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1 Overview

Goal of Compressed Sensing: want to estimate a structured signal x € R™ from m << n linear
measurements

y = Az (4 noise)

Examples for this model include

x is image of bottom through murky water

Single pixel camera, takes in an n x n dimensional array of inputs, applies some masking and
convolution to give one output (could be less expensive then megapixel camera)

MRIs: look at inner product of measurements with Fourier transform from magnets

Strata of Earth: Thump the ground in certain locations and have microphones in other areas
that determine strength of vibrations. Want to minimize number of measurements.

Audio: High resolution estimation

Spectrum sensing: want to find empty band that isn’t in use for radio. Want Sampling rate <<
8GHz

m <n = x not uniquely determined by y

These images are compressible because x can be sparse in some basis (ie images are sparse in
wavelet/DFT basis)

Definitions
x is “exactly” k-sparse iff x has k nonzero values
x is “approximately” k-sparse iff ||z — x| is "small”

If x is “exactly” k-sparse we can represent x with log((’;)) bits for locations and k “words”

=

hope for m = k or m = klog(n) to suffice




2 Basic Result of Candes, Romberg, Tao ’06

A has iid N(0,1/m) entries = can reconstruct & from y = Az s.t. & = z if x is k-sparse
m = O(klog (n/k))
& — ol < 3l — 2l Va
7 — a2 < 3z — zyll2 whp.
||z — z|]2 < O(||el|2) V k-sparse x V noise e
L1 minimization: This holds for & = argmin||Z||1 s.t. ||y — AZ|| < e for appropriate €

LASSO: This holds for & = argmin(A||Z||1 + ||y — Az||2) for appropriate A
Iterative Hard Thresholding: Holds for

o = 0
Ti+1 = Hk(ﬁz + AT(y — A$Z))

Hj, is the function which restricts to the largest k entries, and y— Ax; is the residual error at each step

The above methods work for any RIP matrix A. RIP includes

iid subgaussian

subsampled Fourier

partial circulent

e incoherent

3 RIP Matrices

Definition of Restricted Isometry Property (RIP)
A € R"™" satisfies (k, €)-RIP if
[Aalls = (1+ €)llall2 ¥ k-sparse @
(2k,1/2)-RIP = ||Az — A2'|| > 1/2||z — 2'|| V k-sparse x, 2’
= Az +e# Ad +¢ if|lel],||¢]| << ||z — 2|
= can’t confuse x and x’

Alternative Definition (RIP)

(ATA—Dsgasll2 <€ VS| <k

Claim A with iid N(0,1/m) satisfies RIP with m = O.(klog (n/k)



From last class: to be (n,€) RIP, m = 1/e%log(# possible z)

T, = {z| = is k-sparse, ||z||2 < 1}

n
Nl < (1) + (14 270
Where N, is the covering number
= log(N.) < (klog(n/k) + klog(1/e) = klog(n/ke)

n

1
= —kl
€2 Og(ke

) suffices for RIP
RIP Matrix examples

e Random (sub)-gaussian

— m > klog(n/k) will have RIP with probability 1 — e~
— But: can’t test if A has RIP and takes mn space to store

e Matrices with low coherence

— columns ay, ...., a, satisfy Maiag)l 1/k

Vlai|l*[a;]

— above holds if iid gaussian m > k?log(n)

Benefit is easy to check condition
Cost is m > k?

e Random rows of Fourier matrix

Fyj = o2/~ Txij/n

— Fax  QC [n] uniformly || > klog(n)log?(k)
— Pros

*+ How MRI’s work
x Can multiply quickly which leads to faster algorithms

* can be stored in || = o(m) space
Cons

s have log? (k) factor
x can’t check if (2 is good

e Partial circulant

- ay,a9,....a, = £1,£1, ..., +1
Ay 1y o1 = 1, £1, ..., £1
Ap—1,0p,.--Ap_o = £1,£1, ..., £1
for the first m rows

very similar to Random Fourier
m = O(klog(n)log3(k))

— explicit construction: k?~€log(n) rows for small €

e No sparse matrices satisfy RIP :(



4 Compressed Sensing vs Heavy Hitter Algorithms

Both: see y = Az and output & = x assuming x =~ k-sparse

Compressed Sensing Heavy Hitters

e Dense Sparse (ie fast updates)

for each x w.h.p.

w.h.p, for all x

1& — 2lloc < Fllz — ]2

12 — 2|y < Cllz — x|y

e matrix are more restricted so algos are e matrix is specifically constructed so al-
more general gos are tied to the matrix
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