CS 395T: Sublinear Algorithms, Fall 2020 September 17, 2020 Lecture 7: More Quantile Estimation Prof. Eric Price Scribe: Tongzheng Ren, Shuo Yang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Skill Drills

For the following X, what is

- mean
- "typical" variation (i.e. 90% region)
- Prob 1δ region
- 1. $X = \frac{1}{n} \sum_{i=1}^{n} X_i, X_i \in [-n, n]$, independent with mean μ_i .
- 2. $X = \frac{1}{n} \sum_{i=1}^{n} X_i, X_i \in [-a_i, a_i]$, independent with mean 0.
- 3. $X = \frac{1}{n} \sum_{i=1}^{n} X_i, X_i \in [-a_i, a_i]$, mean 0 but pairwise independent.
- 4. $X = \frac{1}{n} \sum_{i=1}^{n} X_i, X_i \in [-a_i, a_i]$, mean 0, but 6-wise independent.

1.1 Case 1

We have mean $\mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^{n} \mu_i$, $\operatorname{Var}(X) \leq n$, with Hoeffding's inequality we have

$$\mathbb{P}\left[\left|X - \frac{1}{n}\sum_{i=1}^{n}\mu_i\right| \ge t\right] \le 2\exp\left(-\frac{t^2}{2n}\right)$$

Here we need $t = \Theta(\sqrt{n})$ to get a non-trivial bound. So we have the prob $1 - \delta$ region with width $\Theta(\sqrt{n \log \frac{1}{\delta}})$

1.2 Case 2

We have mean $\mathbb{E}[X] = 0$, $\operatorname{Var}(X) \leq \frac{1}{n^2} \sum_{i=1}^n a_i^2$, and with Hoeffding's inequality

$$\mathbb{P}\left[|X| \ge t\right] \le 2\exp\left(-\frac{n^2 t^2}{2\sum_{i=1}^n a_i^2}\right)$$

The Prob $1 - \delta$ region depends on a_i , for example, if $a_i = i$, we need $t = \Theta(\sqrt{n})$ to get a non-trivial bound, as $\sum_{i=1}^{n} i^2 = \Theta(n^3)$. So we have the prob $1 - \delta$ region with width $\Theta(\frac{\|a_i\|_2}{n}\sqrt{\log \frac{1}{\delta}})$

1.3 Case 3

As we just have pairwise independent, we now can only use Chebyshev's inequality:

$$\mathbb{P}\left[|X| \ge t\right] \le \frac{\sum_{i=1}^{n} a_i^2}{n^2 t^2}$$

So we have the prob $1 - \delta$ region with width $\Theta(\frac{\|a_i\|_2}{n}\delta^{-0.5})$

1.4 Case 4

Here we can use the following bound:

$$\mathbb{P}\left[|X| \ge t\right] \le \frac{\mathbb{E}[X^6]}{t^6} \le \frac{\sum_{i=1}^n a_i^6}{n^6 t^6}$$

So we have the prob $1 - \delta$ region with width $\Theta(\frac{\|a_i\|_6}{n}\delta^{-\frac{1}{6}})$

2 More Quantile Estimation

2.1 A deterministic algorithm

We want to find rank(x): $X_r \leq x < X_{r+1}$. Our goal is rank(x) $\pm \epsilon n$. Last class we have $O(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon\delta})$ results. Now we want $\frac{1}{\epsilon} \log n$ rather than $\frac{1}{\epsilon^2}$.

Intuitively, we just need $X_{\epsilon n}, X_{2\epsilon n}, \dots, X_{\frac{1}{\epsilon}\epsilon n}$ to achieve the goal. Consider "compress" any input into a "smaller" input with ϵ -close answers, which can be formally described as $\forall X, \exists X'$ with $\frac{1}{\epsilon}$ distinct values, s.t.

$$\operatorname{rank}_X(y) = \operatorname{rank}_{X'}(y) \pm \epsilon n,$$

where $\operatorname{rank}_X(y)$ is the prediction of $\operatorname{rank}(y)$ given the information of X. We call X' a "coreset" for quantiles. In fact, \exists coresets for many problems, including graph sparsifies, k-means, regression, etc.

The estimator we consider in the following analysis is

$$\operatorname{rank}_{X'}(y) = \operatorname{quantile}_{X'}(y) \cdot n.$$

We now solve in a streaming fashion. Assume each time we receive a new batch of data with size $\frac{1}{\epsilon}$. We maintain the compression level by level and stored in a binary tree. At each level, keep 1 compression, recompress & put at next level when you get second compression. We output the compression at the highest level finally, and in total we have $\log(\epsilon n)$ levels.

Lemma 1. If S' is ϵ -close to S (quantile_{S'}(x) = quantile_S(x) ± ϵ), T' is ϵ -close to T, |S'| = |T'|, |S| = |T|, then quantile_{S'UT'}(x) = quantile_{SUT}(x) ± ϵ

Proof.

$$\begin{aligned} \text{quantile}_{S'\cup T'}(x) &= \frac{1}{|S'| + |T'|} (\operatorname{rank}_{S'}(x) + \operatorname{rank}_{T'}(x)) \\ &= \frac{|S'|}{|S'| + |T'|} \text{quantile}_{S'}(x) + \frac{|T'|}{|S'| + |T'|} \text{quantile}_{T'}(x) \\ &= \frac{|S|}{|S| + |T|} \text{quantile}_{S}(x) + \frac{|T|}{|S| + |T|} \text{quantile}_{T}(x) \pm \epsilon \\ &= \text{quantile}_{S\cup T}(x) \pm \epsilon \end{aligned}$$

Lemma ?? shows that union two compression will not increase the error on quantile, and notice that compression can introduce at most ϵ additional error on quantile, so each level will have at most ϵ quantile error, and the top level will have at most $\epsilon \log(\epsilon n)$ quantile error, and equivalently $\epsilon n \log(\epsilon n)$ rank error. Space we used is $O(\frac{1}{\epsilon}\log(\epsilon n))$, as each compression needs $O(\frac{1}{\epsilon})$ and we have $\log(\epsilon n)$ levels. Run this algorithm with $\epsilon' = \frac{\epsilon}{\log(\epsilon n)}$, we will get accuracy ϵ with space $O(\frac{1}{\epsilon}\log^2(\epsilon n))$

2.2 Improve the result with randomization

Now we further improve the analysis based on randomization. If we compress with random offset (e.g. for ordered sequence X_1, X_2, \dots, X_{2k} we uniformly choose $X_1, X_3, \dots, X_{2k-1}$ or X_2, X_4, \dots, X_{2k} as the compression), with simple calculation, we know

$$\operatorname{rank}_{X'}(x_i) = \operatorname{rank}_X(x_i) + \eta_i$$
, where $\eta_i = 0, i$ even; $\eta_i = \pm 1, i$ odd.

In our algorithm: in compression at level i,

 $\operatorname{rank}_{X^{(i+1)}}(x_j) = \operatorname{rank}_{X^{(i)}}(x_j) + \eta_j^{(i)},$ where $\eta_j^{(i)} = 0$, if the *i*-th significant bit of *j* is 0; $\eta_j^{(i)} = \pm 2^i$, if the *i*-th significant bit of *j* is 1. Final error for $\operatorname{rank}(x_j)$ is $\widehat{\operatorname{rank}}(x_j) - \operatorname{rank}(x_j) = \sum_{i=1}^{\log(\epsilon n)} \eta_j^{(i)}$ where η_j^i have mean zero and $|\eta_j^{(i)}| \le 2^i$.

$$\operatorname{Var}(\widehat{\operatorname{rank}}(x_j) - \operatorname{rank}(x_j)) = \sum_{i=1}^{\log(\epsilon n)} \operatorname{Var}(\eta_j(i)) \le \sum_{i=1}^{\log n} 2^{2i} \le 2 \cdot 2^{2\log(\epsilon n)} = 2(\epsilon n)^2.$$

Thus $|\operatorname{rank}(x_j) - \operatorname{rank}(x_j)| \leq O(\epsilon n)$ with 0.9 probability using Chebyshev's inequality. In fact with Hoeffding we can get $|\operatorname{rank}(x_j) - \operatorname{rank}(x_j)| \leq \epsilon n \sqrt{\log \frac{1}{\delta}}$ w.p. $1 - \delta$. Set $\epsilon' = \frac{\epsilon}{\sqrt{\log \frac{1}{\delta}}}$, then we have the space complexity $O(\frac{\sqrt{\log \frac{1}{\delta}}}{\epsilon} \log(\epsilon n))$, i.e. an improvement of $\log n$ over deterministic variant.