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1 Overview

In the last lecture we discussed lower bounds for the indexing problem and how to generate lower
bounds for streaming algorithms. Today we will finish lower bounds for indexing. Then we will
discuss some concentration inequalities.

2 Lower bound for indexing

Recall the indexing problem. Alice is given x ∈ {0, 1}n, Bob is given i ∈ [n], and when Alice gives
Bob a message m, and Bob needs to output xi correctly with some constant probability, say 99%.

Claim 1. The indexing problem requires Ω(n) communication complexity.

Here’s the intuition behind this. Bob runs this on all i, not just his input, in which Bob would
obtain some x̂ ∈ {0, 1}n. In particular, if Alice’s input is uniform on some set C (which we’ll define
later), then Ex∈C [||x− x̂||] 6 n

100 , since we want Prx∈C,i∈[n][x̂i 6= x] 6 1
100 .

Let’s choose C to be of large size 2Ω(n), such that minx−y∈C,x6=y ||x−y|| > n
10 . We now proceed with

the following algorithm to choose the points xi for C greedily: first pick x1, then pick any x2 ”far”
from x1, then pick x3 ”far” from x1, x2, etc. (Far in this case refers to the distance being > n

10 .)

Claim 2. This algorithm will find 2Ω(n) points for C.

Proof. To see this, note that each xi invalidates

(
n
n
10

)
+

(
n

n
10 − 1

)
+

(
n

n
10 − 2

)
+... ≈

(
n
n
10

)
6 (10e)

n
10

points (where the inequality comes from Stirling’s). Furthermore, since there are 2n total possible

xi, we’ll find at least
2n

(10e)
n
10

>
2n

(25)
n
10

= 2
n
2 points.

Now that we have a set C, Alice an x ∈ C, and Bob chooses x̂ ∈ {0, 1}n. Now, Bob rounds x̂ to
the nearest x̃ ∈ C, and this implies x̃ = x if ||x − x̂|| 6 n

20 . Therefore, Pr[x̃ 6= x] 6 Pr[||x − x̂|| >
n
20 ] 6

E[||x− x̂||]
n
20

6
n/100

n/20
= 1

5 . From this, we see that 80% of the time, we correctly identify this

vector.

Here, it’s worth mentioning two famous “codes”: the Hamming codes and the Shannon codes. The
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former requires the minimum distance between two elements to be small, while the latter requires
correcting random errors. Set C above is an example of a “code.”

We now consider the entropy functions. In particular, for the message m, we have

H(m)(x;m) > I(x; x̃) = H(x)−H(x|x̃) > Pr[x = x̃] ∗ log|C| − 1 > 0.8 · n
2
− 1 =

2

5
n− 1 = Ω(n)

where the second inequality comes from Fano’s inequality.

Lemma 3. (Fano’s inequality)

H(x|x̃) 6 1 + Pr[x 6= x̃] · log|C|

Proof. We have H(x|x̃) 6 H(x,1x=x̃|x̃) = H(1x=x̃|x̃) + H(x|x̃,1x=x̃) 6 1 + Pr[x 6= x̃] · log|C|,
where the last inequality follows because H(x|x̃) 6 1 and H(x|x̃,1x=x̃) 6 Pr[x 6= x̃] · log|C|.

Combining the results, we see that we need > 2
5n− 1 bits of communication to solve indexing 99%

of the time. Note however that from our analysis, our constant is very loose.

3 Concentration Bounds

Recall the definition of Markov’s:

Theorem 4 (Markov’s inequality). If X ≥ 0, then

Pr[X ≥ t] ≤ E[x]

t
.

Recall the definition of Chebyshev’s:

Theorem 5 (Chebyshev’s inequality). If µ = E[x] and σ2 = E[(x− µ)2] then

Pr[|x− µ| ≥ t] ≤ E[(x− µ)2]

t2
=
σ2

t2
.

Consider the following example. You are given n random variables Xi ∈ [0, 1] independently
distributed with E[Xi] = µ. Consider the sum

X =
∑

Xi.

Analyzing the mean and variance gives that

E[X] = nµ

and (since Var(Xi) ≤ 1

Var(X) =
∑

Var(Xi) ≤ n.

Applying Chebyshev’s gives us that

Pr[|X − nµ| ≥ t] ≤ n

t2
.
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Question 6. At what points is this bound from Chebyshev’s really weak relative to the actual value?

Consider that if the coins are balanced, then we can compute that

Pr[X = n] ≤ n

(n/2)2
=

4

n
.

In reality, the actual value of Pr[X = n] is

Pr[X = n] =
1

2n
.

In general, the Chebyshev bound is really lose at the tails of the distribution.

Question 7. Consider how we derived Chebyshev’s inequality, can you find inequalities for higher
moments?

Let’s consider apply Markov’s to a higher exponent to get

Pr[|X − nµ| ≥ t] = Pr[|X − nµ|4 ≥ t4] ≤ E[(X − nµ)4]

t4
.

We can bound (using a similar method to a previous lecture when analyzing distinct elements)

E[(X−nµ)4] = E[(
∑

(Xi−µ))4] =
∑

E[(Xi−µ)4]+
∑
i<j

6E[(Xi−µ)2]·E[(Xj−µ)2] ≤ 3n2−2n ≤ 3n2.

From Chebyshev’s we get that

Pr[|X − nµ| ≥ s
√
n] ≤ 1

s2

and from the 4th moment that

Pr[|X − nµ| ≥ s
√
n] ≤ 3

s4
.

Question 8. What do we get for higher moments? I.e. what is

E[(x− nµ)k]

tk
?

Doing similar analysis to before we get that

Pr[|X − nµ| ≥ s
√
n] ≤ kk/2

sk
, ∀k even integer.

If we pick k = s2

4 , we get that

Pr[|X − nµ| ≥ s
√
n] ≤ 2−s

2/4.

If we check the previous tail we now get that

Pr[X = n] ≤ 2−n/16.

This is still a really loose constant in the bound, however this is much closer to the 2−n truth
that we expected. However our analysis is a bit sketch since we ignored other terms and made
assumptions about k being even.
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4 Moment generating functions

Define a random variable X, that

ΦX(λ) = E
[
eλ(X−E[X)

]
.

We can compute that

eλX = 1 + λX +
(λX)2

2
+ · · ·

which is a distribution over X. As λ increases though, the larger moments become more important.

Using moment generating functions, we an compute the following inequality

Pr[X − nµ ≥ t] = Pr[eλ(X−nµ) ≥ eλt] ≤ E[eλ(X−nµ)]

eλt
=

ΦX(λ)

eλt
.

We can break this up into a product to get that

ΦX(λ) =
∏
i

E[eλ(Xi−ν)] =
∏
i

ΦXi(λ).

Lemma 9 (Hoeffding’s Lemma). If Y ∈ [0, 1], mean µ, then

ΦY (λ) ≤ e−λ2/8.

This implies that
Pr[X − nµ ≥ t] ≤ enλ2/8 · e−λt, ∀λ > 0.

We can complete the square and pick λ = 4t/n in order to get that

Pr[X − nµ ≥ t] ≤ e−2t2/n.

which is equivalent to
Pr[X − nµ ≥ s

√
n] ≤ e−2s2 .

This is called the Chernoff Bound.

In particular, when we apply this to the unbiased coin example we get that

Pr[X = n] ≤ e−2(n/2)2/n = e−n/2

This bound only gives us an upper bound, but for λ < 0, we can get a lower bound to conclude
that

Pr[|x− nµ| ≥ t] ≤ 2e−2t2/n.

For a really biased coin, Bernstein bounds are very useful (which we will possibly cover later).
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