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1 Overview

In the last lecture we talked about RIP matrices, and the fact that you can make do with 1
ε2
k log n

k
rows.

In this lecture we will show that you can’t do better than this.

2 Lower Bound on Compressed Sensing

2.1 k = 1

Consider, for simplicity, the k = 1 case.

Claim 1. There exists X ⊂ Rn, and some noise distribution W, such that if an algorithm observes
Ax′ for x ∈ X , w ∼ W, x′ = x + w and outputs x̂′ such that ‖x̂′ − x′‖2 ≤ 5 miny∈X ‖x′ − y‖2 with
probability 0.9, then A must have Ω(log n) rows.

Proof. We take X = {ei : i ∈ [n]} as the set of standard basis vectors, and set W = N
(
0, 1

1000n

)
so

we have E[‖w‖22] = 1
1000 . By Markov’s inequality,

P[‖w‖2 > 1

100
] ≤ E[‖w‖22]

1
100

=
1

10
,

and so with 0.9 probability, ‖w‖2 ≤ 1
10 . This means that with probability 0.8,

‖x̂′ − x′‖ ≤ 5 min
y∈X
‖x′ − y‖2 ≤ 5‖x′ − x‖2 = 5‖w‖ ≤ 1

2
.

Fano’s inequality says that, if the number of possible values of x is |X |, and the probability of error
is P[error],

H(x|x̂) ≤ H(P[error]) + P[error] · (log(|X |)− 1)

which we can weaken to
H(x|x̂) ≤ 1 + P[error] · log(|X |)

Then, we lower bound the mutual information needed:

I(x; x̂) = H(x)−H(x|x̂) ≥ log(|X |)− P[error] · log(|X |)− 1 ≥ 8

10
log n− 1 = Ω(log(n))
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Where we use that |X | = n, since the choices of x are the standard basis vectors. Also H(x) =
log(|X |), since any of the possible x are equally likely before we see anything. This is just saying
that given the noise we assumed, if we are to figure out a random location from 1 to n, then we
need roughly log(n) bits of information.

Now, each step of the process x→ Ax→ A(x+ w)→ x̂ only depends on the previous step, so the
data processing inequality gives I(x; x̂) ≤ I(Ax;Ax+ w).

Consider m = 1, one row. Then, I(Ax;A(x+w)) = I(〈a, x〉 ; 〈a, x〉+〈a,w〉) = I(ai; ai+〈a,w〉). We
notice that 〈a,w〉 is just Additive White Gaussian Noise, and so we can use the following theorem
to bound this mutual information:

Theorem 2. (Capacity of Additive White Gaussian Noise channel):

I(a; a+ z) ≤ 1

2
log(1 + SNR) =

1

2
log

(
1 +

E[a2]

E[z2]

)
for all distributions a if z is an independent Gaussian

Proof of AWGN Capacity Theorem.

I(a; a+ z) = H(a+ z)−H(a+ z|a)

= H(a+ z)−H(z)

≤ 1

2
ln(2πeE[(a+ z)2])− 1

2
ln(2πeE[z2])

=
1

2
ln
(
1 + E[a2]/E[z2]

)
which follows because entropy of distribution of variance σ2 is less than entropy of N(0, σ2), and
from the entropy of a gaussian.

In our case, 〈a,w〉 ∼ N(0,
‖a‖22

1000n). Further, since E[a2
i ] =

∑n
i=1 P[i] · a2

i =
‖a‖22
n , and so

I(ai; ai + 〈a,w〉) ≤ 1

2
ln

(
1 +

E[a2
i ]

‖a‖22/1000n

)
=

1

2
ln (1 + 1000)

That is to say, the one measurement only gives a constant amount of information. To bound how
much information is in many measurements, we need following lemma:

Lemma 3. If y = ȳ + w ∈ Rn, wi is independent of all other wj and ȳ. Then, I(y; ȳ) ≤∑m
i=1 I(yi; ȳi).

Proof.

I(y; ȳ) = h(y)− h(y|ȳ)

= h(y)− h(w|ȳ)

= h(y)− h(w)

=

m∑
i=1

h(yi|y1, . . . , yi−1)− h(wi|w1, . . . , wi−1)
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≤
m∑
i=1

h(yi)− h(wi|w1, . . . , wi−1) conditioning decreases entropy

=
m∑
i=1

h(yi)− h(wi) h(wi) = h(wi|w1, . . . , wi−1) from independence

=
m∑
i=1

h(y)− h(yi|ȳi) yi = ȳi + wi

=
m∑
i=1

I(yi; ȳi)

Using this, we get

I(Ax;A(x+ w)) ≤
m∑
i=1

I(ai; ai + 〈a,w〉) = m
1

2
ln 1001

Combining this with our lower bound I(Ax;A(x+w)) = Ω(log(n)), we find that m = O(log(n)).

2.2 Extension to k > 1

Here is a summary of what we just did in the k = 1 case:

• Pick distribution over X

• Pick the noise to be i.i.d. Gaussian.

• If ‖w‖2 is small, you can correctly recover x. This meant that the mutual information between
y and Ax is at least log(|X |).

• SNR is small =⇒ mutual information from each sample is small, and mutual information
from all samples is log(n).

For larger k, we do the same thing, but instead of picking x uniformly over standard basis vectors,
pick x uniformly over a “code” C with the following properties:

1. |C| ≥ 2Ω(k log n
k

) =

(
n

k

)O(k)

2. Good distance: ‖x‖2 ≤ 1∀x ∈ C, and ‖x− y‖2 ≥ 1
4∀x 6= y ∈ C.

3. x ∈ C is k-sparse

4. E[x2
i ] = 1

n∀i

5. E[xixj ] = 0.
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Similar to the k = 1 case, the second property says that that the noise is typically low enough
that an algorithm that correctly recovers x+w can also correctly recover x (specifically, the closest
k−sparse vector to x + w is x). That is, ‖x̂ − (x + w)‖. The first property is sufficient to show
that any algorithm that recovers x with constant probability requires I(y;Ax) ≥ Ω(k log n

k ). In
particular, from Fano’s inequality we similarly have

H(x|x̂) ≤ 1 + P[error] log |C| =⇒ I(y;Ax) ≥ I(x; x̂) ≥ (1− P[error]) log |C| − 1.

The second two properties are used to upper bound the mutual information gained per sample.

Let a ∈ Rn be jth row of A. The capacity of an AWGN channel gives us that

I((Ax)j ; (Ax+Aw)j) = I(〈a, x〉 ; 〈a, x〉+ 〈a,w〉) ≤ 1

2
log

(
1 +

E[〈a, x〉2]

E[〈a,w〉2]

)

The denominator is ‖a‖22/1000n, just as before. The numerator is

Ex[〈a, x〉2] = Ex[
∑
i

a2
ix

2
i +

∑
i 6=j

aiajxixj ]

=

n∑
i=1

a2
iE[x2

i ] +
∑
i 6=j

aiajEx[xixj ]

= ‖a‖22/n

where we plugged in what we know from properties 4. and 5.

Now, all that remains is to find a code that satisfies properties 1-5. For this, we turn to Reed
Solomon codes.

2.3 Reed Solomon Codes

The code is generated by evaluating a degree k − d polynomial over Fq on k points. Any two such
polynomials can agree on at most k − d points. This means that any two codewords (which are of
size k) have to disagree on at least d coordinates, and so have distance d.

This gives codewords in F k
q . However, we need k-sparse vectors in Rn. To make this transformation,

set q = n/k. Given a word z ∈ F k
q , set y to be the concatenation of eqzi , which denotes the standard

basis vector of size q with a 1 at the zi’th index. Then, set x = q√
k
y.

Let’s show that all of the required properties are satisfied:

1. There are qk−d =
(
n
k

)k/16
polynomials of degree k − d over Fq.

2. ‖x‖2 = 1 since we scaled down by the square root of the number of ones. Any two x, x′ satisfy
‖x− x′‖2 ≥ 1√

k

√
d, since they disagree on d. Setting d = k

16 gives the desired bound.

3. Clearly, x all k-sparse, since it is made of k standard basis vectors.

4. Each xi is 1/
√
k w.p. k/n, and so E[x2

i ] = 1
n .

5. Give each coordinate a random sign to make E[xixj ] = 0.
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