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1 Overview

In the last lecture, we discussed how to solve the streaming distinct elements problem in

O
(

1
ε2

log n log
(
logn
ε

))
by solving the decision version of the problem. We then showed that by

tracking the minimum hashed value, we can solve this in O
(

1
ε2

log
(
logn
ε

))
.

In this lecture we will continue discussing the distinct elements problem including how we handle
the fact that we needed fully independent hash functions. We will then discuss how to solve distinct
elements in the strict turnstile model (i.e. allowing deletions of elements in the stream). Finally,
we will discuss how to approximate the l2 norm in the turnstile model.

2 Distinct element bounds with only pairwise independence.

For both of the previous approaches, we needed fully independent random hash functions for the
analysis.

Question 1. How can we get h such that it only takes o(n) space to store and has needed indepen-
dence properties?

One option is to use ax+y mod n which gives limited independence but takes approximately log n
bits to store h. Another option is to hope that the input is sufficiently random.

We can also select h to be a cryptographic hash function such that any non uniformity in the input
would require solving a hard problem to find. Thus we are justified in assuming that h is fully
random. An example of a cryptographic hash function would be SHA-256.

Question 2. How can we get good bounds with only pairwise independence?

Recall how we solved the decision version of the problem of counting distinct elements. We first
introduce a hash function h : U → [B], where U is the universal set. Now, define V := {x ∈ U :
h(x) = 1}. Furthermore, denote S as the set of elements in the stream.

Assuming full independence on the choice h(x) between different x, we have that the value of
P(|S ∩ V | = 0) decreases in |S| for S ∈ U.

Recall how we distinguished whether n < T and n > 2T . Given full independence, we can compute
that

Pr(|S ∩ V | = 0) =

(
1− 1

B

)n
≈ e−n/B.
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By setting B = T , we can now empirically approximate the probability Pr(|S ∩ V | = 0). However
this does not hold when we only have pairwise independence.

Recall the statement of Principle of Inclusion-Exclusion. For three sets, A,B,C, we can write by
PIE that

Pr(A∪B ∪C) = Pr(A) +Pr(B) +Pr(C)−Pr(A∩B)−Pr(B ∩C)−Pr(A∩C) +Pr(A∩B ∩C).

However we can also use PIE, to derive the following inequality on partial values.

Proposition 3. Given n events X1, ...Xn, we have that∑
i

Pr(Xi)−
∑
i,j:i 6=j

Pr(Xi ∩Xj) 6 Pr[
⋃
i

Xi] 6
∑
i

Pr[Xi].

If our hash function h is pairwise independent, then Proposition 2 tells us

n

B
−
(
n
2

)
B2

=
n

B
(1− n− 1

B
) 6 Pr[∃x ∈ S : h(x) = 1] 6

∑
x∈S

Pr[h(x) = 1] =
n

B

In particular, if we set B = 100n, we obtain that the probability we see any element of the stream
being hashed to 1 is between 0.995% and 1%.

Question 4. In our decision problem, is n > 2T, or is n < T, for some threshold T? Specifically,
how many samples do we need in order to distinguish between the two possibilities?

If we choose T = B/100, we get that if n > 2T, then Pr[∃x ∈ S : h(x) = 1] > 1.98%, and if n < T,
then Pr[∃x ∈ S : h(x) = 1] 6 1%. In fact, because these are constants, we can actually distinguish
between the two possibilities in the order of constant time.

Since we want to distinguish a probability to within ±.5%, we can use the bound from the weighted
coin puzzle in last lecture, to say that approximately 4 · 1002 samples are enough to distinguish
between the two probabilities with a failure probability of 1/4.

3 Distinct elements with deletions (strict turnstile model)

3.1 Turnstile steaming model

Now, we’ll include deletions in our streams. We will define the turnstile model of data streams.
Essentially, we track a vector x ∈ Rn, where n = |U | (the size of the universal set). Moreover, this
model incorporates a series of update queries (i, α) that updates xi to xi + α. The strict turnstile
model is one in which xi > 0 at all times. The problem of finding the number of distinct elements
in here is just the number of nonzero components in x, or ‖x‖0 which is called the l0 norm of x.
However we may also desire to compute other functions on the vector x.

3.2 Using previous insertion only algorithm

Question 5. How can we adopt the algorithm for insertion only to the strict turnstile model.
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For T = 1, 2, 4, 8, ..., n, repeat the following sequence O(log(log(n))) times in parallel: first, pick a
random h : [n] → [100T ]; next, define V ⊆ [n] such that h(i) = 1 for all i ∈ V ; finally, check if
xV = 0.

Notice with 1 − 1
log(n) probability if it’s > 1.98% or 6 1%. In particular, if ‖x‖0 6 T, then

Pr[xV ] = 0 6 1%, and if ||x||0 > 2T, then Pr[xV ] = 0 > 2%. After O(log(1δ )) independent
repetitions, we can correctly determine with probability 1− δ. After O(log(log(n))) repetitions, we
can get the right answer for all T by a union bound with δ = 1

logn .

We can also choose the maximum T which outputs “bigger” which will give us a 4-approximation
of ‖x‖0. We can also do similar analysis with an error of approximation ε.

To adapt this approach to the model with deletions, we can instead keep a counter for each given
h, the number of elements, x, for which h(x) = 1. In other words∑

xiIh(i)=1 =
∑
i∈V

xi.

In the strict turnstile model, this is zero if and only if xV = 0. We can maintain this simply under
each of the (i, α) updates.

4 AMS-sketch: l2 Norm Estimation

Lemma 6. Recall the turnstile model from above. We would like to estimate

‖x‖2 =

(
n∑
i=1

x2i

) 1
2

.

Let h be a 4-wise independent hash function (we will need the 4-wise independence in our analysis)
such that

h : [n]→ {−1,+1}.

We will store the estimation

y =
n∑
i=1

xih(i) =
n∑
i=1

xivi

where vi = h(i). We claim that y2 is a good estimator of ‖x‖22.

Proof. Let’s begin with analyzing the expected value of y2.

E[y2] = E

( n∑
i=1

xivi

)2


= E

 n∑
i=1

x2i v
2
i + 2

∑
1≤i<j≤n

xivixjvj
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Given the linearity of expectation, we can write that

=
n∑
i=1

x2iE[v2i ] + 2
∑

1≤i<j≤n
xixjE[vivj ].

Using the pairwise independence from h, we know that E[vivj ] = E[vi] · E[vj ] = 0. Additionally
E[v2i ] = 1. Thus we get

=
n∑
i=1

x2i

= ‖x‖22.

Thus we know that y2 is a good estimation of ‖x‖22, however we need to know how many times to
sample. Thus let’s analyze the variance. Begin with the definition of variance

Var(y2) = E
[
y4
]
− E[y2]2

= E

∣∣∣∣∣
n∑
i=1

xivi

∣∣∣∣∣
4
− ‖x‖42.

Expanding the summation and distributing expectation will give us quite a few terms. It may be
clear that multiple of these terms will become 0 because of 4-wise independence. However we can
explicitly write it out to get

=
n∑
i=1

x4iE[v4i ] + 4
∑

1≤i,j≤n
i 6=j

x3ixjE[v3i vj ] + 3
∑

1≤i,j≤n
i 6=j

x2ix
2
jE[v2i v

2
j ] + 6

∑
1≤i,j,k≤n
i 6=j 6=k

x2ixjxkE[v2i vjvk]

+
∑

1≤i,j,k,l≤n
i 6=j 6=k 6=l

xixjxkxlE[vivjvkvl]− ‖x‖42

Notice that because of 4-wise independence, all the terms with odd exponents will cause that term
to be 0. Thus we can write that

=
n∑
i=1

x4i + 3
∑

1≤i,j≤n
i 6=j

x2ix
2
j − ‖x‖42.

We can use the fact that ‖x‖42 =
∑

1≤i≤n x
4
i +

∑
1≤i,j≤n
i 6=j

x2ix
2
j to conclude that

= 2
∑

1≤i,j≤n
i 6=j

x2ix
2
j .

Notice that Var(y2) ≤ 2‖x‖42 = 2E[y2]2. Now if we repeat this a total of 4
ε2

times, we will be within

εσ with a 3/4 probability. Thus we will get µ ± ε
√

2µ with at least a 3/4 probability. We can
change the number of trials to remove the

√
2 as well.
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