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Lecture 9: On Estimation of Symmetric Random Variables

Prof. Eric Price Scribe: Ajil Jalal

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we analyzed the FrequentElements and Count-Min Sketch algorithms.

In this lecture we will analyze symmetric random variables, and their concentrations, which will
give us bounds for the CountSketch algorithm.

2 Estimate mean of symmetric random variables

Let x be a random variable over R that is symmetric about some unknown µ, with variance σ2.

Given samples x1, x2, · · · , xn of x, how do we estimate µ?

� The empirical mean requires O
(

1
ε2δ

)
samples to generate µ̂ satisfying |µ̂ − µ| ≤ εσ with

probability ≥ 1− δ.

� The median-of-means algorithm requires O
(

1
ε2

log 1
δ

)
samples to guarantee µ̂ satisfying |µ̂−

µ| ≤ εσ with probability ≥ 1− δ.

However, the median-of-means algorithm requires us to decide on ε and δ in advance. Can we give
an algorithm that works simultaneously for all ε?

The guarantee we want is:

µ̂ such that P[|µ̂− µ| ≥ εσ] ≤ exp
(
−Ω

(
ε2m

))
∀ε simultaneously.

In general, this cannot be done. However, when the variables are symmetric, then we can create
an estimator that works simultaneously for all ε.

2.1 Warmup

As a warmup, let’s consider a univariate Gaussian. For ε sufficiently small, we have

P[|xi − µ| ≥ εσ] = 1− P[|Xi − µ| ≤ εσ] ≈ ε√
1 + ε

≤ Ω(ε).

Define the indicator random variable zi = 1|xi − µ| ≥ εσ.
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From the previous inequality, we have

P[zi = 1] ≤ O(ε).

This gives

P[|mediani xi − µ| ≥ εσ] = P[
∑

zi ≥
n

2
],

≤ e−Ω(ε2n).

This shows that the median of a univariate Gaussian is a good estimator of the mean, for all ε.

2.2 For general symmetric random variables

In the previous analysis, we only required

P[|x− µ| ≤ εσ] & ε∀ε < 1.

This is not true in general for all symmetric random variables.

This raises the following question: given x1, · · · , xn, can we construct x′ such that

P[|x′ − µ| ≤ εσ] & ε.

Using the following claim and the previous analysis, we can conclude that

mediani∈[n/2]
x2i+1 + x2i+2

2
,

will give a good estimate of the mean.

Note that is a simpler version of the Hodges-Lehmann estimator [?].

Claim 1. If x1, x2 are i.i.d. and symmetric, then

x′ =
x1 + x2

2
,

satisfies
P[|x′ − µ| ≤ εσ] & ε.

We now prove the claim.

Proof. Let
Fx(t) = E

x
[ei2πxt]

denote the Fourier Transform of the random variable x.

Since x is symmetric, we have

Fx(t) = E
x
[cos(2πxt)],
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which is a real valued function.

By the definition of x′ = x1+x2
2 , we have

Fx′(t) =
F 2
x (t)

4
≥ 0,

which is non-negative everywhere because Fx is real-valued.

The following Lemma completes the proof:

Lemma 2 ([?]). For any y such that Fy(t) ≥ 0 symmetric about 0, var(y) = σ2, we have

∀ε < 1,P[|y| ≤ εσ] ≥ Ω(ε).

Proof of Lemma ??. Since y is symmetric about 0, we have

Fy(t) = E
y
[cos(2πyt)] ≥ E[1− (2πyt)2

2
] = 1− 2π2t2σ2.

Define the rectangular function
rect(y) = 1 {|y| ≤ εσ} ,

and the corresponding triangular function

tri(y) = 1 {|y| ≤ εσ} .

Note that the triangular function has a Fourier transform of

G(t) = εσsinc2(πσt) :=

{
εσ t = 0,

εσ sin2 πσt
(πσt)2

otherwise.

We have

P[|y| ≤ εσ] =

∫
y
p(y)rect (y) dy,

≥
∫
y
p(y)tri(y)dy,

=

∫
t
Fy(t)εσsinc

2(πσt)dt,

≥ Ω(
1

σ
εσ) = Ω(ε),

where the last bound follows since Fy is a parabola that is greater than constant for a width of
Θ( 1

σ ) and the Fourier transform of the triangle function has a value greater than Ω(εσ) over a width
of Θ( 1

σ ).
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