CS 395T: Sublinear Algorithms, Fall 2020

Oct. 13, 2020

Lecture 14: Iterative Hard Thresholding

Prof. Eric Price Scribe: Hongru Yang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

Theorem 0.0.1. If A satisfies $(O(k), \epsilon (= 0.001))$ -RIP, then we can perform compressed sensing: Given y = Ax + e and $||x||_0 \le k$, recover \hat{x} such that

$$\|\hat{x} - x\|_2 \leqslant O(\|e\|_2)$$

therefore, we can get an upper bound if x is not k-sparse by

$$x = x_k + (x - x_k)$$

$$Ax = Ax_k + \underbrace{A(x - x_k)}_{e}$$

1 Iterative Hard Thresholding (IHT)

1.1 The idea

Given a matrix A satisfies the RIP, then for all O(k)-sparse x, we have

$$\begin{split} &\Leftrightarrow \|Ax\|_2^2 = (1 \pm \epsilon) \|x\|_2^2 \\ &\Leftrightarrow x^T A^T A x = (1 \pm \epsilon) x^T x \\ &\Leftrightarrow |x^T (A^T A - I) x| \leqslant \epsilon x^T x \\ &\Leftrightarrow \|(A^T A - I)_{S \times S}\|_2 \leqslant \epsilon, \ \forall S \subseteq [n] : |S| \leqslant O(k) \end{split}$$

Given y where y = Ax + e, we want to estimate x.

Idea: let

$$z = A^T y = \underbrace{A^T A}_{\approx I \text{ on sparse sets}} x + \underbrace{A^T e}_{\text{small if } e \text{ is small}}$$

Then

$$z - x = (A^T A - I)x + A^T e$$

Let $S \subseteq [n]$ such that $|S| \leqslant O(k)$ and $S \supseteq \operatorname{supp}(x)$. Then

$$\|(z-x)_S\|_2 \le \|[(A^A-I)x]_S\|_2 + \|[A^Te]_S\|_2$$

Now we need to bound the two terms on the right-hand side.

$$\|[(A^{T}A - I)x]_{S}\|_{2} = \|(A^{T}A - I)_{S \times S}x_{S}\|_{2} \quad \text{since supp}(x) \subseteq S$$

$$\leq \|(A^{T}A - I)_{S \times S}\|_{2} \cdot \|x_{S}\|_{2}$$

$$\leq \epsilon \|x\|_{2}$$

and

$$\begin{split} \left\| (A^T e)_S \right\|_2 & \leqslant \left\| (A^T)_S \right\|_2 \cdot \left\| e \right\|_2 \\ & \leqslant \sqrt{\left\| (A^T A)_{S \times S} \right\|_2} \cdot \left\| e \right\|_2 \\ & \leqslant \sqrt{1 + \epsilon} \left\| e \right\|_2 \\ & \leqslant 2 \left\| e \right\|_2 \end{split}$$

Thus,

$$\|(z-x)_S\|_2 \le \epsilon \|x\|_2 + 2 \|e\|_2$$

We want error: $||\hat{x} - x|| \le O(||e||_2)$.

Idea: In order to reduce the error, we can apply the same method to the vector r = x - z. We now know

$$y^{(2)} = A(x - z) + e = y - Az$$

We set

$$z^{(2)} = A^T y^{(2)}$$

and let

$$\hat{r} = z^{(2)} - z$$

Then \hat{r} is an estimate of r and

$$\begin{aligned} \left\| (z^{(2)} - x)_S \right\|_2 &= \left\| (z + \hat{r} - x)_S \right\|_2 \\ &= \left\| (\hat{r} - (x - z))_S \right\|_2 \\ &\leqslant \epsilon \left\| x - z \right\|_2 + 2 \left\| e \right\|_2 \end{aligned}$$

However, there are two problems with the idea:

- 1. The vector r = x z is no longer k-sparse so the equality in our first argument $\|[(A^TA I)x]_S\|_2 = \|(A^TA I)_{S \times S}x_S\|_2$ no longer holds.
- 2. From the first argument we got a bound on $\|(z-x)_S\|_2$ but our idea bounds $\|(z^{(2)}-x)_S\|_2$ using $\|x-z\|_2$.

Algorithm 1 Iterative Hard Thresholding (IHT)

- 1: **for** $r = 0, 1, \dots, R 1$ **do**
- 2: $x^{(r+1)} = H_k(x^{(r)} + A^T(y Ax^{(r)}))$
- 3: end for
- 4: return $x^{(R)}$

1.2 The algorithm

It turns out there is a simple fix to our idea: at the end of each update, we restrict the vector to the largest k values. See Algorithm 1.

Lemma 1.2.1.

$$\|x^{(r+1)} - x\|_{2} \le O(\epsilon) \|x^{(r)} - x\|_{2} + O(\|e\|_{2})$$

Proof. Set $S = \text{supp}(x) \cup \text{supp}(x^{(r)}) \cup \text{supp}(x^{(r+1)})$ and thus $|S| \leq 3k$. As before,

$$\left\| [A^T (A(x - x^{(r)}) + e) - (x - x^{(r)})]_S \right\|_2 \le \epsilon \left\| x - x^{(r)} \right\|_2 + 2 \|e\|_2$$

Note that in our algorithm:

$$A^{T}(y - Ax^{(r)}) = A^{T}A(x - x^{(r)}) + e$$

and if we let

$$z = x^{(r)} + A^{T}(y - Ax^{(r)})$$

then our algorithm becomes

$$x^{(r+1)} = H_k(z)$$

and the inequality becomes

$$\|(z-x)_S\|_2 \le \|x-x^{(r)}\|_2 + 2 \|e\|_2$$

We need the following lemma to proceed.

Lemma 1.2.2. If $x, z \in \mathbb{R}^n$ and x is k-sparse with S = supp(x), and $T \subseteq [n]$ contains the indices of k largest values in z, then

$$||x - z_T||_2^2 \le O(1) ||(x - z)_{S \cup T}||_2^2$$

This implies

$$\|x - x^{(r+1)}\|_{2} \le O(1) \|(x - z)_{\sup(x) \bigcup \sup(x^{(r+1)})}\|_{2}$$

$$\le O(\epsilon) \|x - x^{(r)}\|_{2} + O(\|e\|_{2})$$

Proof of Lemma 1.2.2. Consider the following three sets: $S \cap T$, $S \setminus T$, $T \setminus S$.

$$||x - z_T||_2^2 = \underbrace{\|(x - z)_{S \cap T}\|_2^2}_{\leq \|(x - z)_{S \cup T}\|_2} + ||x_{S \setminus T}||_2^2 + \underbrace{\|z_{T \setminus S}\|_2^2}_{= \|(x - z)_{T \setminus S}\|_2^2}_{\leq \|(x - z)_{S \cup T}\|_2^2}$$

Now we analyze $\|x_{S\backslash T}\|_2^2$. The trick is to notice that since |S| = |T|, then $|S\backslash T| = |T\backslash S|$. Therefore, for all $i \in S\backslash T$ we can pair with a $j \in T\backslash S$ such that $|z_i| \leq |z_j|$ (or we use the fact that $\|z_{S\backslash T}\|_2^2 \leq \|z_{T\backslash S}\|_2^2$). Thus,

$$x_i^2 = (x_i - z_i + z_i)^2$$

$$\leq (|z_i| + |z_i - x_i|)^2$$

$$\leq (|z_j| + |z_i - x_i|)^2$$

$$\leq 2|z_j|^2 + 2|z_i - x_i|^2$$

and

$$||x_{S\backslash T}||_{2}^{2} \leq 2 ||z_{T\backslash S}||_{2}^{2} + 2 ||(z - x)_{S\backslash T}||_{2}^{2}$$
$$\leq 2 ||(x - z)_{S\bigcup T}||_{2}^{2}$$

Thus, for small ϵ , we have

$$\begin{aligned} \left\| x^{(r+1)} - x \right\|_2 &\leq \frac{1}{4} \left\| x^{(r)} - x \right\|_2 + O(\|e\|_2) \\ &\leq \frac{1}{2} \left\| x^{(r)} - x \right\|_2 \quad \text{unless } \left\| x^{(r)} - x \right\|_2 \leq O(\|e\|) \end{aligned}$$

and we can converge geometrically to $O(\|e\|_2)$ if we pick

$$R = \log_2 \frac{\|x\|_2}{\|e\|_2}$$

2 A Brief Introduction to Model-based Compressed Sensing

Suppose x is k-sparse and $\operatorname{supp}(x) \in \mathcal{F}$ where \mathcal{F} is a subset of the family of all $\binom{n}{k}$ subsets of size k.

• Block sparsity. If the non-zeros in the vector are concentrated in blocks with block size $B > \log n$, then

$$|\mathcal{F}| \leqslant \binom{n/B}{k/B} \lesssim 2^{\frac{k}{B}\log\frac{n}{k}} \lesssim 2^k$$

• Tree sparsity (often appears in wavelet). In tree sparsity, each large coordinate correspondingly has 3 children. We want to find a subset of tree that is connected with k nonzeros. Consider the Eulerian tour on the large coordinates. At each step we can choose to go downleft, downright and up. We make at most 2k choices. We have $|\mathcal{F}| \leq 3^{2k} \leq 2^{O(k)}$.

Model-based RIP for \mathcal{F} : if $\forall x$ with supp $(x) \in \mathcal{F} \oplus \mathcal{F} = \{S \mid JT : S, T \in \mathcal{F}\},\$

$$||Ax||_2^2 = (1 \pm \epsilon) ||x||_2^2$$

[For Gaussian matrices: we need O(k) measurements since $N(\epsilon, T_{\mathcal{F}}, \|\cdot\|_2) \leq (1/\epsilon)^k 2^{O(k)}$].

If we run model-IHT, we need to change H_k to $H_{\mathcal{F}}$. However, $H_{\mathcal{F}}$ could be slow. (O(nk) for tree by DP and $O(n \log n)$ for O(1)-approximation).