
CS 395T: Sublinear Algorithms, Fall 2020 November 5, 2020

Lecture 21: More Graph Sketching

Prof. Eric Price Scribe: Matthew Faw

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture, we began discussing the graph sketching algorithms of [AGM12], where instead of
storing the entire graph on n nodes using O(n2) space, the goal will be to store an O(n logO(1)(n))-
space linear sketch of the graph. Using this sketch, several relevant properties of the graph can be
inferred from the sketch with high probability:

� Sample a random edge from a cut

� Estimate the size of a cut to 1± ε

� Find a spanning forest

� Find a (1 + ε)-approximate minimum spanning tree

� Test bipartiteness

All of these are, in fact, based on one idea: store a linear sketch (e.g., the sampler sketch) applied

to the signed adjacency matrix, E ∈ R(n2)×n, of the graph. Recall that the entries of E are given
as, for any edge e and vertex v in G:

Ee,v =

{
0 if e 6∈ edges(G) or v 6∈ G
±1 otherwise

where
∑

v∈[n]Ee,v = 0 for each e ∈ E. Each algorithm will use a linear sketch A ∈ Rm×(n2), and

stores AE ∈ Rm×n using O(mn) words. The interpretation of AE is that each vertex will store a
sketch of its neighbors in the graph. If we choose A to be the sampler sketch, then we can sample
a random edge for any cut (S, S̄) using O(log2(n)) rows. If we choose A as an AMS-sketch (`2

sketch), then we can estimate the size of a cut to (1± ε) with high probability using O
(
logn
ε2

)
rows.

In this lecture, we will discuss finding a spanning forest, k-connectivity, min-cut estimation, testing
bipartiteness, and spectral sparsifiers.

2 Finding a spanning forest

Goal: Find a spanning tree in G, using the sketch AE.

1

2.1 An (incorrect) first attempt

Idea(Similar to Prim’s algorithm): Grow a spanning tree by selecting a node, and repeatedly select
a random edge from the unselected edges outgoing from the leaves of the spanning tree.

This idea would require sampling edges only n times, and the random sampling succeeds with high
probability, so one might expect that this procedure would produce a spanning tree.

However, it does not work, because the cuts are constructed adaptively, based on the outcomes of
previous random sampling. Thus, at the second round, there are n possibilities for second round,
and n2 for the third round, since which cut you ask about depends on the answers obtained from
the sampler sketch matrix so far.

Question: Can we fix this issue by adding more rows to A?

There are 2n possible cuts, so we need the sampler sketch to fail with probability δ = 2−n, which
implies that A needs to have m = O(log2(n) log(δ−1)) = O(n log2 n) rows. This implies that AE
requires space O(n2 log2 n). But storing the entire graph requires only n2 bits, so this bound is
meaningless.

2.2 A better idea

The previous algorithm was quite similar to Prim’s algorithm to find a minimum spanning tree.
Let’s consider a different algorithm for computing a minimum spanning tree.

Bor̊uvka’s algorithm: each vertex picks an incident edge, then collapse all connected components
to vertices, and repeat.

Note that Bor̊uvka’s algorithm repeats O(log n) times, since each repetition of this process, the
number of components shrink by a factor of two.

Question: How can we use this for the graph streaming problem?

We can use this algorithm in the following way:

� Round 1: Apply sampler sketch A1 to all nodes v ∈ G, obtaining n random edges, and
connected components S1, . . . , Sk.

� Round 2: Sample for each cut (Si, S̄i), with a fresh sampler sketch A2.

� Continue in this fashion, using fresh sampler sketches Aj , j ∈ {3, 4, . . . , log n} (note, at each
round, we may filter the constructed tree to remove any cycles).

Since we use a fresh sampler sketch at each round, and each sampler sketch requires O(log2 n)
words, storing every AjE for j ∈ [log n] will require a total of O(n log3(n)) words of space.

Theorem 1. O(n log3(n)) words of space suffice to find a spanning forest in G.

2

https://bit.ly/2JNsuNX
https://bit.ly/3nm0WOv

3 k-connectivity

Warm-up: Solve connectivity – for every pair of vertices u, v, does there exist a path connecting
u and v?

We can simply check for this by constructing a spanning forest, since connectivity in the spanning
forest is equivalent to connectivity in the underlying graph.

Question: How can we check, for any two vertices u, v, if they are k-connected: do there exist k
edge-disjoint u− v paths? How much space will it require?

u

v

w

Figure 1: An illustration of k-connectivity. In this figure, u and v are 2-connected, since there are
two edge-disjoint paths connecting them. u and w, however, are only 1-connected

Idea: Let’s generalize the above warm-up exercise:

1. Find a spanning forest H(1).

2. Delete H(1) from G (recall that we have a linear sketch of G, so this can be done)

3. Find another spanning forest, with a fresh A

4. Repeat to produce k total paths from u to v.

Note that this requires a total of O(kn log3 n) words of space in total.

Theorem 2. O(kn log3(n)) words of space suffice to determine if any pair of nodes u, v is k-
connected.

4 Estimate min-cut

Goal: Estimate value of min-cut to (1± ε), and find a cut that is close to this value.

Now, k-connectivity works great if k is small, but if k = n
100 , then our algorithm above would

require n2 space.

Question: How can we test if min-cut is > 2k or < k/2?

Certainly we can do this in O(kn log3 n) words, by k-connectivity.

Idea: Subsample the edges at rate p ≈ logn
kε2

.

The min cut will become < 1
2
(1±ε) logn

ε2
or > 2 (1±ε) logn

ε2
. We can distinguish these two cases by using

a Chernoff bound.

3

Now, Karger’s min-cut algorithm says that, if p > logn
ε2n

, then the min-cut on the subsampled graph

will be (1 ± ε)pk. As a result, can test (1 − ε)k vs (1 + ε)k in logn
ε2
n log2 n space. By testing at

1/ε values of k, this would translate to logn
ε3
n log2 n space. However, can achieve logn

ε2
n log2 n by

sampling at scales 1
2 ,

1
4 , . . . ,

1
n2 .

Theorem 3. O
(
logn
ε2

log2 n
)

words of space suffice to estimate the min-cut of G to (1± ε).

5 Testing bipartiteness

Goal: Determine if G is bipartite or not.

Idea: Replace each vertex v with two vertices, v1 and v2. Replace each edge u, v ∈ E by (u1, v2)
and (v1, u2). An illustration of this transformation is shown in Figure 2.

Figure 2: An illustration of the transformation applied to the nodes edges in a triangle and square
graph. The original graphs are shown in the black, solid lines, and the tranformed graph is shown
in dashed lines. For each node, we create two nodes (a top and bottom), and connect each top to
a corresponding bottom, and each bottom to a top.

Claim: Bipartite and non-bipartite graphs are different in the resulting transformation. In fact,
each component becomes two components iff the graph is bipartite.

The claim follows by noting that a graph is bipartite iff it has no cycles of odd length. Thus, when
the graph is bipartite, any two v1, v2 will never be connected. Otherwise, there do exist cycles of
odd length, and thus there exist v1, v2 that are connected.

Thus, we may check if G is bipartite by:

1. Transforming the graph, as described above

2. Creating a spanning tree on the graph

3. For each pair v1, v2 check if v1 connects to v2.

Theorem 4. O(n log3 n) words of space suffice to determine if G is bipartite.

6 Spectral Sparsifiers

6.1 Cut Sparsifiers

Goal: Find a weighted graph H such that, for all sets S,

|cutH(S)| = (1± ε)|cutG(S)|

4

https://bit.ly/3peKrFG

and

|edges(H)| = o

(
1

ε2
n logc n

)
for some constant c.

Thus, if one would like to run max-flow/min-cut on G, a dense graph, there are constructions of H
for which, if one ran max-flow/min cut on H instead, can still obtain a good approximation of the
result on G, and H requires only O(npolylog(n)) space.

6.2 Generalization: Spectral Sparsifier

Goal: For every x ∈ Rn,

costH(x) :=
∑

e=(u,v)∈H

w(e)(xu − xv)2

= xTLx,

where L is the Laplacian.

Note that this is indeed a generalization of Cut Sparsifiers, since if we set x = 1{u ∈ S}, then
costH(x) =

∑
ew(e)1{e is on the cut (S, S̄) = |cutH(S)|.

Note: This cost has an engineering interpretation. Indeed, we can view costH(x) as the power
used if we apply voltages x to resistance network Re = 1

w(e) .

What is known about spectral sparsifiers?

1. Spectral sparsifiers exists, and are easy to compute offline.

2. Can produce them with O
(
n
ε2

)
edges. [Easy: O

(
n logn
ε2

)
by sampling edges by the inverse of

their effective resitance.]

3. Challenging, but true: can compute with a linear sketch in O
(
n logc(n)

ε2

)
space.

We will show an easier version of the final point above – restricting ourselves to the insertion-only
model. We will show this by using merge and reduce. We will begin by splitting our stream of G
into G1, G2, Now, we may write

costG(x) =
∑

e=(u,v)∈E

w(e)(xu − xv)2 (1)

= xTLGx (2)

= xT (
∑
i

LGi)x (3)

Now, by the properties of spectral sparsifiers, we know that

xTLHix = (1± ε′)xTLGix

5

H1 H2 H3 H4

G1 G2 G3 G4

Compress

ε

Compress

ε

Figure 3: An illustration of the merge and reduce idea. We split the stream into pieces Gi. Hi

denote the spectral sparsifiers of the corresponding Gi. Going up each level corresponds to a
compression of ε

Therefore, after one round of compression, we have:

xTLH = xT (
∑
i

LHi)x

= (1± ε′)xT (
∑
i

LGi)x

= (1± ε′)xTLGx

More generally, in the merge-and-reduce construction, we have that

xTLHx = (1± ε′)lognxTLGx

Hence, if we use ε′ = ε/ log n, then each compressed value takes n logn
ε′2 = n log3 n

ε2
space. Since there

are log n values at a time, this translates to n log4 n
ε2

space.

Theorem 5. O(n log4 n) words of space suffice to compute a spectral sparsifier H of G in the
insertion-only model.

References

[AGM12] Ahn, Kook Jin and Guha, Sudipto and McGregor, Andrew. Analyzing graph structure
via linear measurements SODA, 459–467, 2012

6

	Overview
	Finding a spanning forest
	An (incorrect) first attempt
	A better idea

	k-connectivity
	Estimate min-cut
	Testing bipartiteness
	Spectral Sparsifiers
	Cut Sparsifiers
	Generalization: Spectral Sparsifier

