

=⇒ Ax+ e 6= Ax′ + e′ if ||e||, ||e′|| << ||x− x′||

=⇒ can’t confuse x and x’

Alternative Definition (RIP)

||(ATA− I)SxS ||2 ≤ ε ∀|S| ≤ k

Claim A with iid N(0, 1/m) satisfies RIP with m = Oε(k log (n/k)
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From last class: to be (n, ε) RIP, m = 1/ε2 log(# possible x)

Tk = {x| x is k-sparse, ||x||2 ≤ 1}

Nc(ε, Tk, || · ||2) ≤
(
n

k

)
∗ (1 + 2/ε)k

Where Nc is the covering number

=⇒ log(Nc) ≤ (k log(n/k) + k log(1/ε) = k log(n/kε)

=⇒ 1

ε2
k log(

n

kε
) suffices for RIP

RIP Matrix examples

� Random (sub)-gaussian

– m ≥ k log(n/k) will have RIP with probability 1− e−Ω(n)

– But: can’t test if A has RIP and takes mn space to store

� Matrices with low coherence

– columns a1, ...., an satisfy
|〈ai,aj〉|√
||ai||∗||aj ||

< 1/k

– above holds if iid gaussian m > k2 log(n)

– Benefit is easy to check condition

– Cost is m > k2

� Random rows of Fourier matrix

– Fij = e2π
√
−1∗ij/n

– FΩ·? Ω ⊂ [n] uniformly |Ω| ≥ k log(n) log2(k)

– Pros

* How MRI’s work

* Can multiply quickly which leads to faster algorithms

* can be stored in |Ω| = o(m) space

– Cons

* have log2(k)factor

* can’t check if Ω is good

� Partial circulant

– a1, a2, ....an = ±1,±1, ...,±1
an, a1, ....an−1 = ±1,±1, ...,±1
an−1, an, ....an−2 = ±1,±1, ...,±1
for the first m rows

– very similar to Random Fourier

– m = O(k log(n) log3(k))

– explicit construction: k2−ε log(n) rows for small ε

� No sparse matrices satisfy RIP :(
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4 Compressed Sensing vs Heavy Hitter Algorithms

Both: see y = Ax and output x̂ ≈ x assuming x ≈ k-sparse

Compressed Sensing

� Dense

� w.h.p, for all x

� ||x̂− x||1 ≤ C||x− xk||1

� matrix are more restricted so algos are
more general

Heavy Hitters

� Sparse (ie fast updates)

� for each x w.h.p.

� ||x̂− x||∞ ≤ C
k ||x− xk||1

� matrix is specifically constructed so al-
gos are tied to the matrix
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