Lecture 7: More Quantile Estimation

Prof. Eric Price

Scribe: Tongzheng Ren, Shuo Yang
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Skill Drills

For the following X, what is

- mean
- "typical" variation (i.e. 90% region)
- Prob $1-\delta$ region

1. $X=\frac{1}{n} \sum_{i=1}^{n} X_{i}, X_{i} \in[-n, n]$, independent with mean μ_{i}.
2. $X=\frac{1}{n} \sum_{i=1}^{n} X_{i}, X_{i} \in\left[-a_{i}, a_{i}\right]$, independent with mean 0 .
3. $X=\frac{1}{n} \sum_{i=1}^{n} X_{i}, X_{i} \in\left[-a_{i}, a_{i}\right]$, mean 0 but pairwise independent.
4. $X=\frac{1}{n} \sum_{i=1}^{n} X_{i}, X_{i} \in\left[-a_{i}, a_{i}\right]$, mean 0 , but 6 -wise independent.

1.1 Case 1

We have mean $\mathbb{E}[X]=\frac{1}{n} \sum_{i=1}^{n} \mu_{i}, \operatorname{Var}(X) \leq n$, with Hoeffding's inequality we have

$$
\mathbb{P}\left[\left|X-\frac{1}{n} \sum_{i=1}^{n} \mu_{i}\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 n}\right)
$$

Here we need $t=\Theta(\sqrt{n})$ to get a non-trivial bound. So we have the prob $1-\delta$ region with width $\Theta\left(\sqrt{n \log \frac{1}{\delta}}\right)$

1.2 Case 2

We have mean $\mathbb{E}[X]=0, \operatorname{Var}(X) \leq \frac{1}{n^{2}} \sum_{i=1}^{n} a_{i}^{2}$, and with Hoeffding's inequality

$$
\mathbb{P}[|X| \geq t] \leq 2 \exp \left(-\frac{n^{2} t^{2}}{2 \sum_{i=1}^{n} a_{i}^{2}}\right)
$$

The Prob $1-\delta$ region depends on a_{i}, for example, if $a_{i}=i$, we need $t=\Theta(\sqrt{n})$ to get a non-trivial bound, as $\sum_{i=1}^{n} i^{2}=\Theta\left(n^{3}\right)$. So we have the prob $1-\delta$ region with width $\Theta\left(\frac{\left\|a_{i}\right\|_{2}}{n} \sqrt{\log \frac{1}{\delta}}\right)$

1.3 Case 3

As we just have pairwise independent, we now can only use Chebyshev's inequality:

$$
\mathbb{P}[|X| \geq t] \leq \frac{\sum_{i=1}^{n} a_{i}^{2}}{n^{2} t^{2}}
$$

So we have the prob $1-\delta$ region with width $\Theta\left(\frac{\left\|a_{i}\right\|_{2}}{n} \delta^{-0.5}\right)$

1.4 Case 4

Here we can use the following bound:

$$
\mathbb{P}[|X| \geq t] \leq \frac{\mathbb{E}\left[X^{6}\right]}{t^{6}} \leq \frac{\sum_{i=1}^{n} a_{i}^{6}}{n^{6} t^{6}}
$$

So we have the prob $1-\delta$ region with width $\Theta\left(\frac{\left\|a_{i}\right\| 6}{n} \delta^{-\frac{1}{6}}\right)$

2 More Quantile Estimation

2.1 A deterministic algorithm

We want to find $\operatorname{rank}(x): X_{r} \leq x<X_{r+1}$. Our goal is $\operatorname{rank}(x) \pm \epsilon n$. Last class we have $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\epsilon \delta}\right)$ results. Now we want $\frac{1}{\epsilon} \log n$ rather than $\frac{1}{\epsilon^{2}}$.
Intuitively, we just need $X_{\epsilon n}, X_{2 \epsilon n}, \cdots, X_{\frac{1}{\epsilon} \epsilon n}$ to achieve the goal. Consider "compress" any input into a "smaller" input with ϵ-close answers, which can be formally described as $\forall X, \exists X^{\prime}$ with $\frac{1}{\epsilon}$ distinct values, s.t.

$$
\operatorname{rank}_{X}(y)=\operatorname{rank}_{X^{\prime}}(y) \pm \epsilon n
$$

where $\operatorname{rank}_{X}(y)$ is the prediction of $\operatorname{rank}(y)$ given the information of X. We call X^{\prime} a "coreset" for quantiles. In fact, \exists coresets for many problems, including graph sparsifies, k-means, regression, etc.

The estimator we consider in the following analysis is

$$
\widehat{\operatorname{rank}}_{X^{\prime}}(y)=\text { quantile }_{X^{\prime}}(y) \cdot n .
$$

We now solve in a streaming fashion. Assume each time we receive a new batch of data with size $\frac{1}{\epsilon}$. We maintain the compression level by level and stored in a binary tree. At each level, keep 1 compression, recompress \& put at next level when you get second compression. We output the compression at the highest level finally, and in total we have $\log (\epsilon n)$ levels.

Lemma 1. If S^{\prime} is ϵ-close to S (quantile $S_{S^{\prime}}(x)=$ quantile $_{S}(x) \pm \epsilon$), T^{\prime} is ϵ-close to $T,\left|S^{\prime}\right|=\left|T^{\prime}\right|$, $|S|=|T|$, then quantile ${ }_{S^{\prime} \cup T^{\prime}}(x)=$ quantile $_{S \cup T}(x) \pm \epsilon$

Proof.

$$
\begin{aligned}
\text { quantile }_{S^{\prime} \cup T^{\prime}}(x) & =\frac{1}{\left|S^{\prime}\right|+\left|T^{\prime}\right|}\left(\operatorname{rank}_{S^{\prime}}(x)+\operatorname{rank}_{T^{\prime}}(x)\right) \\
& =\frac{\left|S^{\prime}\right|}{\left|S^{\prime}\right|+\left|T^{\prime}\right|} \text { quantile }_{S^{\prime}}(x)+\frac{\left|T^{\prime}\right|}{\left|S^{\prime}\right|+\left|T^{\prime}\right|} \text { quantile }_{T^{\prime}}(x) \\
& =\frac{|S|}{|S|+|T|} \text { quantile }_{S}(x)+\frac{|T|}{|S|+|T|} \text { quantile }_{T}(x) \pm \epsilon \\
& =\text { quantile }_{S \cup T}(x) \pm \epsilon
\end{aligned}
$$

Lemma ?? shows that union two compression will not increase the error on quantile, and notice that compression can introduce at most ϵ additional error on quantile, so each level will have at most ϵ quantile error, and the top level will have at $\operatorname{most} \epsilon \log (\epsilon n)$ quantile error, and equivalently $\epsilon n \log (\epsilon n)$ rank error. Space we used is $O\left(\frac{1}{\epsilon} \log (\epsilon n)\right)$, as each compression needs $O\left(\frac{1}{\epsilon}\right)$ and we have $\log (\epsilon n)$ levels. Run this algorithm with $\epsilon^{\prime}=\frac{\epsilon}{\log (\epsilon n)}$, we will get accuracy ϵ with space $O\left(\frac{1}{\epsilon} \log ^{2}(\epsilon n)\right)$

2.2 Improve the result with randomization

Now we further improve the analysis based on randomization. If we compress with random offset (e.g. for ordered sequence $X_{1}, X_{2}, \cdots, X_{2 k}$ we uniformly choose $X_{1}, X_{3}, \cdots, X_{2 k-1}$ or $X_{2}, X_{4}, \cdots, X_{2 k}$ as the compression), with simple calculation, we know

$$
\operatorname{rank}_{X^{\prime}}\left(x_{i}\right)=\operatorname{rank}_{X}\left(x_{i}\right)+\eta_{i}, \quad \text { where } \quad \eta_{i}=0, i \text { even; } \quad \eta_{i}= \pm 1, i \text { odd. }
$$

In our algorithm: in compression at level i,

$$
\operatorname{rank}_{X^{(i+1)}}\left(x_{j}\right)=\operatorname{rank}_{X^{(i)}}\left(x_{j}\right)+\eta_{j}^{(i)}
$$

where $\quad \eta_{j}^{(i)}=0$, if the i-th significant bit of j is $0 ; \quad \eta_{j}^{(i)}= \pm 2^{i}$, if the i-th significant bit of j is 1 .
Final error for $\operatorname{rank}\left(x_{j}\right)$ is $\widehat{\operatorname{rank}}\left(x_{j}\right)-\operatorname{rank}\left(x_{j}\right)=\sum_{i=1}^{\log (\epsilon n)} \eta_{j}^{(i)}$ where η_{j}^{i} have mean zero and $\left|\eta_{j}^{(i)}\right| \leq 2^{i}$.

Thus $\left|\widehat{\operatorname{rank}}\left(x_{j}\right)-\operatorname{rank}\left(x_{j}\right)\right| \leq O(\epsilon n)$ with 0.9 probability using Chebyshev's inequality. In fact with Hoeffding we can get $\left|\widehat{\operatorname{rank}}\left(x_{j}\right)-\operatorname{rank}\left(x_{j}\right)\right| \leq \epsilon n \sqrt{\log \frac{1}{\delta}}$ w.p. $1-\delta$. Set $\epsilon^{\prime}=\frac{\epsilon}{\sqrt{\log \frac{1}{\delta}}}$, then we have the space complexity $O\left(\frac{\sqrt{\log \frac{1}{\delta}}}{\epsilon} \log (\epsilon n)\right)$, i.e. an improvement of $\log n$ over deterministic variant.

