Lecture 16: Lower Bounds for Compressed Sensing

Prof. Eric Price
Scribe: Aditya Parulekar, Advait Parulekar
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we talked about RIP matrices, and the fact that you can make do with $\frac{1}{\varepsilon^{2}} k \log \frac{n}{k}$ rows.

In this lecture we will show that you can't do better than this.

2 Lower Bound on Compressed Sensing

$2.1 k=1$

Consider, for simplicity, the $k=1$ case.
Claim 1. There exists $\mathcal{X} \subset \mathbb{R}^{n}$, and some noise distribution \mathcal{W}, such that if an algorithm observes $A x^{\prime}$ for $x \in \mathcal{X}, w \sim \mathcal{W}, x^{\prime}=x+w$ and outputs \hat{x}^{\prime} such that $\left\|\hat{x}^{\prime}-x^{\prime}\right\|_{2} \leq 5 \min _{y \in \mathcal{X}}\left\|x^{\prime}-y\right\|_{2}$ with probability 0.9, then A must have $\Omega(\log n)$ rows.

Proof. We take $\mathcal{X}=\left\{e_{i}: i \in[n]\right\}$ as the set of standard basis vectors, and set $\mathcal{W}=\mathcal{N}\left(0, \frac{1}{1000 n}\right)$ so we have $\mathbb{E}\left[\|w\|_{2}^{2}\right]=\frac{1}{1000}$. By Markov's inequality,

$$
\mathbb{P}\left[\|w\|^{2}>\frac{1}{100}\right] \leq \frac{\mathbb{E}\left[\|w\|_{2}^{2}\right]}{\frac{1}{100}}=\frac{1}{10},
$$

and so with 0.9 probability, $\|w\|_{2} \leq \frac{1}{10}$. This means that with probability 0.8 ,

$$
\left\|\hat{x}^{\prime}-x^{\prime}\right\| \leq 5 \min _{y \in \mathcal{X}}\left\|x^{\prime}-y\right\|_{2} \leq 5\left\|x^{\prime}-x\right\|_{2}=5\|w\| \leq \frac{1}{2}
$$

Fano's inequality says that, if the number of possible values of x is $|\mathcal{X}|$, and the probability of error is \mathbb{P} [error],

$$
H(x \mid \hat{x}) \leq H(\mathbb{P}[\text { error }])+\mathbb{P}[\text { error }] \cdot(\log (|\mathcal{X}|)-1)
$$

which we can weaken to

$$
H(x \mid \hat{x}) \leq 1+\mathbb{P}[\text { error }] \cdot \log (|\mathcal{X}|)
$$

Then, we lower bound the mutual information needed:

$$
I(x ; \hat{x})=H(x)-H(x \mid \hat{x}) \geq \log (|\mathcal{X}|)-\mathbb{P}[\text { error }] \cdot \log (|\mathcal{X}|)-1 \geq \frac{8}{10} \log n-1=\Omega(\log (n))
$$

Where we use that $|\mathcal{X}|=n$, since the choices of x are the standard basis vectors. Also $H(x)=$ $\log (|\mathcal{X}|)$, since any of the possible x are equally likely before we see anything. This is just saying that given the noise we assumed, if we are to figure out a random location from 1 to n, then we need roughly $\log (n)$ bits of information.

Now, each step of the process $x \rightarrow A x \rightarrow A(x+w) \rightarrow \hat{x}$ only depends on the previous step, so the data processing inequality gives $I(x ; \hat{x}) \leq I(A x ; A x+w)$.

Consider $m=1$, one row. Then, $I(A x ; A(x+w))=I(\langle a, x\rangle ;\langle a, x\rangle+\langle a, w\rangle)=I\left(a_{i} ; a_{i}+\langle a, w\rangle\right)$. We notice that $\langle a, w\rangle$ is just Additive White Gaussian Noise, and so we can use the following theorem to bound this mutual information:

Theorem 2. (Capacity of Additive White Gaussian Noise channel):

$$
I(a ; a+z) \leq \frac{1}{2} \log (1+S N R)=\frac{1}{2} \log \left(1+\frac{\mathbb{E}\left[a^{2}\right]}{\mathbb{E}\left[z^{2}\right]}\right)
$$

for all distributions a if z is an independent Gaussian

Proof of AWGN Capacity Theorem.

$$
\begin{aligned}
I(a ; a+z) & =H(a+z)-H(a+z \mid a) \\
& =H(a+z)-H(z) \\
& \leq \frac{1}{2} \ln \left(2 \pi e \mathbb{E}\left[(a+z)^{2}\right]\right)-\frac{1}{2} \ln \left(2 \pi e \mathbb{E}\left[z^{2}\right]\right) \\
& =\frac{1}{2} \ln \left(1+\mathbb{E}\left[a^{2}\right] / \mathbb{E}\left[z^{2}\right]\right)
\end{aligned}
$$

which follows because entropy of distribution of variance σ^{2} is less than entropy of $N\left(0, \sigma^{2}\right)$, and from the entropy of a gaussian.

In our case, $\langle a, w\rangle \sim N\left(0, \frac{\|a\|_{2}^{2}}{1000 n}\right)$. Further, since $\mathbb{E}\left[a_{i}^{2}\right]=\sum_{i=1}^{n} \mathbb{P}[i] \cdot a_{i}^{2}=\frac{\|a\|_{2}^{2}}{n}$, and so

$$
I\left(a_{i} ; a_{i}+\langle a, w\rangle\right) \leq \frac{1}{2} \ln \left(1+\frac{\mathbb{E}\left[a_{i}^{2}\right]}{\|a\|_{2}^{2} / 1000 n}\right)=\frac{1}{2} \ln (1+1000)
$$

That is to say, the one measurement only gives a constant amount of information. To bound how much information is in many measurements, we need following lemma:

Lemma 3. If $y=\bar{y}+w \in R^{n}$, w_{i} is independent of all other w_{j} and \bar{y}. Then, $I(y ; \bar{y}) \leq$ $\sum_{i=1}^{m} I\left(y_{i} ; \bar{y}_{i}\right)$.

Proof.

$$
\begin{aligned}
I(y ; \bar{y}) & =h(y)-h(y \mid \bar{y}) \\
& =h(y)-h(w \mid \bar{y}) \\
& =h(y)-h(w) \\
& =\sum_{i=1}^{m} h\left(y_{i} \mid y_{1}, \ldots, y_{i-1}\right)-h\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\leq \sum_{i=1}^{m} h\left(y_{i}\right)-h\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right) & \text { conditioning decreases entropy } \\
=\sum_{i=1}^{m} h\left(y_{i}\right)-h\left(w_{i}\right) & h\left(w_{i}\right)=h\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right) \text { from independence } \\
=\sum_{i=1}^{m} h(y)-h\left(y_{i} \mid \bar{y}_{i}\right) & y_{i}=\bar{y}_{i}+w_{i} \\
=\sum_{i=1}^{m} I\left(y_{i} ; \bar{y}_{i}\right) &
\end{array}
$$

Using this, we get

$$
I(A x ; A(x+w)) \leq \sum_{i=1}^{m} I\left(a_{i} ; a_{i}+\langle a, w\rangle\right)=m \frac{1}{2} \ln 1001
$$

Combining this with our lower bound $I(A x ; A(x+w))=\Omega(\log (n))$, we find that $m=O(\log (n))$.

2.2 Extension to $k>1$

Here is a summary of what we just did in the $k=1$ case:

- Pick distribution over \mathcal{X}
- Pick the noise to be i.i.d. Gaussian.
- If $\|w\|_{2}$ is small, you can correctly recover x. This meant that the mutual information between y and $A x$ is at least $\log (|\mathcal{X}|)$.
- SNR is small \Longrightarrow mutual information from each sample is small, and mutual information from all samples is $\log (n)$.

For larger k, we do the same thing, but instead of picking x uniformly over standard basis vectors, pick x uniformly over a "code" \mathcal{C} with the following properties:

1. $|\mathcal{C}| \geq 2^{\Omega\left(k \log \frac{n}{k}\right)}=\binom{n}{k}^{O(k)}$
2. Good distance: $\|x\|_{2} \leq 1 \forall x \in \mathcal{C}$, and $\|x-y\|_{2} \geq \frac{1}{4} \forall x \neq y \in \mathcal{C}$.
3. $x \in \mathcal{C}$ is k-sparse
4. $\mathbb{E}\left[x_{i}^{2}\right]=\frac{1}{n} \forall i$
5. $\mathbb{E}\left[x_{i} x_{j}\right]=0$.

Similar to the $k=1$ case, the second property says that that the noise is typically low enough that an algorithm that correctly recovers $x+w$ can also correctly recover x (specifically, the closest k-sparse vector to $x+w$ is $\mathbf{x})$. That is, $\|\hat{x}-(x+w)\|$. The first property is sufficient to show that any algorithm that recovers x with constant probability requires $I(y ; A x) \geq \Omega\left(k \log \frac{n}{k}\right)$. In particular, from Fano's inequality we similarly have

$$
H(x \mid \hat{x}) \leq 1+\mathbb{P}[\text { error }] \log |\mathcal{C}| \Longrightarrow I(y ; A x) \geq I(x ; \hat{x}) \geq(1-\mathbb{P}[\text { error }]) \log |\mathcal{C}|-1 .
$$

The second two properties are used to upper bound the mutual information gained per sample.
Let $a \in R^{n}$ be j th row of A. The capacity of an AWGN channel gives us that

$$
I\left((A x)_{j} ;(A x+A w)_{j}\right)=I(\langle a, x\rangle ;\langle a, x\rangle+\langle a, w\rangle) \leq \frac{1}{2} \log \left(1+\frac{\mathbb{E}\left[\langle a, x\rangle^{2}\right]}{\mathbb{E}\left[\langle a, w\rangle^{2}\right]}\right)
$$

The denominator is $\|a\|_{2}^{2} / 1000 n$, just as before. The numerator is

$$
\begin{aligned}
\mathbb{E}_{x}\left[\langle a, x\rangle^{2}\right] & =\mathbb{E}_{x}\left[\sum_{i} a_{i}^{2} x_{i}^{2}+\sum_{i \neq j} a_{i} a_{j} x_{i} x_{j}\right] \\
& =\sum_{i=1}^{n} a_{i}^{2} \mathbb{E}\left[x_{i}^{2}\right]+\sum_{i \neq j} a_{i} a_{j} \mathbb{E}_{x}\left[x_{i} x_{j}\right] \\
& =\|a\|_{2}^{2} / n
\end{aligned}
$$

where we plugged in what we know from properties 4 . and 5.
Now, all that remains is to find a code that satisfies properties 1-5. For this, we turn to Reed Solomon codes.

2.3 Reed Solomon Codes

The code is generated by evaluating a degree $k-d$ polynomial over F_{q} on k points. Any two such polynomials can agree on at most $k-d$ points. This means that any two codewords (which are of size k) have to disagree on at least d coordinates, and so have distance d.

This gives codewords in F_{q}^{k}. However, we need k-sparse vectors in \mathbb{R}^{n}. To make this transformation, set $q=n / k$. Given a word $z \in F_{q}^{k}$, set y to be the concatenation of $e_{z_{i}}^{q}$, which denotes the standard basis vector of size q with a 1 at the $z_{i}{ }^{\prime}$ th index. Then, set $x=\frac{q}{\sqrt{k}} y$.

Let's show that all of the required properties are satisfied:

1. There are $q^{k-d}=\left(\frac{n}{k}\right)^{k / 16}$ polynomials of degree $k-d$ over F_{q}.
2. $\|x\|_{2}=1$ since we scaled down by the square root of the number of ones. Any two x, x^{\prime} satisfy $\left\|x-x^{\prime}\right\|_{2} \geq \frac{1}{\sqrt{k}} \sqrt{d}$, since they disagree on d. Setting $d=\frac{k}{16}$ gives the desired bound.
3. Clearly, x all k-sparse, since it is made of k standard basis vectors.
4. Each x_{i} is $1 / \sqrt{k}$ w.p. k / n, and so $\mathbb{E}\left[x_{i}^{2}\right]=\frac{1}{n}$.
5. Give each coordinate a random sign to make $\mathbb{E}\left[x_{i} x_{j}\right]=0$.
