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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we talked about RIP matrices, and the fact that you can make do with E%k: log 7
TOWS.

In this lecture we will show that you can’t do better than this.

2 Lower Bound on Compressed Sensing

21 k=1

Consider, for simplicity, the k = 1 case.

Claim 1. There exists X C R", and some noise distribution W, such that if an algorithm observes
Az for x € X,w ~ W, 2" = x +w and outputs &’ such that |z’ — 2'||2 < Smingey ||2" — yl|2 with
probability 0.9, then A must have Q(logn) rows.

Proof. We take X' = {e; : i € [n]} as the set of standard basis vectors, and set W = N (0, 1585, ) S0
we have E[[|w[|3] = 1555- By Markov’s inequality,
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Plllwll® > o] < =1 = o,
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and so with 0.9 probability, |Jwl]2 < %0' This means that with probability 0.8,
14— ')l < 5min 2’ ~ yll < 5l — 2]l = 5]l < 5
T oyex - -2

Fano’s inequality says that, if the number of possible values of z is |X|, and the probability of error
is Plerror],
H(z|%) < H(P[error]) 4+ Plerror] - (log(|X]) — 1)

which we can weaken to
H(x|z) <1+ Plerror] - log(|X|)

Then, we lower bound the mutual information needed:
I(x;2) = H(z) — H(z|z) > log(|X]) — Plerror| - log(|X]) — 1 > 1% logn — 1 = Q(log(n))
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Where we use that |X'| = n, since the choices of x are the standard basis vectors. Also H(x) =
log(]X|), since any of the possible x are equally likely before we see anything. This is just saying
that given the noise we assumed, if we are to figure out a random location from 1 to n, then we
need roughly log(n) bits of information.

Now, each step of the process z — Ax — A(x + w) — & only depends on the previous step, so the
data processing inequality gives I(x; %) < I(Az; Az + w).

Consider m = 1, one row. Then, I(Ax; A(x+w)) = I[({a,x); {a,x)+ (a,w)) = I(a;; a; + (a,w)). We
notice that (a,w) is just Additive White Gaussian Noise, and so we can use the following theorem
to bound this mutual information:

Theorem 2. (Capacity of Additive White Gaussian Noise channel):

1 1 E[a?]
. < — — _
I(a;a + 2) < 5 log(1+ SNR) 5 10g <1 + E[z2]>

for all distributions a if z is an independent Gaussian
Proof of AWGN Capacity Theorem.

I(a;a+2)=H(a+ z) — H(a + z|a)
=H(a+z)— H(z)

< %ln(QweE[(a +2)%]) — %111(2776155[22])

_ %m (1 + E[a2]/E[-2))

which follows because entropy of distribution of variance o2 is less than entropy of N(0,0?), and
from the entropy of a gaussian. O
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In our case, (a,w) ~ N (0, 1”0%‘(‘)%). Further, since E[a?] = Y_° P[i] - a? = %, and so

I(a; a; + (a,w)) < 1 (1 n Ela;]

1
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That is to say, the one measurement only gives a constant amount of information. To bound how
much information is in many measurements, we need following lemma:

Lemma 3. If y = y+w € R", w; is independent of all other w; and y. Then, I(y;y) <
> iy L (yis i)

Proof.

I(y;9) = h(y) — h(yly)
= h(y) — h(wly)
— h(y) - h(w)

hMyilyi, -, yim1) — h(wi|ws, ..., wi—1)
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h(y;) — h(w;|w, ..., wi—1) conditioning decreases entropy

.
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h(y;) — h(w;) h(w;) = h(w;lwy, ..., wi—1) from independence
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h(y) — h(yily:) vi = ¥i + w;
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Using this, we get

I(Az; A(x + w)) < ZI(ai; a; + (a,w)) = m% In 1001
i=1

Combining this with our lower bound I(Az; A(x4w)) = Q(log(n)), we find that m = O(log(n)). O

2.2 Extension to k > 1

Here is a summary of what we just did in the £ = 1 case:

Pick distribution over X

Pick the noise to be i.i.d. Gaussian.

If ||w]|2 is small, you can correctly recover x. This meant that the mutual information between
y and Az is at least log(|X]).

SNR is small = mutual information from each sample is small, and mutual information
from all samples is log(n).

For larger k, we do the same thing, but instead of picking x uniformly over standard basis vectors,
pick  uniformly over a “code” C with the following properties:

n n\ O%)
1. |c| > 2%klee 1) — ( )
- k
2. Good distance: ||z|s < 1Vz € C, and ||z — y||2 > 1Vz # y € C.
3. = € C is k-sparse
4. Ez?] = 1vi



Similar to the & = 1 case, the second property says that that the noise is typically low enough
that an algorithm that correctly recovers x +w can also correctly recover z (specifically, the closest
k—sparse vector to x + w is x). That is, ||Z — (z + w)|. The first property is sufficient to show
that any algorithm that recovers x with constant probability requires I(y; Az) > Q(klog ). In
particular, from Fano’s inequality we similarly have

H(z|z) <1+ Plerror]log|C| = I(y; Az) > I(z;%) > (1 — Plerror]) log |C| — 1.
The second two properties are used to upper bound the mutual information gained per sample.

Let a € R™ be jth row of A. The capacity of an AWGN channel gives us that

E[(a,$>2
lo — -
; (1 ! E[<a,w>2]>

The denominator is ||al|3/1000n, just as before. The numerator is

E$[<a7 $>2] = Ex[z a?x? + Z aiajxixj]
7

I((Az)j; (Az + Aw)j) = I({a, z) ; (a, 7) + (a,w)) <

| =

1#£]
n
= Z%QE{J??] + Zaz‘ajEx[xixj]
i=1 i
= [lall3/n

where we plugged in what we know from properties 4. and 5.

Now, all that remains is to find a code that satisfies properties 1-5. For this, we turn to Reed
Solomon codes.

2.3 Reed Solomon Codes

The code is generated by evaluating a degree k — d polynomial over F, on k points. Any two such
polynomials can agree on at most k — d points. This means that any two codewords (which are of
size k) have to disagree on at least d coordinates, and so have distance d.

This gives codewords in F, (f. However, we need k-sparse vectors in R™. To make this transformation,

set ¢ =n/k. Given a word z € F(f, set y to be the concatenation of ef,, which denotes the standard

basis vector of size ¢ with a 1 at the z;’th index. Then, set x = ﬁy.

Let’s show that all of the required properties are satisfied:

1. There are ¢"~% = (%)k/16 polynomials of degree k — d over Fy,.

2. ||z]|2 = 1 since we scaled down by the square root of the number of ones. Any two x, 2’ satisfy
|z — 2|2 > ﬁ\/&, since they disagree on d. Setting d = % gives the desired bound.

3. Clearly, x all k-sparse, since it is made of k standard basis vectors.

4. Bach z; is 1/Vk w.p. k/n, and so E[2?] = 1

5. Give each coordinate a random sign to make E[z;z;] = 0.



