Lecture 19: Sparse Matrices \& RIP

Prof. Eric Price
Scribe: Tongzheng Ren, Shuo Yang
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Sparse Matrices \& RIP

We have seen in the homework that no sparse matrices have RIP-2, i.e. $\forall k$-sparse x,

$$
\|A x\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

But we can have sparse matrices have RIP-1: $\forall k$-sparse x

$$
\|A x\|_{1}=(1 \pm \epsilon)\|x\|_{1}
$$

Constructions Consider random $A \in\{0,1\}^{m \times n}$ subject to $d=O(\log n)$ entries of 1 per column has (normalized) RIP-1: $\forall x k$-sparse,

$$
(1-\epsilon) d\|x\|_{1} \leq\|A x\|_{1} \leq d\|x\|_{1}
$$

Lemma 1. $A \in\{0,1\}^{m \times n}$ is RIP-1 with sparsity d if and only if A is adjacency matrix of a d-regular bipartite expander (with n nodes on left and m nodes on right).

Bipartite expander: $\forall S \subseteq[n]$ on left, $|S| \leq k,|N(S)| \geq(1-\epsilon) d|S|$.
Claim 2. With random graph: $d \gtrsim \frac{1}{\epsilon} \log \frac{n}{k}, m \gtrsim \frac{1}{\epsilon^{2}} l \log \frac{n}{k}=\frac{1}{\epsilon} k d$ suffices. We also have explicit graph with $d=\log n\left(\frac{\log k}{\epsilon}\right)^{1+\frac{1}{\alpha}}, m=k^{1+\alpha} d^{2}$ that satisfies RIP-1.
Lemma 3. Random Graph with $d \gtrsim \frac{1}{\epsilon} \log \frac{n}{k}, m \gtrsim \frac{1}{\epsilon^{2}} l \log \frac{n}{k}=\frac{1}{\epsilon} k d$ is an expander with high probability.

Proof.

$$
\begin{aligned}
& \mathbb{P}[\text { random graph is not expander }] \\
= & \mathbb{P}[\exists S,|S|=k,|N(S)|<(1-\epsilon) d|S|] \\
\leq & \binom{n}{k} \mathbb{P}[\exists S,|S|=k \text { has }|N(S)| \leq(1-\epsilon) k d]
\end{aligned}
$$

Consider the following balls and bins problem: $k d$ balls placed randomly among $\frac{k d}{\epsilon}$ bins.

$$
\mathbb{P}[\text { bin } i \text { is empty }]=\left(1-\frac{\epsilon}{k d}\right)^{k d} \approx \exp (-\epsilon)
$$

So

$$
\mathbb{E}[\# \text { of non-empty bins }]=\frac{k d}{\epsilon}(1-\exp (-\epsilon)) \approx k d(1-O(\epsilon)),
$$

which is good. But we need high probability bounds.
Define X_{j} the indicator of the event that the j-th ball collides with previous balls. We have

$$
\mathbb{P}\left[X_{j}=1 \mid \text { balls } 1, \cdots, j-1\right] \leq \epsilon
$$

We can then apply Chernoff bound as

$$
\mathbb{E}\left[\exp \left(\lambda \sum_{j \in[k d]} X_{j}\right)\right]=\prod_{j \in[k d]} \mathbb{E}\left[\exp \left(\lambda X_{j}\right) \mid \text { balls } 1, \cdots, j-1\right] \leq(\epsilon \exp (\lambda)+1-\epsilon)^{k d} .
$$

With multiplicative Chernoff bound, we have

$$
\mathbb{P}\left[\sum_{j \in[k d]} X_{j} \geq 2 \epsilon k d\right] \leq \exp \left(-\frac{\epsilon k d}{3}\right),
$$

and thus

$$
\mathbb{P}[|N(S)| \leq(1-2 \epsilon k d)] \leq \exp \left(-\frac{\epsilon k d}{3}\right)=\exp \left(-\Theta\left(k \log \frac{n}{k}\right)\right)
$$

By choosing proper constant and union bound, we have the desired result with high probability.

2 Sequential Sparse Matching Pursuit

Given $y=A x, x$ is k-sparse. We want to do the ℓ_{1} sparse recovery, by picking (α, i), s.t. $\hat{x}+\alpha e_{i}$ is a bit closer to x than 0 . A natural way is picking (α, i) minimizes

$$
\left\|(y-A \hat{x})-A\left(\alpha e_{i}\right)\right\|_{1}=\left\|(y-A \hat{x})-\alpha a_{i}\right\|_{1} \quad\left(A=\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right)
$$

Can we repeat the ℓ_{1} minimization to do the sparse recovery?
Lemma 4. Let $Z=\sum_{i \in k} Z_{i}$, s.t. $\sum\left\|Z_{i}\right\|_{1} \leq \frac{1}{1-\epsilon}\|z\|_{1}$, then $\exists i$, s.t. $\left\|z-z_{i}\right\|_{1} \leq\left(1-\frac{1-2 \epsilon}{k}\right)\|z\|_{1}$.
As $y=\sum x_{i} a_{i}$ and $\|y\|_{1} \geq d(1-\epsilon)\|x\|_{2}=(1-\epsilon) \sum\left\|x_{i} a_{i}\right\|_{1}$. We have

$$
\left\|y-\alpha a_{i}\right\|_{1} \leq\left(1-\frac{1}{2 k}\right)\|y\|_{1} .
$$

Define $y^{(2)}=y-\alpha a_{i}$ the residual after first round. And we have

$$
\left\|y^{(2)}-\alpha^{(2)} a_{i^{(2)}}\right\| \leq\left(1-\frac{1}{2 k+2}\right)\left\|y^{(2)}\right\|_{1} .
$$

```
Algorithm 1 Sequential Sparse Matching Pursuit (SSMP)
    INPUT: \(y=A x+u \in \mathbb{R}^{m}, A\) random sparse RIP-1 binary matrix.
    Initialize \(x^{(1)}=0\).
    for \(l=1, \cdots, L=\Theta\left(\log \frac{\|x\|_{1}}{\|u\|_{1}}\right)\) do
        for \(t=1, \cdots, 16 k\) do
            Pick \((\alpha, i)\) via minimizing \(\left\|y-A x^{(r)}-\alpha a_{i}\right\|_{1}\).
            \(x^{(r)_{t}} \leftarrow x^{(r) t}+\alpha a_{i}\).
        end for
        \(x^{(r+1)}=H_{k}\left(x_{16 k}^{(r)}\right)\).
    end for
```

After r repetitions with RIP-1 of order $(k+r)$, we have

$$
\left\|y^{(r)}\right\| \leq \frac{\sqrt{(2 k+1)(2 k+2 r-1)}}{2 k+2 r} \approx \frac{1}{\sqrt{c}},
$$

if $r=c k$. But we can do hard thresholding:

$$
\left\|x-H_{k}\left(x^{(r)}\right)\right\|_{1} \leq\left\|x-x^{(r)}\right\|_{1}+\left\|x^{r}-H_{k}\left(x^{(r)}\right)\right\|_{1} \leq 2\left\|x-x^{(r)}\right\|_{1}
$$

With the discussion above, we know that each of the inner loop have that

$$
\left\|x-x_{16 k}^{(r)}\right\|_{1} \leq \frac{1}{4}\left\|x-x^{r}\right\|_{1},
$$

and after the hard thresholding, we have

$$
\left\|x-x^{(r+1)}\right\|_{1} \leq \frac{1}{2}\left\|x-x^{(r)}\right\|_{1} .
$$

Theorem 5. If A has $\left(O(k), \frac{1}{4}\right)$-RIP, for Sequential Sparse Matching Pursuit, we have

$$
\left\|\hat{x}^{L}-x\right\|_{1} \leq 2^{-L}\|x\|_{1}+O\left(\|u\|_{1}\right)
$$

For time complexity, we first focus on the inner loop of the algorithm. A naive implementation would require $O(n \log n)$ time for solving the minimization in the inner loop (i.e. the n part comes from searching through basis e_{i} and $\log n$ part comes from determining proper α). The overall complexity would be $O\left(k n \log ^{2} n\right)$.

However, notice that from the random graph construction, each time we add a new αe_{i}, it would affect d elements of y, which in turn will affect the estimation of $O\left(\frac{n d}{k}\right)$ basis e_{i}. Therefore the complexity of the minimization in the inner product is around $O\left(\frac{n}{k} \log ^{2} n\right)$, which leads to an overall complexity of $O\left(n \log ^{O(1)} n\right)$ which is nearly linear in n.

