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1 Background and Motivation

1.1 Compressed Sensing and the RIP

There are two main types of compressed sensing algorithms that we have seen so far:

• Structure-aware: Here the recovery algorithm is tied to the matrix structure, e.g. Count-
Sketch. These methods are faster and allow for sparse matrices, but are less robust.

• Structure-oblivious: As the name suggests, here the recovery algorithm does not depend on
the sensing matrix structure. The recovery is formulated as a least squares problem with
`1-norm regularization to account for the signal sparsity. These methods are slower, require
dense matrices, but are more robust.

We are going to focus on the latter category in this lecture.
Mathematically, the goal is to recover x ∈ Rn – which is k-sparse – given linear measurements of
the form y = Φx, where Φ ∈ Rm×n and m � n. We have seen earlier that we can solve a convex
relaxation of this NP-hard problem:

min
x
‖x‖1 s.t. y = Φx. (1)

The main bottleneck of this approach is the multiplication by Φ or ΦT . But we know that if the
Φ satisfies the Restricted Isometry Property (RIP), then this convex relaxation gives us the exact
solution (in the noiseless case). Recall the RIP:

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2 for all k-sparse x ∈ Rn. (2)

Ideally, we would like m to be small and the cost of multiplication by Φ or ΦT to be small. For
a random Gaussian matrix, m = O(k log n), but the multiplication time is O(kn log n). We would
like to decrease the multiplication time to O(n log n) while having a small m – this is where the
Fourier matrix comes into the picture!

1.2 Johnson Lindenstrauss (JL) Transform

Recall that the JL transform can be used to project high dimensional data points to a lower
dimension such that their distances are approximately preserved in this lower dimensional space.
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Specifically, suppose S ⊂ Rn. Then, the JL lemma says that there exists a low dimensional sketch
of S, say Φ(S) ∈ Rm, such that

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2 ∀ x ∈ S, and

〈Φx,Φy〉 ∈ 〈x,y〉 ± ε‖x‖2‖y‖2.

Theorem 1. Let x ∈ Rn. A random Gaussian matrix Φ ∈ Rm×n will have

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2

with probability 1− δ, so long as

m &
1

ε2
log
(1

δ

)
.

Setting δ = 1/2k, we can embed 2k points in O(k/ε2) dimensions.
Ideally, we would like to have a small m (i.e. target dimension) as well as fast multiplication to
use in practical problems such as regression, low-rank approximation, clustering, etc. Random
Gaussian allows us to have small m ∼ O(k/ε2), but the multiplication time is O(nk/ε2) which
is expensive. It was furthrer shown by Krahmer and Ward (2011) that given a matrix obeying
the RIP, we can transform it (by multiplying it with a random diagonal matrix) such that the
transformed matrix satisfies the JL lemma with high probability – i.e. RIP =⇒ JL. Now since the
random Fourier matrix obeys the RIP (which we are going to prove in this lecture) and it allows
fast multiplication (O(n log n) time), we can use it for fast JL!

2 Preliminaries

2.1 The Sub-Sampled Fourier Matrix

Recall the Fourier matrix F whose entries are given by Fi,j = ωij where ω =
√
−1/n. The Fourier

matrix obeys the property that FF∗ = nIn. Suppose A contains random rows from the Fourier
matrix. Note that multiplication by A can be done in O(n log n) time by using the Fast Fourier
Transform (FFT).

But an open question is – how many rows does A need to have to ensure it satisfies the RIP? Several
works have established the bound ofO(k log n log2 k). Recently this was improved toO(k log n log k)
for the subsampled Hadamard matrix. Ideally, we would like to reduce this to just m = O(k log n).

In this lecture, we are going to discuss the proof technique of Rudelson and Vershynin (2008) to
obtain the bound of m = O(k log4 n). Before doing that, we shall discuss several helpful probability
tools.

2.2 Concentration of Measure: A Toolbox

Suppose Σk is the set of unit-norm k-sparse vectors. We wish to show for our distribution Φ on
matrices that:

E sup
x∈Σk

∣∣∣‖Φx‖2 − ‖x‖2
∣∣∣ < ε.
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This can be thought of as the expected deviation of ΦTΦ from In, in a non-standard norm. Prob-
abilists have lots of tools to analyze this – see Figure 1. The key idea is to somehow convert
such problems to Gaussians and then use results for Gaussian concentration. We shall prove Sym-
metrization and Dudley’s entropy integral.

Figure 1: A Probabilist’s Toolbox. We are going to be focusing on the highlighted blocks.

2.2.1 Symmetrization

Lemma 1. Suppose X1, . . . , Xt are i.i.d with mean µ. For any norm ‖.‖

E
[∥∥∥1

t

∑
i

Xi − µ
∥∥∥] ≤ 2E

[∥∥∥1

t

∑
i

siXi

∥∥∥] ≤ 3E
[∥∥∥1

t

∑
i

giXi

∥∥∥].
where si ∈ {±1} independently and gi ∈ N (0, 1) independently.

Symmetrization is a measure to quantify how well does X concentrate about its mean.

For example, we can use this to bound the RIP constant of the sub-sampled Fourier matrix A, for
some norm ‖ · ‖.

Proof. Draw X
′
1, . . . , X

′
t independently from the same distribution. Then:

E
[∥∥∥1

t

∑
i

Xi − µ
∥∥∥] = E

[∥∥∥1

t

∑
i

Xi − E
[1

t

∑
i

X
′
i

]∥∥∥]
≤ E

[∥∥∥1

t

∑
i

(Xi −X
′
i)
∥∥∥]

= E
[∥∥∥1

t

∑
i

si(Xi −X
′
i)
∥∥∥].

Applying the triangle inequality, we get the first inequality in the lemma.

For the second inequality in the lemma, note that E[|gi|] ≈ 0.8 > 2/3. Hence:

2E[‖
∑
i

siXi‖] ≤ 3E[‖
∑
i

siE[|gi|]Xi‖]
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≤ 3E[‖
∑
i

si|gi|Xi‖]

≤ 3E[‖
∑
i

giXi‖].

This concludes the proof. �

2.2.2 Gaussian Processes

Very briefly, we can think of a Gaussian process as follows – for every point x ∈ T which is our
space, we have a Gaussian Gx. We are interested in estimating the following:

E sup
x∈T

Gx.

Obviously, this quantity depends on the geometry of T . Also note that for any two points x,y ∈ T ,
we can define a notion of distance between them, i.e. ‖x−y‖, which is just the standard deviation
of Gx −Gy. In other words, Gx −Gy ∼ N (0, ‖x− y‖2).

For example, suppose A is a random m× n Gaussian matrix. For u ∈ Rm and v ∈ Rn, define

Gu,v := uTAv := 〈uvT ,A〉. (3)

Then Gu,v ∼ N (0, ‖uvT ‖2F ). Also note that:

E‖A‖2 = E sup
u,v∈Rm−1×Rn−1

uTAv = E sup
u,v∈Rm−1×Rn−1

Gu,v.

Note that for this example, ‖(u,v)− (u′,v′)‖ = ‖uvT − u′v′T ‖F . Coming back to our problem of
estimating E supx∈T Gx, we next introduce the chaining technique for computing this.

2.2.3 Chaining and Dudley’s Entropy Integral

Let us first consider a simple case where T is finite with |T | = n. Suppose 0 ∈ T , and G0 = 0. Also
let σmax = maxx∈T ‖x−0‖. See Figure 2 for reference. Recalling that the maximum of n Gaussians
varies as O(

√
log n), we get:

E sup
x∈T

Gx . σmax

√
log n. (4)

Note that this technique only works if |T | is finite.

Let us now consider an ε-cover of T under the same ‖.‖ norm. Denote this cover by C(T, ‖.‖, ε)
and the covering number = |C(T, ‖.‖, ε)| = N (T, ‖.‖, ε). Then for every x ∈ T , we have some
c(x) ∈ C(T, ‖.‖, ε), such that ‖x− c(x)‖ ≤ ε. See Figure 3 for reference. In that case:

E sup
x∈T

Gx = E sup
x∈T

[Gx −Gc(x) +Gc(x)]

≤ E sup
x∈T

[Gx −Gc(x)] + E sup
x∈T

Gc(x)

. ε
√

log n︸ ︷︷ ︸
(I)

+σmax

√
logN (T, ‖.‖, ε)︸ ︷︷ ︸

(II)

. (5)
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Figure 2: A simple case of T with |T | = n = 4.

In eq. (5), (I) is obtained as follows: the maximum variance of each Gx−Gc(x) is ≤ ε as C(T, ‖.‖, ε)
is an ε-cover of T , and |T | = n. Then we can directly apply the result of eq. (4).
For obtaining (II), note that E supx∈T Gc(x) = E supy∈C(T,‖.‖,ε)Gy. Recalling that |C(T, ‖.‖, ε)| =
N (T, ‖.‖, ε), and that ‖y − 0‖ ≤ σmax for all y ∈ C(T, ‖.‖, ε) ⊂ T , we again apply the result of
eq. (4).

Figure 3: The chaining example with two levels. Note that σ1 = σmax and σ2 = ε here.

Henceforth, let σmax = σ1 and ε = σ2. Then, Equation (5) becomes:

E sup
x∈T

Gx . σ1

√
logN (T, ‖.‖, σ2) + σ2

√
log n. (6)

In the above example, we stopped at two levels – but nothing is stopping us from repeating the
above idea. Specifically, we can keep finding covers of T with progressively smaller cover sizes (i.e.
ε) and keep extending (6). As an example, now if we find a σ3-cover of T of size N (T, ‖.‖, σ3),
where σ3 < σ2, then just by extending the idea of (6), we get:

E sup
x∈T

Gx . σ1

√
logN (T, ‖.‖, σ2) + σ2

√
logN (T, ‖.‖, σ3) + σ3

√
log n. (7)

Doing this infinitely many times, we get:

E sup
x∈T

Gx . σ1

√
logN (T, ‖.‖, σ2) + σ2

√
logN (T, ‖.‖, σ3) + σ3

√
logN (T, ‖.‖, σ4) + . . . (8)

Let us choose σr = σ1/2
r−1. Then, we get:

E sup
x∈T

Gx .
∞∑
r=0

σ1

2r

√
logN

(
T, ‖.‖, σ1

2r+1

)
.
∫ ∞

0

√
logN (T, ‖.‖, σ)dσ. (9)
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Figure 4: Repeated chaining.

Figure 5: Reimann sum approximation.

The second inequality follows by Reimann sum approximation (see Figure 5).

The second inequality in (9) is what is known as Dudley’s Entropy Integral. We state this as a
theorem now:

Theorem 2. (Dudley’s Entropy Integral) Define the norm ‖.‖ of a Gaussian process G by

‖x− y‖ = standard deviation of Gx −Gy.

Then

γ2(T, ‖.‖) = E sup
x∈T

Gx .
∫ ∞

0

√
logN (T, ‖.‖, u)du.

This is useful for bounding a random variable over a space using its geometry.

3 RIP constant of Sub-sampled Fourier Matrix

Theorem 3. Suppose the sensing matrix F contains random rows sampled from a Fourier matrix.
Let Ω ⊆ [n], be a set of m = O( k

ε2
log4 n) i.i.d uniform indices. Then 1√

m
FΩ satisfies (k, ε)-RIP in

expectation. More formally if A = 1√
m
FΩ and

∑
k denote unit-norm k-sparse vectors, then:

EΩ sup
x∈

∑
k

|‖Ax‖2 − ‖x‖2| < ε. (10)
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Proof. We will follow the proof described in Rudelson and Vershynin (2008).

Figure 6: The proof outline.

(Step-0. Setup).
Let δi = Ii∈Ω. Then, we have: P[δi] = m

n . Then we have,

Ax =
1

m

n∑
i=1

δiFix

Then we would like to analyze the RIP constant:

RΩ := sup
x∈

∑
k

|xTATAx− 1|

Now, for any fixed x:

EΩ[xTATAx] =
1

n
xTFTFx = ‖x‖22
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(Step-I. Symmetrization)

EΩ[RΩ] = EΩ sup
x∈

∑
k

|‖Ax‖22 − ‖x‖22|

= EΩ sup
x∈

∑
k

|‖Ax‖22 − EΩ[‖Ax‖22]

=
1

m
Eδ sup

x∈
∑

k

∣∣∣ k∑
i=1

δi < Fi,x >
2 −EΩ[

k∑
i=1

δi < Fi,x >
2]
∣∣∣

≤ 1

m
3Eδ,g sup

x∈
∑

k

∣∣∣ k∑
i=1

giδi < Fi,x >
2
∣∣∣ (Using Lemma 1)

≤ 1

m
3EδEg sup

x∈
∑

k

∣∣∣ k∑
i=1

giδi < Fi,x >
2
∣∣∣

(Step-II. Bounding the Gaussian process metric)
From symmetrization we have:

mEΩ[RΩ] . EδEg sup
x∈

∑
k

∣∣∣ k∑
i=1

gi < Fi,x >
2
∣∣∣

Now, we fix Ω and define the Gaussian process:

Gx =
∑
i∈Ω

gi < Fi,x >
2

Gx induces the norm:

‖x− y‖2G =E[(Gx −Gy)
2]

=
∑
i∈Ω

(< Fi,x >
2 − < Fi,y >

2)2

=
∑
i∈Ω

(< Fi,x + y > · < Fi,x− y >)2

≤
∑
i∈Ω

(< Fi,x + y >2) max
i∈Ω

< Fi,x− y >2

≤4 sup
x̂∈

∑
k

(< Fi, x̂ + y >2) max
i∈[n]

< Fi,x− y >2

≤4m(1 + RΩ)‖F(x− y)‖2∞

Let us define: ‖x‖F = ‖Fx‖∞. Then we have,
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mE[R] . EΩE sup
x∈

∑
k

Gx

= EΩγ2(
∑
k

, ‖ · ‖G)

≤ EΩ

∫ ∞
0

√
logN(

∑
k

, ‖ · ‖G, u)du (Using Theorem 2 above)

. EΩ

∫ ∞
0

√
logN(

∑
k

, ‖ · ‖F,
u√

1 + RΩ
)du

≤ EΩ

√
m(1 + RΩ)

∫ ∞
0

√
logN(

∑
k

, ‖ · ‖F, u)du

(Road map for the rest of the proof).
We will show:

∫∞
0

√
logN(

∑
k, ‖ · ‖F,u)du . ε

√
m. This would imply for ε < 1:

E[RΩ] . εE[
√

1 + RΩ]

⇒E[RΩ] . ε

Thus this would imply the result.

(Step - III. Bounding N(
∑

k, ‖ · ‖F,u) - Covering Number Bound).
Recall ‖y‖F = ‖Fy‖∞. Note that

∑
k ⊆ B1.

√
k where B1 = {x|‖x‖1 ≤ 1}. Therefore,

Figure 7: How many l2 balls of radius u required to cover B1?

∫ ∞
0

√
logN(

∑
k

, ‖ · ‖F, u)du ≤
√
k

∫ ∞
0

√
logN(B1, ‖ · ‖F, u)du

We can bound N(B1, ‖ · ‖F, u) by an easy volume argument as seen previously in earlier lectures
on Covering numbers -

N(B1, ‖ · ‖F, u) ≤ N(B1, ‖ · ‖1, u)

≤
(

1 +
2

u

)n
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Plugging this into the integral we obtain∫ ∞
0

√
logN(

∑
k

, ‖ · ‖F, u)du ≤
√
k

∫ ∞
0

√
logN(B1, ‖ · ‖F, u)du

≤
∫ 1

0

√
n

√
(1 +

2

u
)du

.
√
n

which is not a very good bound. (Remember, we are shooting for a bound that is O(
√
k).

(Maurey’s empirical method).
We can apply Maurey’s Empirical Method to get a better bound. Consider any x ∈ B+

1 . Let ẑi

Figure 8: How many balls of radius u required to cover B+
1

be i.i.d. randomized roundings of x to simplex. The sample mean, z = 1
t

∑t
r=1 zr converges to x as

t→∞. We can let t to be large enough that, regardless of x, we can bound the expected deviation
as:

E

[∥∥∥1

t

t∑
r=1

zr − x
∥∥∥
F

]
≤ u

All x lie within u of at least one possible z. Note that, this implies,

N(B1, ‖ · ‖, u) ≤ ‖z‖0 ≤ (n+ 1)t

Thus we see that for such an t, we would have N ≤ (n + 1)t which is a much better bound on as
long as t is not too big. We can bound the deviation using Symmetrization as follows,

σR = E
[∥∥∥1

t

∑
zi − x

∥∥∥
F

]
. E

[∥∥∥1

t

∑
gizi

∥∥∥
F

]
= E

[∥∥∥g∥∥∥
F

]
,

where g ∈ Rn has

gj ∼ N (0,
number of zi at ej

t
),
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independently in each coordinate.
This implies, for each i, (Fg)i ∼ N (0, 1). Hence ‖g‖F = ‖Fg‖∞ .

√
log n with high probability

and in expectation. Thus setting t = logn
u2

suffices and we get:

N(B1, ‖ · ‖F, u) ≤ (n+ 1)O( logn

u2
) (11)

(Step - IV Putting everything together).
Now plugging the bound into our entropy integral we obtain:∫ ∞

0

√
logN(

∑
k

, ‖ · ‖F,u)du .
√
k log4 n ≤ ε

√
m

This gives us the RIP constant .
√

k log4 n
m

This concludes the proof. �

(Note on log3 n factor loss)
As depicted in Figure 6, Dudley’s entropy integral results in a loss of a factor of log2 n and the
union bound finally results in a a loss of a factor of log n. Thus, we are off a by a factor of a loss
of a factor of log3 n with respect to the optimal bound of m = O(k log n).
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