CS 395T: Sublinear Algorithms, Fall 2020 September 17, 2020

Lecture 7: More Quantile Estimation
Prof. Eric Price Scribe: Tongzheng Ren, Shuo Yang
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Skill Drills

For the following X, what is

e mean
e "typical” variation (i.e. 90% region)

e Prob 1 — ¢ region

1. X = %Z?:l Xi, X; € [-n,n], independent with mean ;.

2. X =1%" . X;, X; € [~a;,a;], independent with mean 0.

3. X =13 Xi, Xi € [~a;,a;], mean 0 but pairwise independent.

4. X =13 X;, X € [~a;,a;], mean 0, but 6-wise independent.
1.1 Casel

We have mean E[X] = 15" | 4, Var(X) < n, with Hoeffding’s inequality we have
1 ¢ t?
Pl X—— i >t <2 -
=iz <2 (5)

Here we need t = O(y/n) to get a non-trivial bound. So we have the prob 1 — ¢ region with width

O(y/nlog §)

1.2 Case 2

We have mean E[X] =0, Var(X) < # S, a?, and with Hoeffding’s inequality

P{IX| > 1 (W)
>4 < 2exp [——m
22?:1%2

The Prob 1— ¢ region depends on a;, for example, if a; = i, we need t = O(y/n) to get a non-trivial

bound, as Y ;i = ©(n3). So we have the prob 1 — § region with width @(M\/log 3)

n

1.3 Case 3

As we just have pairwise independent, we now can only use Chebyshev’s inequality:

219
P[IX| > 1] < =5

So we have the prob 1 — § region with width @(%5‘0'5)

1.4 Case 4

Here we can use the following bound:

E[XG] < Z?:l a?
6 — nb¢6

B[X|> 1 <

So we have the prob 1 — ¢ region with width ©(”aiHﬁ(S_%)

n

2 More Quantile Estimation

2.1 A deterministic algorithm

We want to find rank(z): X, <z < X,4;. Our goal is rank(z) £en. Last class we have O(%2 log &)

results. Now we want %logn rather than 6%

Intuitively, we just need X¢p, Xoep, -+, X1, to achieve the goal. Consider “compress” any input

into a “smaller” input with e-close answers, which can be formally described as VX, 3X’ with %
distinct values, s.t.

rankx (y) = rankx/(y) * en,

where rank x (y) is the prediction of rank(y) given the information of X. We call X" a “coreset” for
quantiles. In fact, 3 coresets for many problems, including graph sparsifies, k-means, regression,
etc.

The estimator we consider in the following analysis is

—

rank x/(y) = quantiley, (y) - n.

We now solve in a streaming fashion. Assume each time we receive a new batch of data with size

%. We maintain the compression level by level and stored in a binary tree. At each level, keep
1 compression, recompress & put at next level when you get second compression. We output the

compression at the highest level finally, and in total we have log(en) levels.

Lemma 1. If S’ is e-close to S (quantileg (z) = quantileg(z) +¢€), T is e-close to T, |S'| = |T"|,
|S| = |T|, then quantileg: (x) = quantileg () + €

Proof.

. 1
quantileg/ 7 () :m(rankgf (x) + ranky (z))
|15"] . | ,
:mquantllesl (x) + mquantlleT, (x)
S . T ,
:’S’L"T’quantlles(x) + ’S"_i_”T‘quantﬂeT(x) + €

=quantileg r(z) L €

O

Lemma 77 shows that union two compression will not increase the error on quantile, and notice
that compression can introduce at most ¢ additional error on quantile, so each level will have at
most € quantile error, and the top level will have at most elog(en) quantile error, and equivalently
en log(en) rank error. Space we used is O(1 log(en)), as each compression needs O(1) and we have

log(en) levels. Run this algorithm with ¢ = = Toateny» We will get accuracy e with space o1 log?(en))

2.2 Improve the result with randomization

Now we further improve the analysis based on randomization. If we compress with random offset
(e.g. for ordered sequence X1, Xo, -+ , Xor we uniformly choose X1, X3, -+, Xog_1 or Xo, Xy, -+, Xok
as the compression), with simple calculation, we know

rank y/(x;) = rankx (z;) +7;, where n; =0, even; 1n; = +1,7 odd.

In our algorithm: in compression at level i,

rank 1) (25) = rank o (2;) + 1},

where nj(i) = 0, if the i-th significant bit of j is 0; n](.i) = +2¢,if the i-th significant bit of j is 1.

Final error for rank(z;) is rgrﬁ{(a:j)—rank(xj) = Ziozgl(m) nj(i) where 77§ have mean zero and \77?] < 2

log(en) logn
Var(rank(ajj) — rank(z;)) Z Var(n; (i Z 2% < 2. 9218(M) — 9(en)?,
=1

Thus |rgﬁ<(xj) —rank(z;)| < O(en) with 0.9 probability using Chebyshev’s inequality. In fact with

€
1/log%’

log(en)), i.e. an improvement of logn over deterministic variant.

then we have

Hoeffding we can get |rga<(azj) — rank(z;)| < eny/log 3 w.p. 1 —4. Set € =

\/71

the space complexity O(

