
CS 395T: Sublinear Algorithms, Fall 2020 October 29, 2020

Lecture 19: Sparse Matrices & RIP

Prof. Eric Price Scribe: Tongzheng Ren, Shuo Yang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Sparse Matrices & RIP

We have seen in the homework that no sparse matrices have RIP-2, i.e. ∀ k-sparse x,

‖Ax‖2 = (1± ε)‖x‖2.

But we can have sparse matrices have RIP-1: ∀ k-sparse x

‖Ax‖1 = (1± ε)‖x‖1

Constructions Consider random A ∈ {0, 1}m×n subject to d = O(log n) entries of 1 per column
has (normalized) RIP-1: ∀x k-sparse,

(1− ε)d‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1

Lemma 1. A ∈ {0, 1}m×n is RIP-1 with sparsity d if and only if A is adjacency matrix of a
d-regular bipartite expander (with n nodes on left and m nodes on right).

Bipartite expander: ∀S ⊆ [n] on left, |S| ≤ k, |N(S)| ≥ (1− ε)d|S|.

Claim 2. With random graph: d & 1
ε log n

k , m & 1
ε2
l log n

k = 1
εkd suffices. We also have explicit

graph with d = log n(log kε)1+
1
α , m = k1+αd2 that satisfies RIP-1.

Lemma 3. Random Graph with d & 1
ε log n

k , m & 1
ε2
l log n

k = 1
εkd is an expander with high

probability.

Proof.

P[random graph is not expander]

=P[∃S, |S| = k, |N(S)| < (1− ε)d|S|]

≤
(
n

k

)
P[∃S, |S| = k has |N(S)| ≤ (1− ε)kd]

Consider the following balls and bins problem: kd balls placed randomly among kd
ε bins.

P[bin i is empty] =
(

1− ε

kd

)kd
≈ exp(−ε)

1

So

E[# of non-empty bins] =
kd

ε
(1− exp(−ε)) ≈ kd(1−O(ε)),

which is good. But we need high probability bounds.

Define Xj the indicator of the event that the j-th ball collides with previous balls. We have

P[Xj = 1 | balls 1, · · · , j − 1] ≤ ε.

We can then apply Chernoff bound as

E

exp

λ ∑
j∈[kd]

Xj

 =
∏
j∈[kd]

E[exp(λXj) | balls 1, · · · , j − 1] ≤ (ε exp(λ) + 1− ε)kd.

With multiplicative Chernoff bound, we have

P[
∑
j∈[kd]

Xj ≥ 2εkd] ≤ exp

(
−εkd

3

)
,

and thus

P[|N(S)| ≤ (1− 2εkd)] ≤ exp

(
−εkd

3

)
= exp

(
−Θ

(
k log

n

k

))
By choosing proper constant and union bound, we have the desired result with high probability.

2 Sequential Sparse Matching Pursuit

Given y = Ax, x is k-sparse. We want to do the `1 sparse recovery, by picking (α, i), s.t. x̂ + αei
is a bit closer to x than 0. A natural way is picking (α, i) minimizes

‖(y −Ax̂)−A(αei)‖1 = ‖(y −Ax̂)− αai‖1 (A = (a1, a2, · · · , an))

Can we repeat the `1 minimization to do the sparse recovery?

Lemma 4. Let Z =
∑

i∈k Zi, s.t.
∑
‖Zi‖1 ≤ 1

1−ε‖z‖1, then ∃i, s.t. ‖z − zi‖1 ≤ (1− 1−2ε
k)‖z‖1.

As y =
∑
xiai and ‖y‖1 ≥ d(1− ε)‖x‖2 = (1− ε)

∑
‖xiai‖1. We have

‖y − αai‖1 ≤
(

1− 1

2k

)
‖y‖1.

Define y(2) = y − αai the residual after first round. And we have

‖y(2) − α(2)ai(2)‖ ≤
(

1− 1

2k + 2

)
‖y(2)‖1.

2

Algorithm 1 Sequential Sparse Matching Pursuit (SSMP)

INPUT: y = Ax+ u ∈ Rm, A random sparse RIP-1 binary matrix.
Initialize x(1) = 0.
for l = 1, · · · , L = Θ(log ‖x‖1‖u‖1) do

for t = 1, · · · , 16k do
Pick (α, i) via minimizing ‖y −Ax(r) − αai‖1.
x(r)t ← x(r)t + αai.

end for
x(r+1) = Hk(x

(r)
16k).

end for

After r repetitions with RIP-1 of order (k + r), we have

‖y(r)‖ ≤
√

(2k + 1)(2k + 2r − 1)

2k + 2r
≈ 1√

c
,

if r = ck. But we can do hard thresholding:

‖x−Hk(x
(r))‖1 ≤ ‖x− x(r)‖1 + ‖xr −Hk(x

(r))‖1 ≤ 2‖x− x(r)‖1

With the discussion above, we know that each of the inner loop have that

‖x− x(r)16k‖1 ≤
1

4
‖x− xr‖1,

and after the hard thresholding, we have

‖x− x(r+1)‖1 ≤
1

2
‖x− x(r)‖1.

Theorem 5. If A has (O(k), 14)-RIP, for Sequential Sparse Matching Pursuit, we have

‖x̂L − x‖1 ≤ 2−L‖x‖1 +O(‖u‖1)

For time complexity, we first focus on the inner loop of the algorithm. A naive implementation
would require O(n log n) time for solving the minimization in the inner loop (i.e. the n part comes
from searching through basis ei and log n part comes from determining proper α). The overall
complexity would be O(kn log2 n).

However, notice that from the random graph construction, each time we add a new αei, it would
affect d elements of y, which in turn will affect the estimation of O(ndk) basis ei. Therefore the
complexity of the minimization in the inner product is around O(nk log2 n), which leads to an overall

complexity of O(n logO(1) n) which is nearly linear in n.

3

