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1 Overview

In the last lecture we showed lower bounds for non-adaptive compressed sensing and we proved
that we need klog(nk ) linear measurements.

In this lecture we are going to discuss how to beat that lower bound with adaptive measurements.

2 Setting

Assume that x is k-sparse and that w denotes the (gaussian) noise. In adaptive sensing, we pick
the measurement vector v(i) and we learn < v(i), x+ w >. Then, after learning < v(i), x+ w > we
can pick v(i+1) and repeat the process for every i ∈ [m]. The goal is to eventually output an x̂ such
that ||x̂− x||2 ≤ O(1)||w||2

3 k=1

3.1 Lower bound

Lets consider the case k = 1.

In the non-adaptive case we showed that the problem is hard even if xi = ei, w ∼ N(0, 1
100nIn).

Specifically we showed about the mutual information that I(< v, x + w >;< v, x >) ≤ 1
2 log(1 +

E[<v,x>2]
E[<v,w>2]

) = 1
2 log(1 + E[||vi||2]

E[<v,w>2]
) = 1

2 log(1 + ||v||2/n
||v||2/100n) = O(1), which means that the information

we can learn is only a constant. However, the mutual information required for any valid recovery
is I(x̂, x) = Ω(logn), so we needed m = Ω(logn) measurements.

Question: Why would it be possible to overcome this bound? Why does this bound not apply
for the adaptive case?

The problem lies with the equation E[||vi||||2] = ||v||2/n. Recall that to prove this we used that v
and x are uncorrelated, i.e. E[||vi||||2] =

∑n
j=1E[||vj ||2 ∗ Ix=ej ] = ||v||2/n. But the whole point of

having adaptivity is that with each step we learn more about x and can make better queries.

For example, for the first query we might have that E[||v(1)i ||2] = ||v(1)||2/n, but at the end we

can even have that E[||v(m)
i ||2] = ||v(m)||2. So the mutual information bound would become I(<
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v, x + w >;< v, x >) ≤ 1
2 log(1 + n). This naive bound essentially says that once we know the

location of the answer, we can learn it in constant measurements.

Let’s get a better bound. The information we gain in round r is I(< v, x + w >;< v, x >) ≤
1
2 log(1 +

E[||v(r)i ||
2]

||v||2/100n).

Suppose at round r we know b bits of information about i. Let’s assume that these are the first b
bits of the answer’s index i, i.e. i is in an interval of width n

2b
. Then we could set v to be 1 over that

interval, which means E[||v(r)i ||2] = 1 and ||v||2 = n/2b. This would make the mutual information
for the r-th round 1

2 log(1 + 100 ∗ 2b) ≈ b/2. So if we know b bits of information about i, in two
measurements we can learn b more bits. Effectively, we could hope to learn 1 bit for the first two
measurements, 2 bits for the next two measurements, 4 for the next two, etc. We would then need
loglogn measurements to learn the full answer. This analysis can be made tight (even without the
assumption of i being concentrated in an interval, and that our knowledge of i being its first few
bits) to show a lower bound of O(loglogn).

3.2 Algorithm

We need to know Ω(log(SNR)) bits per measurement (since the lower bound says that’s optimal).

Consider first the case with SNR =∞. (i.e. x = aei, w = 0). In this noiseless case, we can set

v(1) = (1, 1, 1.., 1) and v(2) = (1, 2, 3.., n) with i = <v(2),x>
<v(1),x>

= a∗i
a .

Next, lets assume SNR is bounded, i.e. ||w||1 ≤ a
R , the same v’s give <v(2),x+w>

<v(1),x+w>
= ai±an/R

a±a/R ≈
i±O(n/R). So we can learn i exactly if R ≥ O(n).

However, even if R is less than that, we get that after a round with SNR=R, we can restrict i to
O(n/R) possibilities. This gives us the following algorithm idea.

1: R← O(1)
2: k ← n/2,∆← n/2 i ∈ [k ±∆]
3: repeat
4: S ← {k + j||j| ≤ ∆}
5: y1 ←

∑
j∈S xj

6: y2 ←
∑

j∈S j ∗ xj
7: k ← y2

y1
8: ∆← ∆/R
9: until ∆ ≤ 1

However, we can notice that our SNR increases with every step. This is because the region that i
lies in is becoming smaller. Recall that R ≥ a

||w||1 , but R′ ≥ a
||ws||1 , and ||ws||1 ≈ |S|n ||w||1 = R||w||.

Hence R′ ≥ a
||ws||1 ≈ R

2, if we assume that the noise w is spread out evenly.

To make this work even if w isn’t sufficiently spread out we can virtually permute x (probe the
permuted indices of x), so the expected value of w is the same.

However this has some probability of failure δi = δ/i2 for each round. We can counteract this by
setting R′ = R2δi without slowing the algorithm down significantly (it still scales doubly exponen-

2



tially).

Overall, this solves the k = 1 case.

4 k=2

An idea to extend this for higher k would be to use multiple equations (instead of just (1, 1, 1..., 1)
and (1, 2, 3, 4..., n)).

A simpler idea is to sample at rate 1
k and run the algorithm on this sample, which gives a k ∗ 1

k (1−
1
k )n ≈ 1

e chance of sampling exactly one of the k heavy hitters. Then the noise is E[||ws||1] = ||w||1
k .

This means that with O(log log n) measurements we have 1
e chance of finding 1 heavy hitter.

Extending this to find all heavy hitters, we can sample x as above into k samples and run the
algorithm in each, so the probability to not find some heavy hitter is for it to never have been
sampled alone. So Pr[any given HH not found] ≤ (1− 1

k (1− 1
k )k−1)O(k) ≈ 2−O(1), which is a small

constant. So every heavy hitter will be found with constant probability, and we will get a constant
fraction of the heavy hitters (but still not all).

One way is to take O(k)log(k) samples which gives 2−O(1)logk and a O(klog(log(n))log(k)) bound,
which is good only for small k.

Another option is to repeat the process. Since with O(kloglogn) measurements we find 90% of the
heavy hitters we can repeat the process for k′ = k/10. This gives a O(kloglogn) +O( k

10 loglogn) +

O( k
100 loglogn) = O(kloglogn) lower bound.
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