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1 Overview

In the last lecture we saw an algorithm that can estimate ‖x‖2 of a stream x under the turnstile
model. Specifically, using 4−wise independent hash functions {h1, h2, · · · , hm}, with each hj : [n]→
{−1,+1} and m = O(1/ε2), the estimator ŷ = 1

m

∑m
j=1(

∑
i hj(i)xi)

2 guarantees ŷ ∈ (1± ε) ‖x‖2
with probability at least 3/4.

In this lecture we will extend this algorithm to get a high probability bound under the assumption
that each hj is 4−wise independent. The second half of this lecture will consider lower bounds for
streaming algorithms.

2 High Probability Estimation of ‖x‖

How do we get an estimator for ‖x‖ which is good with 1 − δ probability? We first consider the
following options and their respective shortcomings:

1. Chebyshev Inequality. A similar application of the Chebyshev inequality from last class re-
quires m = O

(
1
ε2δ

)
samples.

2. Mean of Means / Better concentration inequalities. If each yj has well behaved moments/concentrates
well, we can get a sharper confidence bound via the Hoeffding inequality (and variations). In
this case, m = O

(
1
ε2

log
(
1
δ

))
space suffices to get ŷ2 ∈ (1± ε) ‖x‖2 with probability 1− δ.

However, this only works if h is fully independent. In the previous lecture, we only assumed
that h has 4−wise independence. Alternatively, we only assume that the fourth moment of y
exists, and make no further assumptions about its moments.

2.1 Median-of-Means estimator

We will now show that using an appropriate median-of-means algorithm gives us a high probabil-
ity estimate of ‖x‖ using 4−wise independence. Consider the following variation of the previous
algorithm:

1. Use m = 18
ε

2
log3/2 (1/δ) hash functions in order to compute y2k = (

∑
i hk(i)xi)

2 for each
k ∈ [m].
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2. Randomly divide these into R = log3/2 (1/δ) batches, such that each batch has B = 18
ε2

samples.

3. For batch j ∈ [R], define ŷ(j) to be the mean of all samples in the batch.

4. The final estimate of the mean is the median over all batches. That is,

ỹ = median1≤j≤Rŷ(j),

is our final estimate of ‖x‖2.

The analysis of this algorithm is as follows. Notice that since ỹ is the median of a bunch of ŷ’s, ỹ
is a good estimate if at least half of the ŷ’s are good.

Since each ŷ is an average of 18/ε2 samples, we have ŷ(j) /∈ (1± ε) ‖x‖2 w.p. ≤ 1
9 .

This implies that

P
[
ỹ /∈ (1± ε) ‖x‖2

]
= P[at least

R

2
ŷ are bad] ≤

(
R
R
2

)(
1

9

)R
2

,

≤ 2R3−R =

(
2

3

)R
= δ.

What goes wrong if we use only the median? The previous algorithm first divides the
sketches into batches, computes the mean over each batch, and then takes the median. What goes
wrong if we only use the median?

Consider the following stream x = (1, 1, 0, · · · , 0). In this case, if we consider y =
∑

i h(i)xi, then

we have y =


2 w.p. 0.25,

−2 w.p. 0.25,

0 w.p. 0.5.

Hence, y2 is either 0 or 4, and both values are equally likely. If one were to take the median of
these values, then the final estimate will be either 0 or 4 with overwhelming probability. The only
way for this estimator to succeed is if there are an equal number of 0s and 4s, but this situation is
extremely unlikely.

This concludes the first half of the lecture, and we will now move on to lower bounds for streaming
algorithms.

3 Lower bounds for streaming algorithms

Most lower bounds for streaming algorithms are shown by reduction to appropriate problems in
communication complexity. The intuition for this is that communication complexity studies the
limits of what can be computed with limited communication between parties. Streaming algorithms
have to compress large streams using the minimum amount of resources. This shows that these
two problems are connected, since being able to compress large streams should imply protocols for
efficient communication.
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Figure 1: Alice has a binary string x ∈ {0, 1}n and Bob has a binary string y ∈ {0, 1}b. Alice can
communicate with Bob and in the end, they need to compute some function f(x, y).

We now show a lower bound for counting distinct elements in the insertion-only streaming model
using a reduction from the Indexing problem in 2-Party 1-Way communcation model.

In 2-Party 1-Way communication, Alice and Bob receive inputs x and y respectively. Alice is
allowed to send a message to Bob, and Bob must compute a function f(x, y). We now define the
communication model and indexing problem.

Definition 1 (2-Party 1-Way communication). Alice has a binary string x ∈ {0, 1}n and Bob has
a binary string y ∈ {0, 1}b. Alice can communicate with Bob and in the end, they need to compute
some function f(x, y).

Definition 2 (INDEX). Given a string x ∈ {0, 1}n and an index i ∈ [n], compute INDEX(x, i) =
xi ∈ {0, 1} .

We will use the following theorem from communication complexity, and defer its proof to the end
of class.

Theorem 3. The randomized 1-way communication complexity of INDEX is Ω(n).

Randomized communication complexity means that Bob outputs f(x, y) correctly with 1− c prob-
ability, and c ∈ [0, 0.5) is a constant. Alice and Bob are allowed to use public coins, i.e., they can
agree on all hash functions and other randomized tools they use in their algorithms.

We will now show the following Theorem using Theorem 3.

Theorem 4. Solving distinct elements with ε = 0 and δ = 0.25 requires Ω(n) space.

Proof. Let A be an algorithm for distinct elements. Alice first inserts her message x into a stream,
then runs A on the stream. The state of the algorithm is her message to Bob.

Once Bob receives this message from Alice, Bob asks for the number of distinct elements, call this
v1. Since he has the complete state of the algorithm, he can insert i into the stream and ask A for
the number of distinct elements, call this v2.

Finally, Bob outputs 1 iff v2 = v1 + 1.

The reason this works is: if xi = 0, then inserting i into the stream increases the number of distinct
elements by 1. Otherwise if xi = 1, then inserting i does not change the number of distinct elements.

This implies that if there exists a S−space δ−failure algorithm for distinct elements, then there ex-
ists a S−communication 2δ−failure algorithm for INDEX (since Bob runs it twice, the probability
of error becomes 2δ.)
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This shows that for δ < 0.25, we need Ω(n) space for any δ−failure distinct elements algorithm.

3.1 Proof of Theorem 3 for deterministic algorithms

Before we analyze randomized algorithms, let us first consider deterministic algorithms for INDEX.
If Alice sends a message using fewer than n bits, then there exist inputs x, x̂ that produce the same
message but such that xi 6= x̂i. Hence Bob will fail on one of these inputs.

An information-theoretic version of the above paragraph will prove more useful for analyzing ran-
domized algorithms. If x is a uniform random string drawn from {0, 1}n, and Bob can compute xi
for any i, then this implies that

I(x; x̂) = H(x)−H(x|x̂) = n− 0 = n,

where x̂ is Bob’s estimate of x, and H(x|x̂) = 0 since Bob can compute x exactly.

The communication model satisfies the Markov chain x → m → x̂, where m is the message Alice
sends to Bob. This gives

I(x; x̂) ≤ I(x;m),

= H(m)−H(m|x),

≤ H(m),

≤ S,

where the first inequality follows from the Data Processing Inequality, the second line follows from
the definition of mutual information, the third follows from non-negativity of discrete entropy and
the fourth follows since the message has at most S bits.

This gives us S ≥ n.

3.2 Yao’s Principle

In the previous section, we considered a deterministic algorithm on a randomized input. This
technique can be uesd to show lower bounds for randomized algorithms, via Yao’s lemma.

Definition 5 (Yao’s Prinicple(informal)). To lower bound any randomized algorithm with failure
probability δ on all inputs, it suffices to give a fixed distribution of inputs such that no deterministic
algorithm has δ−failure probability on the distribution.

One way to understand this principle is to view a randomized algorithm as a deterministic algorithm
using a random advice string. If the randomized algorithm works on all inputs, it must works on
distributions. This implies that for each distribution, there exists a good advice string, and using
this particular advice string makes the algorithm deterministic.

We now provide the mathematical setup for analyzing the previous intuition. Consider a matrix
F ∈ {0, 1}#algorithms×#inputs. Let Fij = 1 if algorithm i fails on input j. For a distribution D
over inputs, the failure probability of algorithm i is (FD)i. Similarly, for a distribution σ over
algorithms, the failure probability on input j is (σTF )j .
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Hence, if we can find a distribution D such that every entry of FD is > δ, then any distribution σ
over algorithms must have an average > δ for this fixed D.

Another way of saying this is through a min-max framework and Neumann’s principle. For a
distribution D over inputs and a distribution σ over inputs, the expected error is σTFD. By
Neumann’s principle, since this is bilinear, we have:

min
σ

max
D

σTFD = max
D

min
σ
σTFD.

We now consider the left hand side and right hand side of the above equation. Consider the left
hand side. For any fixed σ chosen by the outer player, the inner player will choose the worst case
input j deterministically. This gives

min
σ

max
D

σTFD = min
σ

max
j

(σTF )j .

Similarly, for the right hand side, for any D chosen by the outer player, the inner player will choose
the best algorithm i. This gives

max
D

min
σ
σTFD = max

D
min
i

(FD)i.

From the above three equations, we have

min
σ

max
j

(σTF )j = max
D

min
i

(FD)i.

Hence considering randomized algorithms over worst case inputs (LHS) is the same as considering
worst case distributions for deterministic algorithms (RHS).
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