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Sébastien Bubeck 1 Yin Tat Lee 1 2 Eric Price 3 Ilya Razenshteyn 1

Abstract

Why are classifiers in high dimension vulnerable

to “adversarial” perturbations? We show that it

is likely not due to information theoretic limita-

tions, but rather it could be due to computational

constraints. First we prove that, for a broad set of

classification tasks, the mere existence of a robust

classifier implies that it can be found by a pos-

sibly exponential-time algorithm with relatively

few training examples. Then we give two partic-

ular classification tasks where learning a robust

classifier is computationally intractable. More

precisely we construct two binary classifications

task in high dimensional space which are (i) in-

formation theoretically easy to learn robustly for

large perturbations, (ii) efficiently learnable (non-

robustly) by a simple linear separator, (iii) yet are

not efficiently robustly learnable, even for small

perturbations. Specifically, for the first task hard-

ness holds for any efficient algorithm in the statis-

tical query (SQ) model, while for the second task

we rule out any efficient algorithm under a cryp-

tographic assumption. These examples give an

exponential separation between classical learning

and robust learning in the statistical query model

or under a cryptographic assumption. It suggests

that adversarial examples may be an unavoidable

byproduct of computational limitations of learn-

ing algorithms.

1. Introduction

The most basic task in learning theory is to learn from a

data set (Xi, f(Xi))i∈[n] a good approximation to the un-

known input-output function f . One is typically interested

in finding a hypothesis function h with small out of sample

probability of error. That is, assuming the Xi’s are i.i.d.
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from some distribution D, one wishes to approximately

minimize PX∼D(h(X) 6= f(X)). A more challenging task

is to learn a robust hypothesis, that is, one that would mini-

mize the probability of error against adversarially corrupted

examples. More precisely, assume that the input space is

endowed with a norm ‖ · ‖ and let ε > 0 be a fixed robust-

ness parameter. In robust learning the goal is to find h to

minimize:

P
X∼D

(∃ z such that ‖z‖ ≤ ε, and h(X + z) 6= f(X + z)) .

(1)

Such an input X + z in the above event is colloquially

referred to as an adversarial example1.

Following Szegedy et al. (2013) there is a rapidly expanding

literature exploring the vulnerability of neural networks to

adversarially chosen perturbations. The surprising obser-

vation is that, say in vision applications, for most images

X ∼ D the perturbation can be chosen in a way that is im-

perceptible to a human yet dramatically changes the output

of state-of-the-art neural networks. This is a particularly

important issue as these neural networks are currently being

deployed in real-world situations. Naturally there is by now

a large literature (in fact going back at least to (Dalvi et al.,

2004; Globerson and Roweis, 2006)) on attacks (finding

adversarial perturbations) and defenses (making classifiers

robust against certain type of attacks).

While we have a sophisticated theory for the classical goal

of minimizing the non-robust probability of error, our un-

derstanding of the robust scenario is still very rudimentary.

At the moment, the “attackers” seem to be winning the

arms race against the “defenders”, see e.g., (Athalye et al.,

2018). We identify four mutually exclusive possibilities for

why all known classification algorithms are vulnerable to

adversarial examples:

1. No robust classifier exists.

2. Identifying a robust classifier requires too much train-

ing data.

3. Identifying a robust classifier from limited training data

1In the literature one sometimes uses a more stringent definition
of adversarial examples, where X and z are in addition required
to satisfy f(X + z) = f(X). We ignore this requirement here.
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is information theoretically possible but computation-

ally intractable.

4. We just have not found the right algorithm yet.

The goal of this paper is to provide two pieces of evidence,

one in favor of hypothesis 3 and one against hypothesis 2.

Our primary result is that hypothesis 3 is indeed possible:

there exist robust classification tasks that are information

theoretically easy but computationally intractable under a

powerful model of computation (namely the statistical query

model, see below) or for unrestricted efficient algorithms but

under a cryptographic hardness assumption. Our secondary

result is evidence against hypothesis 2, showing that if a

robust classifier exists then it can be found with relatively

few training examples under a standard assumption on the

data distribution (for example, that the distribution within

each label is close to a Lipschitz generative model, or is

drawn from a finite set of exponential size).

In Section 1.1 we discuss related work on adversarial ex-

amples in light of those four hypotheses. In Section 1.2

we introduce the model of computation under which we

will prove intractability. We conclude the introduction with

Section 1.4 where we give a brief proof overview for our

primary and secondary result. These results are discussed

in greater depth respectively in Sections 4,5 and Section 3.

1.1. Related work on adversarial examples

To the best of our knowledge, previous works have not

linked computational constraints to adversarial examples,

but instead have focused on the other three hypotheses.

Supporting hypothesis 1 is the work of Fawzi et al. (2018).

Here the authors consider a generative model for the fea-

tures, namely X = g(r) where r ∈ R
d is sampled from an

isotropic Gaussian (in particular it is typically of Euclidean

norm roughly
√
d). The observation is that, due to Gaussian

isoperimetry, no classifier is robust to perturbations in r of

Euclidean norm O(1). If g is L-Lipschitz, this corresponds

to perturbations of the image X of at most O(L). On the

other hand, evidence against hypothesis 1 is the fact that

humans seem to be robust classifiers with low error rate

(albeit nonzero error rate, as shown by examples in (Elsayed

et al., 2018)). This suggests that, to fit real distributions

on images, the Lipschitz parameter L in the data model

assumed in (Fawzi et al., 2018) may be prohibitively large.

Another work arguing the inevitability of adversarial exam-

ples is Gilmer et al. (2018). There the authors propose a

simple classification task, namely distinguishing between

samples on the unit sphere in high dimension and samples

on a sphere of radius R bounded away from 1. They show

experimentally that even in such a simple setup, state-of-

the-art neural networks have adversarial examples at most

points. We note however that this example only applies to

specific classifiers, since it is easy to construct an efficient

robust classifier for the given example (e.g., just use a linear

model on the norm of the features); thus the “hardness” here

only appears for a given network structure.

Supporting hypothesis 2 is the work of Schmidt et al. (2018).

Here the authors consider a mixture of two separated Gaus-

sians (isotropic, with means at distance Θ(
√
d)). With

such a separation a single sample is sufficient to learn non-

robustly; but to learn a classifier that is robust to O(1)-size

perturbations in ℓ∞-norm one needs Ω(
√
d) samples. This

polynomial separation suggests that avoiding adversarial ex-

amples in high dimension requires a lot more samples than

mere learning—but only up to
√
d samples. In fact, since

their hard instance is essentially a set of 2d possible distri-

butions, our secondary result gives a black-box algorithm

that would produce a robust classifier with O(d) samples.

Finally the large body of work on “adversarial defense” can

be viewed as investigating hypothesis 4. We note that, at

the time of writing, the state of the art defense Madry et al.

(2018) (according to (Athalye et al., 2018)) is still far from

being robust. Indeed on the CIFAR-10 dataset its accuracy

is below 50% even with very small perturbations (of order

10−2 in ℓ∞-norm), while state of the art non-robust accuracy

is higher than 95%.

Update. Since the first version of the paper appeared (in

May 2018), all the directions discussed above have seen

lots of progress (for a small and by no means representa-

tive sample, see (Garg et al., 2018; Yin et al., 2018; Zhang

et al., 2019)). However, the status quo does not seem to

change significantly. Namely, the defense from (Madry

et al., 2018) is still the state of the art for the CIFAR dataset,

and there are no attacks that perform drastically better than

simple projected gradient descent (PGD). Perhaps the most

significant developments have been related to training mod-

els with provable robustness guarantees (Dvijotham et al.,

2018; Wong and Kolter, 2018; Weng et al., 2018; Xiao et al.,

2018), however, currently all the methods for such training

are either extremely slow or the certified bound is much

weaker than the bound achieved by the PGD attack.

1.2. The SQ model

Proving computational hardness is a notoriously difficult

problem. To circumvent this difficulty one usually either

(i) reduces the problem at hand to a well-established com-

putational hardness conjecture (e.g., proving NP-hardness),

or (ii) proves an unconditional hardness within a limited

computational framework (such as the oracle lower bounds

in convex optimization, (Nesterov, 2004)). Our task here

is further complicated by the average-case nature of the

problem (the datasets are i.i.d. from some fixed distribution).
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Fortunately there is a growing set of results on computa-

tional hardness in learning theory that we can leverage. The

statistical query (SQ) model of computation from Kearns

(1998) is a particularly successful instance of approach (ii)

for learning theory: (a) most known learning algorithms

fall in the framework, including in particular logistic re-

gression, SVM, stochastic gradient descent, etc; and (b)

SQ-hardness has been proved for many interesting prob-

lems that are believed to be computationally hard, such as

learning parity with noise (Kearns, 1998), learning intersec-

tion of halfspaces (Klivans and Sherstov, 2007), the planted

clique problem (Feldman et al., 2013), robust estimation

of high-dimensional Gaussians (Diakonikolas et al., 2017),

or learning a function computable by a small neural net-

work (Song et al., 2017). Thus we naturally use this model

to prove our main result on the computational hardness of

robust learning. We now recall the definition of the SQ

model and state informally our main result.

As Kearns put it in his original paper, the SQ model consid-

ers “learning algorithms that construct a hypothesis based

on statistical properties of large samples rather than on

the idiosyncrasies of a particular sample”. More precisely,

rather than having access to a data set (Xi, f(Xi)), in the

SQ model one must make queries to a τ -SQ oracle which

operates as follows: given a [0, 1]-valued function ψ de-

fined on input/output pairs, the SQ oracle returns a value

EX∼D ψ(X, f(X)) + ξ where |ξ| ≤ τ . We refer to τ as

the precision of the oracle. Obviously, an algorithm using

T queries to an oracle with precision τ can be simulated

using a data set of size roughly T/τ2. In our main result

we consider an oracle with exponential precision. More

concretely we take τ of order exp(−Cdc) where d is the

dimension of the problem and c, C > 0 are some numerical

constants. Observe that such a high precision oracle cannot

be simulated with a polynomial (in d) number of samples.

Yet we show that even with such a high precision one needs

an exponential number of queries to achieve robust learning

for a certain task which on the other hand is easy to learn,

and information theoretically learnable robustly:

Theorem 1.1 (informal). For any ε > 0, there exists a

classification task in R
d which is

• learnable in poly(d) time and poly(d) samples;

• robustly learnable in poly(d) samples with ℓ2-

robustness parameter log0.49 d (while with high proba-

bility all samples have ℓ2-norm O(
√
d));

• not efficiently and robustly learnable in the statistical

query model, in the sense that even with an exponen-

tial (in d) precision statistical query oracle one needs

an exponential (in d) number of queries in order to

robustly learn with robustness parameter ε.

The same result holds using the ℓ∞ norm instead of ℓ2,

except with diameter O(
√
d log d).

Of course, a number of natural machine learning algorithms

such as nearest neighbor are not based on statistical queries.

Although we cannot prove it, we believe that our input dis-

tributions are computationally hard in general. For the case

of nearest neighbor, the distance to points of each class

have very similar distributions—indeed, the two distribu-

tions match on polynomially many moments. This suggests

that exponentially many samples are necessary for nearest

neighbor. For more information about nearest neighbor clas-

sifiers in the context of adversarial examples, see (Wang

et al., 2017).

Moreover, there are very few problems in any domain with

exponential SQ hardness for which polynomial time algo-

rithms are known; in fact, the only such problems involve

solving systems of linear equations over finite fields (Feld-

man, 2017). Since Theorem 1.1 involves a real-valued prob-

lem, finding a polynomial time algorithm that avoids the

SQ lower bound would be a remarkable breakthrough in SQ

theory.

1.3. Cryptographic hardness

We complement Theorem 1.1 with an alternative construc-

tion, which has qualitatively similar properties. How-

ever, there are two important differences. First, instead

of log0.49 d-robust classifier, we can guarantee the existence

of a Ω(
√
d)-robust one (which is the best possible, since the

diameter of the dataset is O(
√
d)). Second, instead of ruling

out efficient SQ algorithms, we can rule out all the efficient

algorithms. However, this is of course not an unconditional

result, and we show it under a cryptographic assumption.

More specifically, we build a classification task out of a

pseudo-random generator from (Blum et al., 1986) and hard-

ness of robust learning follows from computational indistin-

guishability of the output of the generator and the uniform

distribution.

1.4. Overview of proofs

Our secondary result, on the information theoretic achiev-

ability of robustness, is proved via simple arguments rem-

iniscent of PAC-learning theory. Namely, if a classifier is

not good enough for a given pair of distributions, we can

rule it out with high confidence by looking at not too many

samples. Then, we use a union bound to claim the result for

a family of pairs that is either at most exponentially large,

or is at least covered by a net of at most exponential size

(the only subtlety is in the proper definition of a net in this

robust context).

Our primarily result, on the hardness of robustness, is techni-

cally much more challenging. The central object in the proof
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is a natural high-dimensional generalization of a construc-

tion from Diakonikolas et al. (2017). Roughly speaking, a

hard pair of distributions is obtained by taking a standard

multivariate Gaussian, choosing a random k-dimensional

subspace and planting there two well-separated distributions

that match many moments of a Gaussian (in (Diakonikolas

et al., 2017) only the case k = 1 is considered). To show an

SQ lower bound, we use – as in (Diakonikolas et al., 2017) –

the framework of (Blum et al., 1994; Feldman et al., 2013)

to reduce the question to computing a certain non-standard

notion of correlation between the distributions. To bound

said correlation, we deviate from (Diakonikolas et al., 2017)

significantly, since their argument is tailored crucially to the

case k = 1. Our argument is less precise, but allows k ≫ 1
which is necessary to obtain a large separation between the

distributions (which in turn controls the parameter M in

Theorem 1.1).

For the cryptographic hardness, we, roughly speaking, re-

quire a classifier to distinguish the uniform distribution from

the output of the pseudo-random generator (PRG) on a uni-

formly random seed. Because the seed is much shorter

than the output, extremely robust classifiers exist (since

the image of the generator is tiny). In order to provide

an example where an efficient robust classifier exists and

is information-theoretically easy but computationally in-

tractable to learn from data, we use a “trapdoor” PRG. The

construction from (Blum et al., 1986) gives a trapdoor PRG

under standard cryptographic assumptions (Vazirani and

Vazirani, 1983).

2. Definitions

Throughout we restrict ourselves to binary classifiers, Rd-

feature space, as well as to balanced classes. We fix some

norm ‖ · ‖ in R
d, and we denote B(ε) = {z ∈ R

d : ‖z‖ ≤
ε}.

Definition 2.1. The ε-robust zero-one loss (with respect

to ‖ · ‖) is defined as follows, for f : Rd → {0, 1} and

(x, i) ∈ R
d × {0, 1},

ℓε(f, x, i) = 1{∃ z ∈ B(ε) : f(x+ z) 6= i} .
Definition 2.2. A binary classifier f : R

d → {0, 1} is

(ε, δ)-robust for a pair of distributions (D0, D1) on X if for

any i ∈ {0, 1},

E
X∼Di

[ℓε(f,X, i)] ≤ δ .

Definition 2.3. A (binary) classification task is given by a

family D of pairs of distributions D = (D0, D1) over a

domain X . The goal is to map datasets X0, X1 consisting

of n i.i.d. samples from D0 and D1 respectively into a

classifier f : Rd → {0, 1}.

We say that D is (ε, δ)-robustly learnable with n samples if

there is a classification mapping such that, for everyD ∈ D,

with probability at least 2/3 over X0 and X1, the resulting

classifier f is (ε, δ)-robust for D.

Remark 2.4. The success probability 2/3 is an arbitrary

constant larger than 1/2. It is easy to see that, for any

η > 0, by using O(n log(1/η)) samples one can obtain a

success probability of 1− η.

We also note that the classical (ε′, δ′)-PAC learning sce-

nario, with δ′ = 1/3, corresponds to our definition of (ε, δ)-
robust classification with parameters ε = 0 and δ = ε′.

Slightly more precisely, a concept class F ⊂ {0, 1}Rd

for

PAC-learning corresponds to the family D of all pairs of

distribution supported respectively on f−1(0) and f−1(1)
for some f ∈ F .

Definition 2.5. We say that D is (ε, δ)-robustly feasible if

every D ∈ D admits an (ε, δ)-robust classifier. When it

exists we denote fD for such a classifier (chosen arbitrarily

among all robust classifiers for D), and FD = {fD, D ∈
D}.

3. Robust learning with few samples

Obviously robust feasibility is a necessary condition for

robust learnability. We show that it is in fact sufficient, even

for sample efficient robust learnability. We first do so when

a finite set of classifiers FD suffices for robust feasibility.

3.1. Robust empirical risk minimization

Theorem 3.1. Assume that D is (ε, δ)-robustly feasi-

ble. Then it is (ε, δ + δ′)-robustly learnable with n =

Ω
(

δ+δ′

δ′2 log(|FD|)
)

.

Proof. Let D̂i =
1
n

∑n
j=1 δXi(j)

be the empirical measure

corresponding to the dataset Xi. We will show that ERM

on the ε-robust loss gives the claimed sample complexity.

More precisely we consider the following classifier:

f̂ = argmin
f∈FD

max
i∈{0,1}

E
X∼D̂i

ℓε(f,X, i) .

For shorthand notation we write pf =
maxi∈{0,1} EX∼Di

ℓε(f,X, i) and p̂f =
maxi∈{0,1} EX∼D̂i

ℓε(f,X, i). In particular we sim-

ply want to prove that pf̂ ≤ δ + δ′. Note that by definition

pfD ≤ δ. A standard Chernoff bound gives that, with

probability at least 2/3, one has for every f ∈ FD,

|pf − p̂f | = O(
√
pf log(|FD|)/n) .

Now observe that for n ≥ 4 δ+δ′

δ′2 log(|FD|) one can has√
pfD log(|FD|)/n ≤ δ′/2 , and thus we obtain with n =

Ω
(

δ+δ′

δ′2 log(|FD|)
)

,

pf̂ − δ′

2

√
pf̂

δ + δ′
≤ p̂f̂ ≤ p̂fD ≤ δ + δ′ .
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It now suffices to observe that s ≥ δ + δ′ implies s −
δ′

2

√
s

δ+δ′ > δ + δ′

2 .

3.2. Robust covering number

In many natural situations the classification task is specified

by a continuous set of distributions. For example one might

have a set of the form D = {(g0(w0), g1(w1)), (w0, w1) ∈
Ω} where g0 and g1 are Lipschitz functions and Ω is some

compact subset of Rd′

. In this case Theorem 3.1 does not

apply, although one would like to say that “essentially” D
is of log-size roughly d′. The classical solution to this

difficulty is with covering numbers:

Definition 3.2. For a metric space (X , dist) we write

Ndist(X , ε) = inf {|X| s.t. X ⊂ X

and X ⊂
⋃

x∈X

{y : dist(x, y) ≤ ε}
}
.

With a slight abuse of notation we also extend the distance

to the Cartesian product X × X by dist((x, x′), (y, y′)) =
max(dist(x, x′), dist(y, y′)).

With the above definitions one can obtain the following

result as a straightforward corollary of Theorem 3.1 and the

definition of total variation distance.

Theorem 3.3. Assume that D is (ε, δ)-robustly feasi-

ble. Then D is (ε, δ + 2δ′)-robustly learnable with n =

Ω
(

δ+δ′

δ′2 log(NTV(D, δ′))
)

.

In fact, if one is willing to lose a little bit of robustness,

one can use a significantly weaker notion of “distance” than

total variation. Indeed we can consider a broader class of

modifications to a distribution that preserves the robust-

ness of a classifier: in Theorem 3.3 we used that we can

move arbitrarily a small amount of mass, but in fact we

can also move a little an arbitrary amount of mass. While

the former type of movement corresponds to total varia-

tion distance, the latter corresponds to the (infinity) Wasser-

stein distance. We denote W∞(D,D′) for the infimum of

sup(x,x′)∈supp(µ) ‖x− x′‖ over all measures µ(x, x′) with

marginal over x (respectively x′) equal to D (respectively

D′). Next we introduce a slightly non-standard notion of

covering with respect to a pair of distances

Definition 3.4. For a metric space X equipped with two

distances dist and dist′ we define an (ε, δ) neighborhood

by2:

Uε,δ(x) =
{
y : ∃z s.t. dist′(x, z) ≤ δ and dist(z, y) ≤ ε

}
.

2The choice of first moving with dist′ and then with dist will

The corresponding covering number is:

Ndist,dist′(X , ε, δ) = inf {|X| s.t. X ⊂ X

and X ⊂
⋃

x∈X

Uε,δ(x)

}
.

It is now easy to prove the following strengthening of Theo-

rem 3.3:

Theorem 3.5. Assume that D is (ε, δ)-robustly feasible.

Then D is (ε − ε′, δ + 2δ′)-robustly learnable with n =

Ω
(

δ+δ′

δ′2 log(NW∞,TV(D, ε′, δ′))
)

.

Proof. Let A be the set realizing the infimum in the defini-

tion of NW∞,TV(D, ε′, δ′). Observe that D is (ε−ε′, δ+δ′)-
robustly feasible with classifiers from FA, and apply Theo-

rem 3.1.

3.3. Covering number bound from generative models

We now show that distributions approximated by generative

models have bounded covering numbers (in terms of Defini-

tion 3.4), so Theorem 3.5 gives a good sample complexity

for such distributions. The proof is deferred to Appendix C

in the supplementary material.

Definition 3.6. A generative model gw : Rk → R
d is a

neural network indexed by weights w ∈ R
m. The generated

distribution D(gw) is the distribution given by gw(x) for

x ∼ N(0, Ik).

Lemma 3.7. Let gw be an ℓ-layer neural network archi-

tecture with at most d activations in each layer and Lips-

chitz nonlinearities such as ReLUs. Consider any family

of distribution pairs D such that for each D ∈ D, and

each i ∈ {0, 1}, there exists some w ∈ [−B,B]m with

W∞(Di, D(gw)) ≤ ε. Then

log (NW∞,TV(D, ε+ δ, δ)) ≤ O(mℓ log(dB/δ)).

4. Lower bound for the SQ model

Let D0 and D1 be two distributions over a set X , for which

we would like to solve a (binary) classification task. The

SQ model, introduced in (Kearns, 1998), is defined as

follows. An algorithm is allowed to access D0 and D1

through queries of the following kind. A query is speci-

fied by a function h : X → [0, 1], and the response is two

fit our application. In general a more natural definition would be:

Uε,δ(x) = {y : ∃x = z1, z
′

1, . . . , zn, z
′

n = y

s.t.

n∑

i=1

dist(zi, z
′

i) ≤ ε and

n−1∑

i=1

dist′(z′i, zi+1) ≤ δ} .
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numbers u, v ∈ R such that u ∈ Ex∼D0
[h(x)] ± τ and

v ∈ Ex∼D1 [h(x)]± τ . Here τ > 0 is a positive parameter

called precision. After asking a number of such queries,

the algorithm must output a required (robust or non-robust)

classifier for D0 and D1.

Our main result is as follows:

Theorem 4.1. For every sufficiently small ρ, γ > 0 the

following holds. There exists a family of 2d
O(1)

pairs of

distributions (D̃0, D̃1) over Rd such that:

• Almost all the mass of D̃0 and D̃1 is supported in an

ℓ2-ball of radius O(
√
d);

• The distributions D̃0 and D̃1 admits a

(Ω(
√
1/γ), 2−dΩ(γ)

)-robust classifier; moreover,

a Ω(
√
1/γ), 0.01)-robust classifier can be learned

from O(d) samples from D0 and D1;

• For D̃0 and D̃1, there exists a linear (non-robust) clas-

sifier, which can be learned in polynomial time;

• For every ε > ρ, in order to learn a (ε, 0.01)-robust

classifier for D̃0 and D̃1, one needs at least 2d
Ω(1)

statistical queries with accuracy as good as 2−dΩ(γ)

.

For instance, if γ is a small constant we get the existence of

a C-robust classifier, where C is a large constant. One could

pushC as high as Ω(log1/2−ε d) at a cost of the lower bound

being against SQ queries with somewhat worse accuracy

(2−2log
Ω(ε) d

instead of 2−dΩ(1)

).

We first show a family of pairs (D0, D1) that admit a robust

classifier, yet it is hard (in the SQ model) to learn any (non-

robust) classifier. Later, in Section 4.3, we show a simple

modification of this family to obtain the main result.

4.1. Hard family of distributions

Here we define a hard family of pairs of distributions

(D0, D1) as discussed above. This section contains the

definition and key properties of the family; proofs of those

properties appear in Appendix A. This family can be seen

to be a high-dimensional generalization and modification

of a family considered in (Diakonikolas et al., 2017). The

family depends on three parameters: integers 1 ≤ k ≤ d,

m ≥ 1 and a positive real ε > 0.

Fix an integer m ≥ 1. We introduce two auxiliary distribu-

tions over R that we will use later as building blocks.

Lemma 4.2. There exist two distributionsDA andDB over

R with everywhere positive p.d.f.’s A(t) and B(t) respec-

tively such that:

• DA and DB match N(0, 1) in the first m moments;

−6 −4 −2 0 2 4 6

Well-separated distributions matching on 19 moments

DA
DB
N(0;1) rescaled

Figure 1. The distributions in Lemma 4.2 are similar to discretized

Gaussians, with careful discretization and weighting from Gauss-

Hermite quadrature.

• There exist two subsets SA, SB ⊂ R such that the

distance between SA and SB is at least Ω(1/
√
m),

Px∼DA
[x ∈ SA] ≥ 1 − e−Ω(m), and Px∼DB

[x ∈
SB ] ≥ 1− e−Ω(m);

• A,B ∈ C∞, and for every 0 ≤ l ≤ m+ 1 and t, one

has: | dl

dtl
A(t)
G(t) |, | d

l

dtl
B(t)
G(t) | ≤ mO(l+1).

(See Figure 1 for the illustration.)

Next let us fix parameters 1 ≤ k ≤ d and ε > 0. Let

U = {Ui} be a family of k-dimensional subspaces of Rd

with fixed orthonormal bases such that for every i 6= j
and u ∈ Ui, one has: ‖projUj

u‖2 ≤ ε · ‖u‖2. Informally

speaking, subspaces from U are pairwise near-orthogonal.

Lemma 4.3. For every k ≤ dΩ(1), there exists such a family

U with ε ≤ d−0.49 and |U| = 2d
Θ(1)

.

Now we are ready to define our family of hard pairs

(D0, D1) of distributions over Rd. The family is parameter-

ized by a k-dimensional subspace U ∈ U together with an

orthonormal basis u1, u2, . . . , uk ∈ U , where U is the fam-

ily of subspaces guaranteed by Lemma 4.3. Let us extend

the above basis to a basis for the whole R
d: u1, u2, . . . , ud.

Now we define a pair of distributions DU,A and DU,B via

their p.d.f.’s AU (x) and BU (x) respectively as follows:

AU (x) =

k∏

i=1

A(〈x, ui〉) ·
d∏

i=k+1

G(〈x, ui〉)

and BU (x) =
k∏

i=1

B(〈x, ui〉) ·
d∏

i=k+1

G(〈x, ui〉),

where A(·) and B(·) are densities of distributions DA and

DB from Lemma 4.2, and G(t) = 1√
2π

· e−t2/2 is the p.d.f.

of the standard Gaussian distribution N(0, 1). Now we

simply take D0 to be DU,A and D1 to be DU,B .

Lemma 4.4. There exist two sets SU,A, SU,B ⊂ R
d such

that the distance between SU,A and SU,B is Ω(
√
k/m),

and for which Px∼DU,A
[x ∈ SU,A] ≥ 1 − e−Ω(km) and

Px∼DU,B
[x ∈ SU,B ] ≥ 1− e−Ω(km).
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As a result, the pair (D0, D1) admits a

(Ω(
√
k/m), e−kmΩ(1)

)-robust classifier. Moreover,

since log |U| ≤ O(d) (which follows from standard bounds

on the number of pairwise near-orthogonal unit vectors

in R
d), it follows from Theorem 3.1 that one can learn

a (Ω(
√
k/m), 0.01)-robust classifier from merely O(d)

samples.

4.2. SQ lower bound for learning a classifier for DU,A

and DU,B

The heart of the matter is to show that it requires 2d
Ω(1)

statistical queries with precision τ = 2−dΘ(γ)

to learn a clas-

sifier for DU,A and DU,B provided that all the parameters

m, k, ε are set correctly. The argument is fairly involved and

uses the framework of (Feldman et al., 2013) to reduce the

question to that of upper bounding χ-correlation between

the distributions. Due to space limitations, we show the

argument in Appendix B of the supplementary material.

4.3. Making the distribution easy to learn non-robustly

Let us now show a family of pairs distributions (D̃0, D̃1)
over Rd+1 such that it is easy to learn a (non-robust) classi-

fier, but hard to learn a robust one. The construction is very

simple: we take distributions (D0, D1) over Rd as defined

above and define x ∼ D̃0 to be x = (0, y1, y2, . . . , yd),

where y ∼ D0, and, similarly, x ∼ D̃1 to be x =
(ρ, y1, y2, . . . , yd), where y ∼ D1 and ρ > 0. These dis-

tributions admit a trivial (non-robust) classifier based on

the first coordinate. Moreover, since D̃0 and D̃1 are lin-

early separable, they can be classified using linear SVM

or logistic regression. Information-theoretically, one can

learn a (
√
1/γ, 0.1)-robust classifier using O(d) samples

by ignoring the first coordinate and applying Theorem 3.1.

However, for every ε > ρ, one needs 2d
Ω(1)

SQ queries with

accuracy 2−dΘ(γ)

to learn an (ε, 0.1)-robust separator. This

can be shown exactly the same way as for D0 and D1 (see

Appendix B in the supplementary material).

The above distributions are hard to learn robustly with re-

spect to the ℓ2 norm. We can switch to ℓ∞ by replacing x
by its Hadamard transform Hx. Since ‖Hx − Hy‖∞ ≥
‖H(x− y)‖2/

√
d = ‖x− y‖2, the robustness parameters

in the theorem are unchanged while the diameter becomes

O(
√
d log d).

5. Cryptographic hardness

5.1. Hard-to-compute robust classifiers

We will now exhibit a binary classification task that admits

a maximally robust classifier (that is, robust to perturba-

tions comparable to the diameter of the support), yet any

efficiently computable classifier has an accuracy close to

random guessing.

Let G : {0, 1}d/2 → {0, 1}d be a cryptographic pseudo-

random generator (PRG). Let D0 be uniform on {0, 1}n and

D1 be the distribution of G(s) for s uniform in {0, 1}d/2.

Clearly a simple volume argument shows that there exists

a classifier A which satisfies (1) for ε = Θ(
√
d) (i.e., this

problem admits a maximally robust classifier). Yet by def-

inition of a PRG no polynomial time algorithm can have

a non-trivial classification accuracy (let alone robust accu-

racy).

5.2. Adversarial examples and trapdoor PRG

Given Section 5.1, our goal is now to construct a classifica-

tion task which admits a maximally robust classifier that is

also efficiently computable, yet one cannot get non-trivial ac-

curacy in polynomial time. The main idea here is to replace

the PRG in the construction of Section 5.1 with a trapdoor

PRG. In a nutshell a trapdoor PRG comes with a key, such

that knowing the key allows to efficiently distinguish the

PRG from a true source of randomness (and thus allows for

efficient classification in the construction of Section 5.1).

Note also that, by a simple union bound, the sample com-

plexity of such a problem would be of order of the number

of bits in the key.

Let us now detail the construction a bit more. For the sake

of concreteness, we use a specific trapdoor PRG, namely the

Blum–Blum–Shub PRG (Blum et al., 1986) (in its “back-

ward” form). Let p and q be large distinct prime numbers

congruent to 3 mod 4, letN = pq and d = O(log(N)). The

BBS PRG GN : {0, 1}d → {0, 1}∗ works as follow. First

it maps the seed s ∈ {0, 1}d to x0 ∈ N a quadratic residue

mod N in such a way that a uniformly random seed gives a

nearly-uniform quadratic residue modulo N . Next it itera-

tively takes square roots modN , that is let xi+1 be such that

xi = x2i+1 mod N and xi+1 is a quadratic residue itself

(this is well-defined per our assumption on p and q). The

ith element of the output of GN is then simply the parity of

xi.

The key property of the BBS PRG is that, without know-

ing the factorization N = pq, its output is computationally

indistinguishable (under the quadratic residuosity assump-

tion) from a true source of randomness (even when the

seed is known), while on the other hand knowing the fac-

torization allows for efficient distinguishing. To make this

mathematically precise let us recall the notion of computa-

tional statistical distance for a family of pairs of distribution

{(D0(ω), D1(ω)), ω ∈ Ω}: it is the supremum over all

polynomial-time algorithms of the infimum over ω ∈ Ω of

the success probability one can have to identify whether

a random sample was generated from D0(ω) or generated

from D1(ω). Let us fix some constant c > 1 and denote

Dn
0 = unif({0, 1}dc

) and Dn
1 (N) the distribution of the
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first dc bits of s ◦ GN (s) where s is a uniformly random

element of {0, 1}d.

Theorem 5.1 ((Blum et al., 1986; Vazirani and Vazirani,

1983)). Assuming that for infinitely many N the computa-

tional statistical distance of {(Dd
0 ,Dd

1(pq))}p,q is greater

than 1/2+1/poly(d) would refute the quadratic residuosity

assumption.

On the other hand, if p and q are known, then the computa-

tional statistical distance of {(Dd
0 ,Dd

1(N))} is 1− od(1).

From the above discussion we have the following prop-

erties for the classification task described by the family

{(Dd
0 ,Dd

1(pq))}p,q:

a. The (robust) sample complexity of this family is O(d).

b. Any task in this family admits a maximally robust

classifier (same volume argument as in Section 5.1)

that is also efficiently computable (second statement in

Theorem 5.1).

c. Under the quadratic residuosity assumption, any poly-

nomial time learning algorithm for this family has an

accuracy close to chance on some task in the family

(first statement in Theorem 5.1).

We also note that, using the trick of adding a dummy coordi-

nate revealing the label from Section 4.3, one could replace

property c by c’ and add property d as follows (for any fixed

ε > 0):

c’. Under the quadratic residuosity assumption, any poly-

nomial time learning algorithm for this family has a

ε-robust accuracy close to chance on some task in the

family.

d. One can learn non-robustly in polynomial time (and

polynomial sample complexity).

Remark: After the preliminary version of the present paper

appeared, we got notified by Degwekar and Vaikuntanathan

that there is an issue with the above construction. Namely, it

is not clear that the item b holds (the existence of an efficient

robust classifier), since one can corrupt seed, which prevents

us from (efficiently) distinguishing D0 and D1. However, as

they explain in their paper (Degwekar and Vaikuntanathan,

2019), this can be remedied by post-composing our con-

struction with a constant-rate linear distance efficient error-

correcting code. We refer the reader to (Degwekar and

Vaikuntanathan, 2019) for a further discussion.

6. Conclusion and future directions

In this paper we put forward the thesis that adversarial ex-

amples might be an unavoidable consequence of computa-

tional constraints for learning algorithms. Our main piece

of evidence is two classification tasks, for which there exist

classifiers robust to large Euclidean perturbations, yet find-

ing any non-trivial robust classifier is hard in the statistical

query model or under a cryptographic hardness assumption.

The most important question for the validity of our thesis

is whether one could prove a similar hardness result for

natural distributions. This is a particularly challenging open

problem as the concept of a natural distribution is fuzzy (for

instance there is no consensus on what a natural distribution

for images should look like).
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