Lecture 17: Adaptive k-sparse compressed sensing

Prof. Eric Price
Scribe: Nikos Mouzakis
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we showed lower bounds for non-adaptive compressed sensing and we proved that we need $k \log \left(\frac{n}{k}\right)$ linear measurements.

In this lecture we are going to discuss how to beat that lower bound with adaptive measurements.

2 Setting

Assume that x is k-sparse and that w denotes the (gaussian) noise. In adaptive sensing, we pick the measurement vector $v^{(i)}$ and we learn $\left\langle v^{(i)}, x+w\right\rangle$. Then, after learning $\left\langle v^{(i)}, x+w\right\rangle$ we can pick $v^{(i+1)}$ and repeat the process for every $i \in[m]$. The goal is to eventually output an \hat{x} such that $\|\hat{x}-x\|_{2} \leq O(1)\|w\|_{2}$

$3 \mathrm{k}=1$

3.1 Lower bound

Lets consider the case $k=1$.
In the non-adaptive case we showed that the problem is hard even if $x_{i}=e_{i}, w \sim N\left(0, \frac{1}{100 n} I_{n}\right)$. Specifically we showed about the mutual information that $I(\langle v, x+w\rangle ;<v, x\rangle) \leq \frac{1}{2} \log (1+$ $\left.\frac{E\left[\langle v, x\rangle^{2}\right]}{E\left[\langle v, w\rangle^{2}\right]}\right)=\frac{1}{2} \log \left(1+\frac{E\left[\left\|v_{i}\right\|^{2}\right]}{E\left[\langle v, w\rangle^{2}\right]}\right)=\frac{1}{2} \log \left(1+\frac{\|v\|^{2} / n}{\|v\|^{2} / 100 n}\right)=O(1)$, which means that the information we can learn is only a constant. However, the mutual information required for any valid recovery is $I(\hat{x}, x)=\Omega(\log n)$, so we needed $m=\Omega(\log n)$ measurements.

Question: Why would it be possible to overcome this bound? Why does this bound not apply for the adaptive case?

The problem lies with the equation $E\left[\left\|v_{i}\right\|\left\|\|^{2}\right]=\|v\|^{2} / n\right.$. Recall that to prove this we used that v and x are uncorrelated, i.e. $E\left[\left\|v_{i}\right\|\left\|\|^{2}\right]=\sum_{j=1}^{n} E\left[\left\|v_{j}\right\|^{2} * \mathbb{I}_{x=e_{j}}\right]=\|v\|^{2} / n\right.$. But the whole point of having adaptivity is that with each step we learn more about x and can make better queries.
For example, for the first query we might have that $E\left[\left\|v_{i}^{(1)}\right\|^{2}\right]=\left\|v^{(1)}\right\|^{2} / n$, but at the end we can even have that $E\left[\left\|v_{i}^{(m)}\right\|^{2}\right]=\left\|v^{(m)}\right\|^{2}$. So the mutual information bound would become $I(<$
$v, x+w>;<v, x>) \leq \frac{1}{2} \log (1+n)$. This naive bound essentially says that once we know the location of the answer, we can learn it in constant measurements.

Let's get a better bound. The information we gain in round r is $I(<v, x+w>;<v, x\rangle) \leq$ $\frac{1}{2} \log \left(1+\frac{E\left[\left\|v_{v}^{(r)}\right\|^{2}\right]}{\|v\|^{2} / 100 n}\right)$.
Suppose at round r we know b bits of information about i. Let's assume that these are the first b bits of the answer's index i, i.e. i is in an interval of width $\frac{n}{2^{b}}$. Then we could set v to be 1 over that interval, which means $E\left[\left\|v_{i}^{(r)}\right\|^{2}\right]=1$ and $\|v\|^{2}=n / 2^{b}$. This would make the mutual information for the r-th round $\frac{1}{2} \log \left(1+100 * 2^{b}\right) \approx b / 2$. So if we know b bits of information about i, in two measurements we can learn b more bits. Effectively, we could hope to learn 1 bit for the first two measurements, 2 bits for the next two measurements, 4 for the next two, etc. We would then need $\log \log n$ measurements to learn the full answer. This analysis can be made tight (even without the assumption of i being concentrated in an interval, and that our knowledge of i being its first few bits) to show a lower bound of $O(\log \log n)$.

3.2 Algorithm

We need to know $\Omega(\log (S N R))$ bits per measurement (since the lower bound says that's optimal).
Consider first the case with $\mathrm{SNR}=\infty$. (i.e. $x=a e_{i}, w=0$). In this noiseless case, we can set $v^{(1)}=(1,1,1 . ., 1)$ and $v^{(2)}=(1,2,3 . ., n)$ with $i=\frac{\left\langle v^{(2)}, x\right\rangle}{\left\langle v^{(1)}, x\right\rangle}=\frac{a * i}{a}$.
Next, lets assume SNR is bounded, i.e. $\|w\|_{1} \leq \frac{a}{R}$, the same v 's give $\frac{\left\langle v^{(2)}, x+w\right\rangle}{\left\langle v^{(1)}, x+w\right\rangle}=\frac{a i \pm a n / R}{a \pm a / R} \approx$ $i \pm O(n / R)$. So we can learn i exactly if $R \geq O(n)$.
However, even if R is less than that, we get that after a round with $\mathrm{SNR}=\mathrm{R}$, we can restrict i to $O(n / R)$ possibilities. This gives us the following algorithm idea.

```
\(R \leftarrow O(1)\)
\(k \leftarrow n / 2, \Delta \leftarrow n / 2 \quad i \in[k \pm \Delta]\)
repeat
    \(S \leftarrow\{k+j| | j \mid \leq \Delta\}\)
    \(y_{1} \leftarrow \sum_{j \in S} x_{j}\)
    \(y_{2} \leftarrow \sum_{j \in S} j * x_{j}\)
    \(k \leftarrow \frac{y_{2}}{y_{1}}\)
    \(\Delta \leftarrow \stackrel{y_{1}}{\Delta} / R\)
    until \(\Delta \leq 1\)
```

However, we can notice that our SNR increases with every step. This is because the region that i lies in is becoming smaller. Recall that $R \geq \frac{a}{\|w\|_{1}}$, but $R^{\prime} \geq \frac{a}{\left\|w_{s}\right\|_{1}}$, and $\left\|w_{s}\right\|_{1} \approx \frac{|S|}{n}\|w\|_{1}=R\|w\|$. Hence $R^{\prime} \geq \frac{a}{\left\|w_{s}\right\|_{1}} \approx R^{2}$, if we assume that the noise w is spread out evenly.
To make this work even if w isn't sufficiently spread out we can virtually permute x (probe the permuted indices of x), so the expected value of w is the same.
However this has some probability of failure $\delta_{i}=\delta / i^{2}$ for each round. We can counteract this by setting $R^{\prime}=R^{2} \delta_{i}$ without slowing the algorithm down significantly (it still scales doubly exponen-
tially).
Overall, this solves the $k=1$ case.

$4 \quad \mathrm{k}=2$

An idea to extend this for higher k would be to use multiple equations (instead of just $(1,1,1 \ldots, 1)$ and (1, 2, 3, 4..., n)).

A simpler idea is to sample at rate $\frac{1}{k}$ and run the algorithm on this sample, which gives a $k * \frac{1}{k}(1-$ $\left.\frac{1}{k}\right)^{n} \approx \frac{1}{e}$ chance of sampling exactly one of the k heavy hitters. Then the noise is $E\left[\left\|w_{s}\right\|_{1}\right]=\frac{\|w\|_{1}}{k}$. This means that with $\mathrm{O}(\log \log \mathrm{n})$ measurements we have $\frac{1}{e}$ chance of finding 1 heavy hitter.

Extending this to find all heavy hitters, we can sample x as above into k samples and run the algorithm in each, so the probability to not find some heavy hitter is for it to never have been sampled alone. So $\operatorname{Pr}[$ any given HH not found $] \leq\left(1-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1}\right)^{O(k)} \approx 2^{-O(1)}$, which is a small constant. So every heavy hitter will be found with constant probability, and we will get a constant fraction of the heavy hitters (but still not all).

One way is to take $O(k) \log (k)$ samples which gives $2^{-O(1) \log k}$ and a $O(k \log (\log (n)) \log (k))$ bound, which is good only for small k .

Another option is to repeat the process. Since with $O(k \log \operatorname{logn})$ measurements we find 90% of the heavy hitters we can repeat the process for $k^{\prime}=k / 10$. This gives a $O(k \log \log n)+O\left(\frac{k}{10} \log \log n\right)+$ $O\left(\frac{k}{100} \log \log n\right)=O(k \log \log n)$ lower bound.

