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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Skill Drills

For the following X, what is

� mean

� ”typical” variation (i.e. 90% region)

� Prob 1− δ region

1. X = 1
n

∑n
i=1Xi, Xi ∈ [−n, n], independent with mean µi.

2. X = 1
n

∑n
i=1Xi, Xi ∈ [−ai, ai], independent with mean 0.

3. X = 1
n

∑n
i=1Xi, Xi ∈ [−ai, ai], mean 0 but pairwise independent.

4. X = 1
n

∑n
i=1Xi, Xi ∈ [−ai, ai], mean 0, but 6-wise independent.

1.1 Case 1

We have mean E[X] = 1
n

∑n
i=1 µi, Var(X) ≤ n, with Hoeffding’s inequality we have

P

[∣∣∣∣∣X − 1

n

n∑
i=1

µi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− t

2

2n

)
Here we need t = Θ(

√
n) to get a non-trivial bound. So we have the prob 1− δ region with width

Θ(
√
n log 1

δ )

1.2 Case 2

We have mean E[X] = 0, Var(X) ≤ 1
n2

∑n
i=1 a

2
i , and with Hoeffding’s inequality

P [|X| ≥ t] ≤ 2 exp

(
− n2t2

2
∑n

i=1 a
2
i

)
The Prob 1− δ region depends on ai, for example, if ai = i, we need t = Θ(

√
n) to get a non-trivial

bound, as
∑n

i=1 i
2 = Θ(n3). So we have the prob 1− δ region with width Θ(‖ai‖2n

√
log 1

δ )
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1.3 Case 3

As we just have pairwise independent, we now can only use Chebyshev’s inequality:

P [|X| ≥ t] ≤
∑n

i=1 a
2
i

n2t2

So we have the prob 1− δ region with width Θ(‖ai‖2n δ−0.5)

1.4 Case 4

Here we can use the following bound:

P [|X| ≥ t] ≤ E[X6]

t6
≤
∑n

i=1 a
6
i

n6t6

So we have the prob 1− δ region with width Θ(‖ai‖6n δ−
1
6 )

2 More Quantile Estimation

2.1 A deterministic algorithm

We want to find rank(x): Xr ≤ x < Xr+1. Our goal is rank(x)± εn. Last class we have O( 1
ε2

log 1
εδ )

results. Now we want 1
ε log n rather than 1

ε2
.

Intuitively, we just need Xεn, X2εn, · · · , X 1
ε
εn to achieve the goal. Consider “compress” any input

into a “smaller” input with ε-close answers, which can be formally described as ∀X, ∃X ′ with 1
ε

distinct values, s.t.

rankX(y) = rankX′(y)± εn,

where rankX(y) is the prediction of rank(y) given the information of X. We call X ′ a “coreset” for
quantiles. In fact, ∃ coresets for many problems, including graph sparsifies, k-means, regression,
etc.

The estimator we consider in the following analysis is

r̂ankX′(y) = quantileX′(y) · n.

We now solve in a streaming fashion. Assume each time we receive a new batch of data with size
1
ε . We maintain the compression level by level and stored in a binary tree. At each level, keep
1 compression, recompress & put at next level when you get second compression. We output the
compression at the highest level finally, and in total we have log(εn) levels.

Lemma 1. If S′ is ε-close to S (quantileS′(x) = quantileS(x) ± ε), T ′ is ε-close to T , |S′| = |T ′|,
|S| = |T |, then quantileS′∪T ′(x) = quantileS∪T (x)± ε
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Proof.

quantileS′∪T ′(x) =
1

|S′|+ |T ′|
(rankS′(x) + rankT ′(x))

=
|S′|

|S′|+ |T ′|
quantileS′(x) +

|T ′|
|S′|+ |T ′|

quantileT ′(x)

=
|S|

|S|+ |T |
quantileS(x) +

|T |
|S|+ |T |

quantileT (x)± ε

=quantileS∪T (x)± ε

Lemma ?? shows that union two compression will not increase the error on quantile, and notice
that compression can introduce at most ε additional error on quantile, so each level will have at
most ε quantile error, and the top level will have at most ε log(εn) quantile error, and equivalently
εn log(εn) rank error. Space we used is O(1ε log(εn)), as each compression needs O(1ε ) and we have
log(εn) levels. Run this algorithm with ε′ = ε

log(εn) , we will get accuracy ε with space O(1ε log2(εn))

2.2 Improve the result with randomization

Now we further improve the analysis based on randomization. If we compress with random offset
(e.g. for ordered sequenceX1, X2, · · · , X2k we uniformly chooseX1, X3, · · · , X2k−1 orX2, X4, · · · , X2k

as the compression), with simple calculation, we know

rankX′(xi) = rankX(xi) + ηi, where ηi = 0, i even; ηi = ±1, i odd.

In our algorithm: in compression at level i,

rankX(i+1)(xj) = rankX(i)(xj) + η
(i)
j ,

where η
(i)
j = 0, if the i-th significant bit of j is 0; η

(i)
j = ±2i, if the i-th significant bit of j is 1.

Final error for rank(xj) is r̂ank(xj)−rank(xj) =
∑log(εn)

i=1 η
(i)
j where ηij have mean zero and |η(i)j | ≤ 2i.

Var(r̂ank(xj)− rank(xj)) =

log(εn)∑
i=1

Var(ηj(i)) ≤
logn∑
i=1

22i ≤ 2 · 22 log(εn) = 2(εn)2.

Thus |r̂ank(xj)− rank(xj)| ≤ O(εn) with 0.9 probability using Chebyshev’s inequality. In fact with

Hoeffding we can get |r̂ank(xj) − rank(xj)| ≤ εn
√

log 1
δ w.p. 1 − δ. Set ε′ = ε√

log 1
δ

, then we have

the space complexity O(

√
log 1

δ

ε log(εn)), i.e. an improvement of log n over deterministic variant.
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