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1 Overview

In the last lecture we discussed lower bounds for indexing and common concentration inequalities.

In this lecture we will discuss quantile estimation by sampling.

2 Quantile Estimation

2.1 Problem Statement

We are given a stream of distinct elements {yi}ni=1. Let the sorted (in ascending order) version be
{xi}ni=1. We have three queries we want to answer:

� Rank(x) : Return r such that xr ≤ x ≤ xr+1.

� Select(r) : Return xr

� Quantile(α): Return xαn

Performing these queries needs all elements, so we wish to approximate answers.

� Rank(x) : Returns r such that xr−εn ≤ x ≤ xr+εn.

� Select(r) : Returns xi such that r − εn ≤ i ≤ r + εn

� Quantile(α): Returns xβn such that α− ε ≤ β ≤ α+ ε

Note that Select is basically the same as Quantile (Quantile(α) = Select(αn))

2.2 Random Sampling

The most obvious thing to do is randomly sample our sequence, and then perform each of the
queries on the sampled sequence. This runs into a small complication: we don’t know how long
our stream is.
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To solve this we perform Reservoir Sampling. We maintain a random sample S with |S| = m.
Whenever a new element arrives, we include it with probability min(1, mi ). Adding an element to S
would make it larger than m, we eject a random element from S initially. This results in a uniform
sample of size m over our stream.

Proof. We proceed by induction. The case up to i = m is obviously uniform as it includes all
elements. Suppose we have proved the statement for k ∈ Z+, k ≥ m. Then each of the previous
elements has probability m

k of being in our sample. We select our k+ 1th element with probability
m
k+1 , and each previous element in our sample has probability m

k (1− 1
k+1) = m

k+1 of being chosen,
so by induction the sample is uniform for all n.

2.3 Bounding Rank’s Failure Probability

Lemma 1. The element xαn of the true quantile α will have empirical quantile α̂ in S within α± ε
with probability 1− 2e−Ω(ε2m).

Proof. It is easier if we sample with replacement (which can be done with modified reservoir sam-
pling). We want to show that x̂(α−ε)m ≤ xαn ≤ x̂(α+ε)m. Rephrasing this, if it is not the case that
xαn > x̂(α+ε)m and not the case that xαn < x̂(α−ε)m, our statment holds. Let the sampled values
be {w}mi , and Zi = 1 if wi ≤ xαn. Then Zi is a Bernoulli random variable with p = α. Then
our empirical quantile is 1

m

∑m
i=1 Zi. Then our chance of error is Pr[|

∑m
i=1 Zi − αm| ≥ εm] ≤

2e−2(εm)2/m = 2e−2(ε)2m (by a Chernoff bound).

This solves Rank as it is highly likely that our empirical quantile is a good enough approximation
for our true quantile, so we can calculate x’s empirical quantile q and return nq.

2.4 Bounding Quantile’s Failure Probability

We showed above that given some true quantile α, our empirical quantile α̂ is ε-close. Now we want
to show given some empirical quantile α̂, α is ε-close. This is true if both true α+ ε has empirical
quantile > α, and true α − ε has empirical quantile < α. We have already proved this with the
above lemma, and so using a union bound we get a failure probability of ≤ 4e−2ε2m, which can be
improved to ≤ 2e−2ε2m, using one sided concentration inequalities.

2.5 Failure for Multiple Queries

If we set m = 1
2ε2

log(2
δ ) we get δ failure for one query. But what about multiple queries?

We note that if we are accurate on xεn, x2εn, · · · , xn, then all xi will be 2ε accurate. Therefore, we
set m = 4

2ε2
log( 4

εδ ) for ε-accuracy on all inputs.

2.6 Next Time

We will show next time that we can get a m = O(1
ε log2(n)) bound.
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