
Fourier-sparse interpolation without a frequency gap

Xue Chen∗
xchen@cs.utexas.edu

The University of Texas at Austin

Daniel M. Kane
dakane@cs.ucsd.edu

University of California, San Diego

Eric Price
ecprice@cs.utexas.edu

The University of Texas at Austin

Zhao Song
zhaos@utexas.edu

The University of Texas at Austin

January 17, 2017

Abstract

We consider the problem of estimating a Fourier-sparse signal from noisy samples, where
the sampling is done over some interval [0, T] and the frequencies can be “off-grid”. Previous
methods for this problem required the gap between frequencies to be above 1/T , the threshold
required to robustly identify individual frequencies. We show the frequency gap is not necessary
to estimate the signal as a whole: for arbitrary k-Fourier-sparse signals under `2 bounded noise,
we show how to estimate the signal with a constant factor growth of the noise and sample
complexity polynomial in k and logarithmic in the bandwidth and signal-to-noise ratio.

As a special case, we get an algorithm to interpolate degree d polynomials from noisy mea-
surements, using O(d) samples and increasing the noise by a constant factor in `2.

∗Supported by NSF Grant CCF-1526952.

Contents

1 Introduction 3
1.1 Related work . 4
1.2 Our techniques . 6
1.3 Organization . 9

2 Proof Sketch 9

3 Preliminaries 12
3.1 Notation . 12
3.2 Facts about the Fourier transform . 13
3.3 Tools and inequalities . 14
3.4 Legendre polynomials . 15
3.5 Gram matrix and its determinant . 15

4 Robust Polynomial Interpolation Algorithm 16
4.1 Constant success probability . 16
4.2 Boosting success probability . 18

5 Bounding the Magnitude of a Fourier-sparse Signal in Terms of Its Average Norm 20
5.1 Bounding the maximum inside the interval . 20
5.2 Bounding growth outside the interval . 22

6 Hash Functions and Filter Functions 23
6.1 Permutation function and hash function . 23
6.2 Filter function . 23
6.3 HashToBins . 24

7 Frequency Recovery 25
7.1 Overview . 26
7.2 Analysis of GetLegal1Sample and GetEmpirical1Energy 27
7.3 A cluster of frequencies, times H, is a one-cluster signal per Definition 7.1 31
7.4 Frequency recovery of one-cluster signals . 32
7.5 The full signal, after multiplying by H and convolving with G, is one-clustered. . . . 35
7.6 Frequency recovery of k-clustered signals . 39
7.7 Time and sample complexity of frequency recovery of k-clustered signals 40

8 One-cluster Signal Recovery 41
8.1 Overview . 41
8.2 Bounding the Gram matrix determinant . 42
8.3 Perturbing the frequencies does not change the subspace much 43
8.4 Existence of nearby k-Fourier-sparse signal with frequency gap bounded away from

zero . 45
8.5 Approximating k-Fourier-sparse signals by polynomials 46
8.6 Transferring degree-d polynomial to (d+1)-Fourier-sparse signal 47

1

9 k-cluster Signal Recovery 49
9.1 Overview . 49
9.2 Heavy clusters separation . 50
9.3 Approximating clusters by polynomials . 51
9.4 Main result, with constant success probability . 52
9.5 Boosting the success probability . 54

A Technical Proofs 58
A.1 Proof of Theorem 8.3 . 58
A.2 Proofs of Lemma 5.3 and Lemma 5.4 . 61
A.3 Proof of Lemma 4.3 . 64
A.4 Proof of Lemma 6.2 . 64
A.5 Proof of Lemma 3.5 . 65
A.6 Proof of Lemma 3.10 . 66

B Known Facts 67
B.1 Inequalities . 67
B.2 Linear regression . 67
B.3 Multipoint evaluation of a polynomial . 68

C Analysis of Hash Functions and Filter Functions 68
C.1 Analysis of filter function (H(t), Ĥ(f)) . 68
C.2 Analysis of filter function (G(t), Ĝ(f)) . 78
C.3 Parameters setting for filters . 79
C.4 Analysis of HashToBins . 80

D Acknowledgments 84

E Algorithm 84

2

1 Introduction

In an interpolation problem, one can observe x(t) = x∗(t) + g(t), where x∗(t) is a structured signal
and g(t) denotes noise, at points ti of one’s choice in some interval [0, T]. The goal is to recover
an estimate x̃ of x∗ (or of x). Because we can sample over a particular interval, we would like our
approximation to be good on that interval, so for any function y(t) we define

‖y‖2T =
1

T

∫ T

0
|y(t)|2dt.

to be the `2 error on the sample interval. For some parameters C and δ, we would then like to get

‖x̃− x∗‖T ≤ C ‖g‖T + δ ‖x∗‖T (1)

while minimizing the number of samples and running time. Typically, we would like C to be O(1)
and to have δ be very small (either zero, or exponentially small). Note that, if we do not care about
changing C by O(1), then by the triangle inequality it doesn’t matter whether we want to estimate
x∗ or x (i.e. we could replace the LHS of (1) by ‖x̃− x‖T).

Of course, to solve an interpolation problem one also needs x∗ to have structure. One common
form of structure is that x∗ have a sparse Fourier representation. We say that a function x∗ is
k-Fourier-sparse if it can be expressed as a sum of k complex exponentials:

x∗(t) =
k∑

j=1

vje
2πifjt.

for some vj ∈ C and fj ∈ [−F, F], where F is the “bandlimit”. Given F , T , and k, how many
samples must we take for the interpolation (1)?

If we ignore sparsity and just use the bandlimit, then Nyquist sampling and Shannon-Whittaker
interpolation uses FT + 1/δ samples to achieve (1). Alternatively, in the absence of noise, x∗

can be found from O(k) samples by a variety of methods, including Prony’s method from 1795 or
Reed-Solomon syndrome decoding [Mas69], but these methods are not robust to noise.

If the signal is periodic with period T—i.e., the frequencies are multiples of 1/T—then we can
use sparse discrete Fourier transform methods, which take O(k logc(FT/δ)) time and samples (e.g.
[GGI+02, HIKP12a, IKP14]). If the frequencies are not multiples of 1/T (are “off the grid”), then
the discrete approximation is only k/δ sparse, making the interpolation less efficient; and even this
requires that the frequencies be well separated.

A variety of algorithms have been designed to recover off-grid frequencies directly, but they
require the minimum gap among the frequencies to be above some threshold. With frequency gap
at least 1/T , we can achieve a kc approximation factor using O(FT) samples [Moi15], and with
gap above O(log2 k)/T we can get a constant approximation using O(k logc(FT/δ)) samples and
time [PS15].

Having a dependence on the frequency gap is natural. If two frequencies are very close together—
significantly below 1/T—then the corresponding complex exponentials will be close on [0, T], and
hard to distinguish in the presence of noise. In fact, from a lower bound in [Moi15], below 1/T
frequency gap one cannot recover the frequencies in the presence of noise as small as 2−Ω(k). The
lower bound proceeds by constructing two signals using significantly different frequencies that are
exponentially close over [0, T].

But if two signals are so close, do we need to distinguish them? Such a lower bound doesn’t
apply to the interpolation problem, it just says that you can’t solve it by finding the frequencies.

3

Our question becomes: can we benefit from Fourier sparsity in a regime where we can’t recover the
individual frequencies?

We answer in the affirmative, giving an algorithm for the interpolation usingO(poly(k log(FT/δ))
samples. Our main theorem is the following:

Theorem 1.1. Let x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies in
[−F, F]. Given samples of x over [0, T] we can output x̃(t) such that with probability at least
1− 2−Ω(k),

‖x̃− x∗‖T . ‖g‖T + δ ‖x∗‖T .
Our algorithm uses poly(k, log(1/δ)) · log(FT) samples and poly(k, log(1/δ)) · log2(FT) time. The
output x̃ is poly(k, log(1/δ))-Fourier-sparse signal.

Relative to previous work, this result avoids the need for a frequency gap, but loses a polynomial
factor in the sample complexity and time. We lose polynomial factors in a number of places; some
of these are for ease of exposition, but others are challenging to avoid.

Degree d polynomials are the special case of d-Fourier-sparse functions in the limit of fj → 0, by
a Taylor expansion. This is a regime with no frequency gap, so previous sparse Fourier results would
not apply but Theorem 1.1 shows that poly(d log(1/δ)) samples suffices. In fact, in this special case
we can get a better polynomial bound:

Theorem 1.2. For any degree d polynomial P (t) and an arbitrary function g(t), Procedure Ro-
bustPolynomialLearning in Algorithm 5 takes O(d) samples from x(t) = P (t)+g(t) over [0, T]
and reports a degree d polynomial Q(t) in time O(dω) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2T . ‖g(t)‖2T .

where ω < 2.373 is matrix multiplication exponent [Str69],[CW87],[Wil12].

We also show how to reduce the failure probability to an arbitrary p > 0 with O(log(1/p))
independent repetitions, in Theorem 4.5.

Although we have not seen such a result stated in the literature, our method is quite similar to
one used in [CDL13]. Since d samples are necessary to interpolate a polynomial without noise, the
result is within constant factors of optimal.

One could apply Theorem 1.2 to approximate other functions that are well approximated by
polynomials or piecewise polynomials. For example, a Gaussian of standard deviation at least σ
can be approximated by a polynomial of degree O(

(
T
σ

)2
+ log(1/δ)); hence the same bound applies

as the sample complexity of improper interpolation of a positive mixture of Gaussians.

1.1 Related work

Sparse discrete Fourier transforms. There is a large literature on sparse discrete Fourier
transforms. Results generally are divided into two categories: one category of results that carefully
choose measurements that allow for sublinear recovery time, including [GGI+02, GMS05, HIKP12b,
Iwe13, HIKP12a, IK14, IKP14, Kap16]. The other category of results expect randomly chosen
measurements and show that a generic recovery algorithm such as `1 minimization will work with
high probability; these results often focus on proving the Restricted Isometry Property [CRT06,
RV08, Bou14, HR15]. At the moment, the first category of results have better theoretical sample
complexity and running time, while results in the second category have better failure probabilities
and empirical performance. Our result falls in the first category. The best results here can achieve
O(k log n) samples [IK14], O(k log2 n) time [HIKP12b], or within log log n factors of both [IKP14].

4

For signals that are not periodic, the discrete Fourier transform will not be sparse: it takes k/δ
frequencies to capture a 1 − δ fraction of the energy. To get a better dependence on δ, one has to
consider frequencies “off the grid”, i.e. that are not multiples of 1/T .

Off the grid. Finding the frequencies of a signal with sparse Fourier transform off the grid has been
a question of extensive study. The first algorithm was by Prony in 1795, which worked in the noiseless
setting. This was refined by classical algorithms like MUSIC [Sch81] and ESPRIT [RPK86], which
empirically work better with noise. Matrix pencil [BM86] is a method for computing the maximum
likelihood signal under Gaussian noise and evenly spaced samples. The question remained how
accurate the maximum likelihood estimate is; [Moi15] showed that it has an O(kc) approximation
factor if the frequency gap is at least 1/T .

Now, the above results all use FT samples, which is analogous to n in the discrete setting. This
can be decreased down till O(k) by only looking at a subset of time, i.e. decreasing T ; but doing so
increases the frequency gap needed for decent robustness results.

A variety of works have studied how to adapt sparse Fourier techniques from the discrete setting
to get sublinear sample complexity; they all rely on the minimum separation among the frequencies
to be at least c/T for c ≥ 1. [TBSR13] showed that a convex program can recover the frequencies
exactly in the noiseless setting, for c ≥ 4. This was improved in [CF14] to c ≥ 2 for complex signals
and c ≥ 1.87 for real signals. [CF14] also gave a result for c ≥ 2 that was stable to noise, but this
required the signal frequencies to be placed on a finely spaced grid. [YX15] gave a different convex
relaxation that empirically requires smaller c in the noiseless setting. [DB13] used model-based
compressed sensing when c = Ω(1), again without theoretical noise stability. Note that, in the
noiseless setting, exact recovery can be achieved without any frequency separation using Prony’s
method or Berlekamp-Massey syndrome decoding [Mas69]; the benefit of the above results is that
a convex program might be robust to noise, even if it has not been proven to be so.

In the noisy setting, [FL12] gave an extension of Orthogonal Matching Pursuit (OMP) that can
recover signals when c = Ω(k), with an approximation factor O(k), and a few other assumptions.
Similarly, [BCG+14] gave a method that required c = Ω(k) and was robust to certain kinds of noise.
[HK15] got the threshold down to c = O(1), in multiple dimensions, but with approximation factor
O(FTkO(1)).

[TBR15] shows that, under Gaussian noise and with separation c ≥ 4, a semidefinite program
can optimally estimate x∗(ti) at evenly spaced sample points ti from observations x∗(ti)+g(ti). This
is somewhat analogous to our setting, the differences being that (a) we want to estimate the signal
over the entire interval, not just the sampled points, (b) our noise g is adversarial, so we cannot
hope to reduce it—if g is also k-Fourier-sparse, we cannot distinguish x∗ and g, and of course (c)
we want to avoid requiring frequency separation.

In [PS15], we gave the first algorithm with O(1) approximation factor, finding the frequencies
when c & log(1/δ), and the signal when c & log(1/δ) + log2 k.

Now, all of the above results algorithms are designed to recover the frequencies; some of the ones
in the noisy setting then show that this yields a good approximation to the overall signal (in the
noiseless setting this is trivial). Such an approach necessitates c ≥ 1: [Moi15] gave a lower bound,
showing that any algorithm finding the frequencies with approximation factor 2o(k) must require
c ≥ 1.

Thus, in the current literature, we go from not knowing how to get any approximation for c < 1,
to getting a polynomial approximation at c = 1 and a constant approximation at c & log2 k. In this
work, we show how to get a constant factor approximation to the signal regardless of c.

5

Polynomial interpolation. Our result is a generalization of robust polynomial interpolation,
and in Theorem 1.2 we construct an optimal method for polynomial interpolation as a first step
toward interpolating Fourier-sparse signals.

Our result here can be seen as essentially an extension of a technique shown in [CDL13]. The
focus of [CDL13] is on the setting where sample points xi are chosen independently, so Θ(d log d)
samples are necessary. One of their examples, however, shows essentially the same thing as our
Corollary 4.2. From this, getting our theorem is not difficult.

The recent work [GZ16] looks at robust polynomial interpolation in a different noise model,
featuring `∞ bounded noise with some outliers. In this setting they can get a stronger `∞ guarantee
on the output than is possible in our setting.

Nyquist sampling. The classical method for learning bandlimited signals uses Nyquist sampling—
i.e., samples at rate 1/F , for FT points—and interpolates them using Shannon-Nyquist interpola-
tion. This doesn’t require any frequency gap, but also doesn’t benefit from sparsity like sparse
Fourier transform-based techniques. As discussed in [PS15], on the signal x(t) = 1 it takes
FT + O(1/δ) samples to get δ error on average. Our dependence is logarithmic on both those
terms.

1.2 Our techniques

Previous results on sparse Fourier transforms with robust recovery all required a frequency gap. So
consider the opposite situation, where all the frequencies converge to zero and the coefficients are
adjusted to keep the overall energy fixed. If we take a Taylor expansion of each complex exponential,
then the signal will converge to a degree k polynomial. So robust polynomial interpolation is a
necessary subproblem for our algorithm.

Polynomial interpolation. Let P (x) be a degree d polynomial, and suppose that we can query
f(x) = P (x) + g(x) over the interval [−1, 1], where g represents adversarial noise. We would like to
query f at O(d) points and output a degree d polynomial Q(x) such that ‖P −Q‖ . ‖g‖, where
we define ‖h‖2 :=

∫ 1
−1 |h(x)|2dx.

One way to do this would be to sample points S ⊂ [−1, 1] uniformly, then output the degree d
polynomial Q with the smallest empirical error

‖P + g −Q‖2S :=
1

|S|
∑

x∈S
|(P + g −Q)(x)|2

on the observed points. If ‖R‖S ≈ ‖R‖ for all degree d polynomials R, in particular for P −Q, then
since usually ‖g‖S . ‖g‖ by Markov’s inequality, the result follows.

This has two problems: first, uniform sampling is poor because polynomials like Chebyshev poly-
nomials can have most of their energy within O(1/d2) of the edges of the interval. This necessitates
Ω(d2) uniform samples before ‖R‖S ≈ ‖R‖ with good probability on a single polynomial. Second,
the easiest method to extend from approximating one polynomial to approximating all polynomials
uses a union bound over a net exponential in d, which would give an O(d3) bound.

To fix this, we need to bias our sampling toward the edges of the interval and we need our
sampling to not be iid. We partition [−1, 1] into O(d) intervals I1, . . . , In so that the interval
containing each x has width at most O(

√
1− x2), except for the O(1/d2) size regions at the edges.

For any degree d polynomial R and any choice of n points xi ∈ Ii, the appropriately weighted
empirical energy is close to ‖R‖. This takes care of both issues with uniform sampling. If the points

6

are chosen uniformly at random from within their intervals, then ‖g‖ is probably bounded as well,
and the empirically closest degree d polynomial Q will satisfy our requirements.

This result is shown in Section 4.

Clusters. Many previous sparse Fourier transform algorithms start with a one-sparse recovery
algorithm, then show how to separate frequencies to get a k-sparse algorithm by reducing to the
one-sparse case. Without a frequency gap, we cannot hope to reduce to the one-sparse case; instead,
we reduce to individual clusters of nearby frequencies.

Essentially the problem is that one cannot determine all of the high-energy frequencies of a
function x only by sampling it on a bounded interval, as some of the frequencies might cancel
each other out on this interval. We also cannot afford to work merely with the frequencies of the
truncation of x to the interval [0, T], as the truncation operation will spread the frequencies of x
over too wide a range. To fix this problem, we must do something in between the two. In particular,
we instead study x ·H for a judiciously chosen function H. We want H to approximate the indicator
function of the interval [0, T] and have small Fourier-support, supp(Ĥ) ⊂ [−kc/T, kc/T]. By using
some non-trivial lemmas about the growth rate of x∗, we can show that the difference between
x ·H on R and the truncation of x to [0, T] has small L2 mass, so that we can use the former as a
substitute for the latter.

On the other hand, the Fourier transform of x · H is the convolution x̂ ∗ Ĥ, which has most
of its mass within poly(k)/T of the frequencies of x∗. Although it is impossible to determine the
individual frequencies of x∗, we can hope to identify O(k) intervals each of length poly(k)/T so that
all but a small fraction of the energy of x̂ is contained within these intervals.

Note that many of these intervals will represent not individual frequencies of x∗, but small
clusters of such frequencies. Furthermore, some frequencies of x∗ might not show up in these
intervals either because they are too small, or because they cancel out other frequencies when
convolved with Ĥ.

One-cluster recovery. Given our notion of clusters, we start looking at Fourier-sparse interpola-
tion in the special case of one-cluster recovery. This is a generalization of one-sparse recovery where
we can have multiple frequencies, but they all lie in [f −∆, f + ∆] for some base frequency f and
bandwidth ∆ = kc/T . Because all the frequencies are close to each other, values x(a) and x(a+ β)
will tend to have ratio close to e2πifβ when β is small enough. We find that β < 1

∆
√
T∆

is sufficient,

which lets us figure out a frequency f̃ with |f̃ − f | ≤ ∆
√
T∆ = kO(1)/T .

Once we have the frequency f̃ , we can consider x′(t) = x(t)e−2πif̃ . This signal is k-Fourier-
sparse with frequencies bounded by kO(1)/T . By taking a Taylor approximation to each complex
exponential1, can show x∗ is δ-close to P (t)e2πif̃ for a degree d = O(kc + k log(1/δ)) polynomial P .
Thus we could apply our polynomial interpolation algorithm to recover the signal.

k-cluster frequency estimation. Reminiscent of algorithms such as [HIKP12a, PS15], we choose
random variables σ ≈ T/kc, a ∈ [0, 1], and b ∈ [0, 1/σ] and look at v ∈ Ckc given by

vi = (x ·H)(σ(i− a))e−2πiσbiG(i)

1There is a catch here, that the coefficients of the exponentials are potentially unbounded, if the frequencies are
arbitrarily close together. We first use Gram determinants to show that the signal is δ-close to one with frequency
gap δ2−k, and coefficients at most 2k/δ.

7

where G is a filter function. That is, G has compact support (supp(G) ⊂ [−kc, kc]), and Ĝ approx-
imates an interval of length Θ(2π

k). In other words, G is the same as Ĥ with different parameters:
an interval convolved with itself kc times, multiplied by a sinc function.

We alias v down to O(k) dimensions and take the discrete Fourier transform, getting û. It has
been implicit in previous work—and we make it explicit—that ûj is equal to zσa for a vector z
defined by

ẑ = (x̂ ∗ Ĥ) · Ĝ(j)
σ,b

where Ĝ(j)
σ,b is a particular permutation of Ĝ. In particular, Ĝ(j)

σ,b has period 1/σ, and approximates
an interval of size 1

σB within each period.
In previous work, when σ and b were chosen randomly, each individual frequency would have

a good chance of being the only frequency preserved in ẑ, and we could apply one-sparse recovery
by choosing a variety of a. Without a frequency gap we can’t quite say that: we pick 1/σ � ∆ so
that the entire cluster usually lands in the same bin, but then nearby clusters can also often land
in the same bin. Fortunately, it is still usually true that only nearby clusters will collide. Since our
1-cluster algorithm works when the signal frequencies are nearby, we apply it to find a frequency

approximation within
√
T/σ

σ = kO(1)/T of the cluster.
The above algorithm recovers each individual frequency with constant probability. By repeating

it O(log k) times, with high probability we find a list L of O(k) frequencies within kO(1)/T of each
significant cluster.

k-sparse recovery. Because different clusters aren’t anywhere close to orthogonal, we can’t simply
approximate each cluster separately and add them up. Instead, given the list L of candidate
frequencies, we consider the O(kd)-dimensional space of functions

x̃(t) :=
∑

f̃∈L

d∑

i=0

α
f̃ ,i
tie2πif̃ t

where d = O(kO(1) + log(1/δ)). We then take a bunch of random samples of x, and choose the x̃(t)
minimizing the empirical error using linear regression. This regression can be made slightly faster
using oblivious subspace embeddings [CW13], [NN13], [Woo14],[CNW15].

Our argument to show this works is analogous to the naive method we considered for polynomial
recovery. Similarly to the one-cluster setting, using Taylor approximations and Gram determinants,
we can show that this space includes a sufficiently close approximation to x. Since polynomials
are the limit of sparse Fourier as frequencies tend to zero, these functions are arbitrarily close to
O(kd)-Fourier-sparse functions. Hence we know that the maximum of |x̃(t)| is at most a poly(kd)
factor larger than its average over [0, T]. Using a net argument, this shows poly(kd) samples are
sufficient to find a good approximation to the nearest function in our space.

Growth rate of Fourier-sparse signals. We need that 1√
T
‖x∗ ·H‖2 ≈ ‖x∗‖T , whereH approx-

imates the interval 1[0,T]. Because H has support size kc/T , it has a transition region of size T/kc′

at the edges, and it decays as (t/T)−k
c′′ for t� T . The difference between 1√

T
‖x∗ ·H‖2 and ‖x∗‖T

involves two main components: mass in the transition region that is lost, and mass outside the
sampling interval that is gained. To show the approximation, we need that |x∗(t)| . Õ(k2) ‖x∗‖T
within the interval and |x∗(t)| . (kt/T)O(k) ‖x∗‖T outside.

8

We outline the bound of max
t∈[0,T]

|x∗(t)| in terms of its average ‖x∗‖T to bound |x∗(t)| within the

interval. Notice that we can assume |x∗(0)| = max
t∈[0,T]

|x∗(t)|: if t∗ = arg max
t∈[0,T]

|x∗(t)|2 is not 0 or T , we

can rescale the two intervals [0, t∗] and [t∗, T] to [0, T] separately. Then we show that for any t′, there
exist m = Õ(k2) and constants C1, · · · , Cm such that x∗(0) =

∑
j∈[m]Cj · x∗(j · t′). Then we take

the integration of t′ over [0, T/m] to bound |x∗(0)|2 by its average. For any outside t > T , we follow
this approach to show x∗(t) =

∑
j∈[k]Cj · x∗(tj) where tj ∈ [0, T] and |Cj | ≤ poly(k) · (kt/T)O(k)

for each j ∈ [k]. These results are shown in Section 5.

1.3 Organization

This paper is organized as follows. We provide a brief overview about signal recovery in Section 2.
We introduce some notations and tools in Section 3. Then we show our main Theorem 1.2 about
polynomial interpolation in Section 4. For signals with k-sparse Fourier transform, we show two
bounds on their growth rate in Section 5 and describe the hash functions and filter functions in
Section 6. We provide the algorithm for frequency estimation and its proof in Section 7. In Section 8,
we describe the algorithm for one-cluster recovery. In Section 9, we show the proof of Theorem 1.1.
We defer several technical proofs in Appendix A. Appendix B gives a summary of several well-
known facts are existing in literature. We provide the analysis of hash functions and filter functions
in Appendix C.

2 Proof Sketch

We first consider one-cluster recovery centered at zero, i.e., x∗(t) =
k∑
j=1

vj · e2πifjt where every fj is

in [−∆,∆] for some small ∆ > 0. The road map is to replace x∗ by a low degree polynomial P
such that ‖x∗(t) − P (t)‖2T . δ‖x∗‖2T then recover a polynomial Q to approximate P through the
observation x(t) = P (t) + g′(t) where g′(t) = g(t) +

(
x∗(t)− P (t)

)
.

A natural way to replace x∗(t) =
k∑
j=1

vje
2πifjt by a low degree polynomial P (t) is the Taylor

expansion. To bound the error after taking the low degree terms in the expansion by δ‖x∗‖T , we
show the existence of x′(t) =

k∑
j=1

v′je
2πif ′jt approximating x∗ on [0, T] with an extra property—any

coefficient v′j in x
′(t) has an upper bound in terms of ‖x′‖2T = 1

T

∫ T
0 |x′(t)|2dt. We prove the existence

of x′(t) via two more steps, both of which rely on the estimation of some Gram matrix constituted
by these k signals.

The first step is to show the existence of a k-Fourier-sparse signal x′(t) with frequency gap
η ≥ exp(− poly(k))·δ

T that is sufficiently close to x∗(t).

Lemma 2.1. There is a universal constant C1 > 0 such that, for any x∗(t) =
k∑
j=1

vje
2πifjt and any

δ > 0 , there always exist η ≥ δ
T · k−C1k2 and x′(t) =

k∑
j=1

v′je
2πif ′jt satisfying

‖x′(t)− x∗(t)‖T ≤ δ‖x∗(t)‖T

with min
i 6=j
|f ′i − f ′j | ≥ η and max

j∈[k]
{|f ′j − fj |} ≤ kη.

9

We outline our approach and defer the proof to Section 8. We focus on the replacement of one
frequency fk in x∗ =

∑
j∈[k] vje

2πifjt by a new frequency fk+1 6= fk and its error. The idea is to
consider every signal e2πifjt as a vector and prove that for any vector x∗ in the linear subspace
span{e2πifjt|j ∈ [k]}, there exists a vector in the linear subspace span{e2πifk+1t, e2πifjt|j ∈ [k − 1]}
with distance at most exp(k2) · (|fk − fk+1|T) · ‖x∗‖T to x∗.

The second step is to lower bound ‖x′‖2T by its coefficients through the frequency gap η in x′.

Lemma 2.2. There exists a universal constant c > 0 such that for any x(t) =
k∑
j=1

vje
2πifjt with

frequency gap η = min
i 6=j
|fi − fj |,

‖x(t)‖2T ≥ k−ck
2

min
(

(ηT)2k, 1
) k∑

j=1

|vj |2.

Combining Lemma 2.1 and Lemma 2.2, we bound |v′j | by exp(poly(k)) · δ−O(k) · ‖x′‖T for any
coefficient v′j in x′. Now we apply the Taylor expansion on x′(t) and keep the first d = O(∆T +

poly(k) + k log 1
δ) terms of every signal v′j · e2πif ′jt in the expansion to obtain a polynomial P (t) of

degree at most d. To bound the distance between P (t) and x′(t), we observe that the error of every
point t ∈ [0, T] is at most (2π∆·T

d)d
∑

j |v′j |, which can be upper bounded by δ‖x′(t)‖T via the above
connection. We summarize all discussion above as follows.

Lemma 2.3. For any ∆ > 0 and any δ > 0, let x∗(t) =
∑

j∈[k] vje
2πifjt where |fj | ≤ ∆ for each

j ∈ [k]. There exists a polynomial P (t) of degree at most

d = O(T∆ + k3 log k + k log 1/δ)

such that
‖P (t)− x∗(t)‖2T ≤ δ‖x∗‖2T .

To recover x∗(t), we observe x(t) as a degree d polynomial P (t) with noise. We use properties
of the Legendre polynomials to design a method of random sampling such that we only need O(d)
random samples to find a polynomial Q(t) approximating P (t).

Theorem 1.2. For any degree d polynomial P (t) and an arbitrary function g(t), Procedure Ro-
bustPolynomialLearning in Algorithm 5 takes O(d) samples from x(t) = P (t)+g(t) over [0, T]
and reports a degree d polynomial Q(t) in time O(dω) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2T . ‖g(t)‖2T .

where ω < 2.373 is matrix multiplication exponent [Str69],[CW87],[Wil12].

We can either report the polynomial Q(t) or transfer Q(t) to a signal with d-sparse Fourier
transform. We defer the technical proofs and the formal statements to Section 8 and discuss the
recovery of k clusters from now on.

As mentioned before, we apply the filter function (H(t), Ĥ(f)) on x∗ such that x̂∗ ·H has at
most k clusters given x̂∗ with k-sparse Fourier transform. First, we show that all frequencies in the
“heavy” clusters of x̂∗ ·H constitute a good approximation of x∗ in Section 9.

10

Definition 2.4. Given x∗(t) =
k∑
j=1

vje
2πifjt, any N > 0, and a filter function (H, Ĥ) with bounded

support in frequency domain. Let Lj denote the interval of supp(̂e2πifjt ·H) for each j ∈ [k].
Define an equivalence relation ∼ on the frequencies fi by the transitive closure of the relation

fi ∼ fj if Li ∩ Lj 6= ∅. Let S1, . . . , Sn be the equivalence classes under this relation.
Define Ci = ∪

f∈Si
Li for each i ∈ [n]. We say Ci is a “heavy” cluster iff

∫
Ci
|Ĥ · x∗(f)|2df ≥

T · N 2/k.

Claim 2.5. Given x∗(t) =
k∑
j=1

vje
2πifjt and any N > 0, let H be the filter function defined in

Appendix C.1 and C1, · · · , Cl be the heavy clusters from Definition 2.4. For

S =

{
j ∈ [k]

∣∣∣∣fj ∈ C1 ∪ · · ·Cl
}
,

we have x(S)(t) =
∑
j∈S

vje
2πifjt approximating x∗ within distance ‖x(S)(t)− x∗(t)‖2T . N 2.

Hence it is enough to recover x(S) for the recovery of x∗. Let ∆h denote the bandwidth of Ĥ.
In Section 7, we choose ∆ > k ·∆h such that for any j ∈ S,

∫ fj+∆
fj−∆ |Ĥ · x∗(f)|2df ≥ T · N 2/k from

the fact |Ci| ≤ k · ∆h. Then we prove Theorem 2.6 in Section 7, which finds O(k) frequencies to
cover all heavy clusters of x̂∗ ·H.

Theorem 2.6. Let x∗(t) =
k∑
j=1

vje
2πifjt and x(t) = x∗(t) + g(t) be our observable signal where

‖g(t)‖2T ≤ c‖x∗(t)‖2T for a sufficiently small constant c. Then Procedure FrequencyRecov-
eryKCluster returns a set L of O(k) frequencies that covers all heavy clusters of x∗, which
uses poly(k, log(1/δ)) log(FT) samples and poly(k, log(1/δ)) log2(FT) time. In particular, for ∆ =
poly(k, log(1/δ))/T and N 2 := ‖g(t)‖2T + δ‖x∗(t)‖2T , with probability 1− 2−Ω(k), for any f∗ with

∫ f∗+∆

f∗−∆
|x̂ ·H(f)|2df ≥ TN 2/k, (2)

there exists an f̃ ∈ L satisfying
|f∗ − f̃ | . ∆

√
∆T .

Let L = {f̃1, · · · , f̃l} be the list of frequencies from the output of Procedure FrequencyRe-
coveryKCluster in Theorem 2.6. The guarantee is that, for any fj in x(S), there exists some
pj ∈ [l] such that |f̃pj − fj | . ∆

√
∆T for ∆ = poly(k, log(1/δ))/T . Hence we rewrite x(S)(t) =

∑
i∈[l] e

2πif̃it(
∑

j∈S:pj=i
e2πi(fj−f̃i)t). For each i ∈ [l], we apply Lemma 2.3 of one-cluster recovery on

∑
j∈S:pj=i

e2πi(fj−f̃i)t to approximate it by a degree d polynomial Pi(t).

Now we consider x(t) =
∑

i∈[l] e
2πif̃it · Pi(t) + g′′(t) where ‖g′′(t)‖T . ‖g(t)‖T + δ‖x∗(t)‖T . To

recover
∑

i∈[l] e
2πif̃it · Pi(t), we treat it as a vector in the linear subspace

V = span

{
e2πif̃it · tj

∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}

with dimension at most l(d+ 1) and find a vector in this linear subspace approximating it.

11

We show that for any v ∈ V , the average of poly(kd) random samples on v is enough to estimate
‖v‖2T . In particular, any vector in this linear subspace satisfies that the maximum of it in [0, T] has
an upper bound in terms of its average in [0, T]. Then we apply the Chernoff bound to prove that
poly(kd) random samples are enough for the estimation of one vector v ∈ V .

Claim 2.7. For any ~u ∈ span

{
e2πif̃it · tj

∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}
, there exists some universal con-

stants C1 ≤ 4 and C2 ≤ 3 such that

max
t∈[0,T]

{|~u(t)|2} . (ld)C1 logC2(ld) · ‖~u‖2T

At last we use an ε-net to argue that poly(kd) random samples from [0, T] are enough to
interpolate x(t) by a vector v ∈ V . Because the dimension of this linear subspace is at most
l(d + 1) = O(kd), there exists an ε-net in this linear subspace for unit vectors with size at most
exp(kd). Combining the Chernoff bound on all vectors in the ε-net and Claim 2.7, we know that
poly(kd) samples are sufficient to estimate ‖v‖2T for any vector v ∈ V . In Section 9, we show that
a vector v ∈ V minimizing the distance on poly(kd) random samples is a good approximation for∑

i∈[l] e
2πif̃it · Pi(t), which is a good approximation for x∗(t) from all discussion above.

Theorem 1.1. Let x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies in
[−F, F]. Given samples of x over [0, T] we can output x̃(t) such that with probability at least
1− 2−Ω(k),

‖x̃− x∗‖T . ‖g‖T + δ ‖x∗‖T .
Our algorithm uses poly(k, log(1/δ)) · log(FT) samples and poly(k, log(1/δ)) · log2(FT) time. The
output x̃ is poly(k, log(1/δ))-Fourier-sparse signal.

3 Preliminaries

We first provide some notations in Section 3.1 and basic Fourier facts in Section 3.2. Then we
review some probability inequalities in Section 3.3. At last, we introduce Legendre polynomials in
Section 3.4 and review some basic properties of Gram matrix and its determinant in Section 3.5.

3.1 Notation

For any function f , we define Õ(f) to be f · logO(1)(f). We use [n] to denote {1, 2, · · · , n}. Let i
denote

√
−1. For any Complex number z = a + ib ∈ C, where a, b ∈ R. We define z to be a − ib

and |z| =
√
a2 + b2 such that |z|2 = zz. For any function f(t) : R → C, we use supp(f) to denote

the support of f .
For convenience, we define the sinc function and the Gaussian distribution Gaussianµ,σ on R

with expectation µ and variance σ2 as follows:

sinc(t) =
sin(πt)

πt
, Gaussianµ,σ(t) =

1

σ
√

2π
e−

(t−µ)2

2σ2 .

For a fixed T > 0, we define the inner product of two functions x, y : [0, T]→ C as

〈x, y〉T =
1

T

∫ T

0
x(t)y(t)dt.

We define the ‖ · ‖T norm as

‖x(t)‖T =
√
〈x(t), x(t)〉T =

√
1

T

∫ T

0
|x(t)|2dt.

12

Combs

0−s−2s s 2s

rects

− s2 s
2

sincs

− 1
s

1
s

Gaussianµ,σ

µ

Figure 1: A picture of a Combs, rects, sincs, Gaussianµ,σ .

3.2 Facts about the Fourier transform

In this work, we always use x(t) to denote a signal from R→ C. The Fourier transform x̂(f) of an
integrable function x : R→ C is defined as

x̂(f) =

∫ +∞

−∞
x(t)e−2πiftdt, for any real number f.

Similarly, x(t) is determined from x̂(f) by the inverse transform:

x(t) =

∫ +∞

−∞
x̂(f)e2πiftdf, for any real number t.

Let CFT denote the continuous Fourier transform, DTFT denote the discrete-time Fourier
transform, DFT denote the discrete Fourier transform, and FFT denote the fast Fourier transform.

For any signal x(t) and n ∈ N+, we define x∗n(t) = x(t) ∗ · · · ∗ x(t)︸ ︷︷ ︸
n

and x̂·n(f) = x̂(f) · · · · · x̂(f)︸ ︷︷ ︸
n

.

Fact 3.1. Let δ∆(f) denote the Dirac delta at ∆. Then

δ̂∆(t) =

∫ +∞

−∞
δ∆(f)e2πiftdf = e2πit∆.

Fact 3.2. For any s > 0, let Combs(t) =
∑
j∈Z

δjs(t). Then the Fourier transform of Combs(t) is

Ĉombs(f) =
1

s
Comb1/s(f).

The following fact says the the Fourier transform of a rectangle function is a sinc function.

13

Fact 3.3. We use

rects(t) =

{
1 if |t| ≤ s

2 ,

0 otherwise.

Then the Fourier transform of rects(t) is r̂ects(f) = sin(πfs)
πfs = sinc(fs).

The Fourier transform of a Gaussian function is another Gaussian function.

Fact 3.4. For Gaussianµ,σ(t) = 1
σ
√

2π
e−

(t−µ)2

2σ2 . Then the Fourier transform is

̂Gaussianµ,σ(f) = e−2πifu 1

σ
√

2π
Gaussian0,σ′(f) for σ′ = 1/(2πσ).

Proof. From the definition of the Fourier transform,

̂Gaussianµ,σ(f) =

∫ +∞

−∞

1

σ
√

2π
e−

(t−µ)2

2σ2 e−2πiftdt

= e−2πifu

∫ +∞

−∞

1

σ
√

2π
e−

t2

2σ2 e−2πiftdt

= e−2πifu

∫ +∞

−∞

1

σ
√

2π
e−

(t+2πiσ2f)2

2σ2
−2π2f2σ2

dt

= e−2πifue−
f2

2σ′2

where σ′ = 1/(2σπ), which is e−2πifu · σ′
√

2π ·Gaussian0,σ′(f).

3.3 Tools and inequalities

From the Chernoff Bound (Lemma B.2), we show that if the maximum of a signal is bounded by d
times its energy over some fixed interval, then taking more than d samples (each sample is drawn
i.i.d. over that interval) suffices to approximate the energy of the signal on the interval with high
probability.

Lemma 3.5. Given any function x(t) : R→ C with max
t∈[0,T]

|x(t)|2 ≤ d‖x(t)‖2T . Let S denote a set of

points from 0 to T . If each point of S is chosen uniformly at random from [0, T], we have

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S
|x(ti)|2 − ‖x(t)‖2T]

∣∣∣∣∣ ≥ ε‖x(t)‖2T

]
≤ e−Ω(ε2|S|/d)

We provide a proof in Appendix A.5.
Because d · 1

2d + 1
2 · (1− 1

2d) ≤ 1, we have the following inequality when the maximum of |x(t)|2
is at most d times its average.

Lemma 3.6. Given any function x(t) : R→ C with max
t∈[0,T]

|x(t)|2 ≤ d‖x(t)‖2T . Let S denote a set of

points from 0 to T . For any point a is sampled uniformly at random from [0, T], we have,

Pr
a∼[0,T]

[
|x(a)|2 ≥ 1

2
‖x(t)‖2T

]
≥ 1

2d
.

14

3.4 Legendre polynomials

We provide an brief introduction to Legendre polynomials (please see [Dun10] for a complete intro-
duction). For convenience, we fix ‖f(t)‖2T = 1

2

∫ 1
−1 |f(t)|2dt in this section.

Definition 3.7. Let Ln(x) denote the Legendre polynomials of degree n, the solution to Legendre’s
differential equation:

d

dx

[
(1− x2)

d

dx
Ln(x)

]
+ n(n+ 1)Ln(x) = 0 (3)

We will the following two facts about the Legendre polynomials in this work.

Fact 3.8. Ln(1) = 1 for any n ≥ 0 in the Legendre polynomials.

Fact 3.9. The Legendre polynomials constitute an orthogonal basis with respect to the inner product
on interval [−1, 1]: ∫ 1

−1
Lm(x)Ln(x)dx =

2

2n+ 1
δmn

where δmn denotes the Kronecker delta, i.e., it equals to 1 if m = n and to 0 otherwise.

For any polynomial P (x) of degree at most d with complex coefficients, there exists a set of
coefficients from the above properties such that

P (x) =
d∑

i=0

αi · Li(x), where αi ∈ C, ∀i ∈ {0, 1, 2, · · · , d}.

Lemma 3.10. For any polynomial P (t) of degree at most d from R to C, for any interval [S, T],

max
t∈[S,T]

|P (t)|2 ≤ (d+ 1)2 · 1

T − S

∫ T

S
|P (t)|2dx.

We provide a proof in Appendix A.6.

3.5 Gram matrix and its determinant

We provide an brief introduction to Gramian matrices (please see [Haz01] for a complete introduc-
tion). We use 〈x, y〉 to denote the inner product between vector x and vector y.

Let ~v1, · · · , ~vn be n vectors in an inner product space and span{~v1, · · · , ~vn} be the linear subspace

spanned by these n vectors with coefficients in C, i.e.,

{
∑
i∈[n]

αi~vi|∀i ∈ [n], αi ∈ C

}
. The Grammatrix

Gramn of ~v1, · · · , ~vn is an n×n matrix defined as Gramn(i, j) = 〈~vi, ~vj〉 for any i ∈ [n] and j ∈ [n].

Fact 3.11. det(Gramn) is the square of the volume of the parallelotope formed by ~v1, · · · , ~vn.
Let Gramn−1 be the Gram matrix of ~v1, · · · , ~vn−1. Let ~v

‖
n be the projection of vn onto the linear

subspace span{~v1, · · · , ~vn−1} and ~v⊥n = ~vn − ~v‖n. We use ‖~v‖ to denote the length of ~v in the inner
product space, which is

√
〈~v,~v〉.

Claim 3.12.
‖~v⊥n ‖2 =

det(Gramn−1)

det(Gramn)
.

Proof.

det(Gramn) = volume2(~v1, · · · , ~vn) = volume2(~v1, · · · , ~vn−1) · ‖~v⊥n ‖2 = det(Gramn) · ‖~v⊥n ‖2.

15

4 Robust Polynomial Interpolation Algorithm

In Section 4.1, we show how to learn a low degree polynomial by using linear number of samples,
running polynomial time, and achieving constant success probability. In Section 4.2, we show to
how boost the success probability by rerunning previous algorithm several times.

4.1 Constant success probability

We show how to learn a degree-d polynomial P with n = O(d) samples and prove Theorem 1.2 in
this section. For convenience, we first fix the interval to be [−1, 1] and use ‖f‖2[−1,1] = 1

2

∫ 1
−1 |f(t)|2dt.

Lemma 4.1. Let d ∈ N and ε ∈ R+, there exists an efficient algorithm to compute a partition of
[−1, 1] to n = O(d/ε) intervals I1, · · · , In such that for any degree d polynomial P (t) : R → C and
any n points x1, · · · , xn in the intervals I1, · · · , In respectively, the function Q(t) defined by

Q(t) = P (xj) if t ∈ Ij

approximates P by
‖Q− P‖[−1,1] ≤ ε‖P‖[−1,1]. (4)

One direct corollary from the above lemma is that observing n = O(d/ε) points each from
I1, · · · , In provides a good approximation for all degree d polynomials. For any set S = {t1, · · · , tm}
where each ti ∈ [−1, 1] and a distribution with support {w1, · · · , wm} on S where

m∑
i=1
wi = 1 and

wi ≥ 0 for each i ∈ [m], we define ‖x‖S,w = (
∑m

i=1wi · |x(ti)|2)1/2.

Corollary 4.2. Let I1, · · · , In be the intervals in the above lemma and wj = |Ij |/2 for each j ∈ [n].
For any x1, · · · , xn in the intervals I1, · · · , In respectively, we consider S = {x1, · · · , xn} with the
distribution w1, · · · , wn. Then for any degree d polynomial P , we have

‖P‖S,w ∈
[
(1− ε)‖P‖[−1,1], (1 + ε)‖P‖[−1,1]

]
.

We first state the main technical lemma and finish the proof of the above lemma (we defer the
proof of Lemma 4.3 to Appendix A.3).

Lemma 4.3. For any degree d polynomial P (t) : R→ C with derivative P ′(t), we have,
∫ 1

−1
(1− t2)|P ′(t)|2dt ≤ 2d2

∫ 1

−1
|P (t)|2dt. (5)

Proof of Lemma 4.1. We set m = 10d/ε and show a partition of [−1, 1] into n ≤ 20m intervals.
We define g(t) =

√
1−t2
m and y0 = 0. Then we choose yi = yi−1 + g(yi−1) for i ∈ N+. Let l be the

first index of y such that yl ≥ 1− 9
m2 . We show l . m.

Let jk be the first index in the sequence such that yjk ≥ 1− 2−k. Notice that

j2 ≤
3/4√

1−(3/4)2

m

≤ 1.5m

and

yi − yi−1 = g(yi−1) =

√
1− y2

i−1

m
≥
√

1− yi−1

m
.

16

Then for all k > 2, we have

jk − jk−1 ≤
2−k√

1−y(jk−1)

m

≤ 2−k/2m.

Therefore jk ≤
(
1.5 + (2−3/2 + · · · 2−k/2)

)
m and l ≤ 10m.

Because yl−1 ≤ 1− 9
m2 , for any j ∈ [l] and any x ∈ [yi−1, yi], we have the following property:

1− x2

m2
≥ 1

2
· (1− y2

i−1)

m2
= (yi − yi−1)2/2. (6)

Now we set n and partition [−1, 1] into I1, · · · , In as follows:

1. n = 2(l + 1).

2. For j ∈ [l], I2j−1 = [yj−1, yj] and I2j = [−yj ,−yj−1].

3. I2l+1 = [yl, 1] and I2l+2 = [−1,−yl].

For any x1, · · · , xn where xj ∈ Ij for each j ∈ [n], we rewrite the LHS of (4) as follows:

n−2∑

j=1

∫

Ij

|P (xj)− P (t)|2 dt

︸ ︷︷ ︸
A

+

∫

In−1

|P (xn−1)− P (t)|2 dt+

∫

In

|P (xn)− P (t)|2 dt

︸ ︷︷ ︸
B

. (7)

For A in Equation (7), from the Cauchy-Schwarz inequality, we have

n−2∑

j=1

∫

Ij

|P (xj)− P (t)|2 dt =
n−2∑

j=1

∫

Ij

∣∣∣∣∣

∫ t

xj

P ′(y)dy

∣∣∣∣∣

2

dt ≤
n−2∑

j=1

∫

Ij

|t− xj |
∫ t

xj

|P ′(y)|2dydt.

Then we swap dt with dy and use Equation (6):

n−2∑

j=1

∫

Ij

|P ′(y)|2
∫

t/∈(xj ,y)
|t− xj |dtdy ≤

n−2∑

j=1

∫

Ij

|P ′(t)|2 · |Ij |2dt ≤
n−2∑

j=1

∫

Ij

|P ′(t)|2 2(1− t2)

m2
dt.

We use Lemma 4.3 to simplify it by

n−2∑

j=1

∫

Ij

|P (xj)− P (t)|2 dt ≤
∫ 1

−1
|P ′(t)|2 2(1− t2)

m2
dt ≤ 2d2

m2

∫ 1

−1
|P (t)|2dt.

For B in Equation (7), notice that |In−1| = |In| = 1− yl ≤ 9m−2 and for j ∈ {n− 1, n}

|P (t)− P (xj)|2 ≤ 4 max
t∈[−1,1]

|P (t)|2 ≤ 4(d+ 1)2‖P‖2[−1,1]

from the properties of degree-d polynomials, i.e., Lemma 3.10. Therefore B in Equation (7) is upper
bounded by 2 · 4(d+ 1)2(9m−2)‖P (t)‖2[−1,1].

From all discussion above, ‖Q(t)− P (t)‖2[−1,1] ≤ 99d2

m2 ≤ ε2.

Now we use the above lemma to provide a faster learning algorithm for polynomials on interval
[−1, 1] with noise instead of using the ε-nets argument. Algorithm RobustPolynomialLearn-
ingFixedInterval works as follows:

17

1. Let ε = 1/20 and I1, · · · , In be the intervals for d and ε in Lemma 4.1.

2. Random choose xj ∈ Ij for every j ∈ [n] and define S = {x1, · · · , xn} with weight w1 =
|I1|
2 , · · · , wn = |In|

2 .

3. Find the degree d polynomial Q(t) that minimizes ‖P (t)−Q(t)‖S,w using Fact B.3.

Lemma 4.4. For any degree d polynomial P (t) and an arbitrary function g(t), Algorithm Robust-
PolynomialLearningFixedInterval takes O(d) samples from x(t) = P (t) + g(t) over [−1, 1]
and reports a degree d polynomial Q(t) in time O(dω) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2[−1,1] . ‖g(t)‖2[−1,1].

Proof. Notice that n = O(d/ε) = O(d) and the running time depends on solving a linear regression
problem(Fact B.3), which takes O(dω) time. It is enough to bound the distance between P and
Q:

‖P −Q‖[−1,1]

≤ 1.09‖P −Q‖S,w by Corollary 4.2
= 1.09‖x− g −Q‖S,w by x = P + g

≤ 1.09‖g‖S,w + 1.09‖x−Q‖S,w by triangle inequality
≤ 1.09‖g‖S,w + 1.09‖x− P‖S,w Q = arg min

degree-d R
‖R− x‖S,w

≤ 2.2‖g‖S,w
Because E

S
[‖g‖2S,w] = ‖g‖2[−1,1], we know that ‖P −Q‖[−1,1] ≤ 2200‖g‖[−1,1] with probability ≥ .999

by using Markov’s inequality.

For any function f : [0, T]→ C, let f̃(t) = f(2t−T
T). Then ‖f̃‖[−1,1] = ‖f‖T from the definition.

Hence we can switch any interval [0, T] to [−1, 1] and use Lemma 4.4.

Theorem 1.2. For any degree d polynomial P (t) and an arbitrary function g(t), Procedure Ro-
bustPolynomialLearning in Algorithm 5 takes O(d) samples from x(t) = P (t)+g(t) over [0, T]
and reports a degree d polynomial Q(t) in time O(dω) such that, with probability at least 99/100,

‖P (t)−Q(t)‖2T . ‖g(t)‖2T .
where ω < 2.373 is matrix multiplication exponent [Str69],[CW87],[Wil12].

4.2 Boosting success probability

Notice that the success probability of Theorem 1.2 is only constant, and the proof technique of
obtaining that result cannot be modified to 1 − 1/poly(d) or 1 − 2−Ω(d) success probability due
to using Markov’s inequality. However, we can use that algorithm as a black box, and rerun it
O(log(1/p)) (for any p > 0) times on fresh samples. Using the careful median analysis from [MP14]
gives

Theorem 4.5. For any degree d polynomial P (t), an arbitrary function g(t), and any p > 0, Pro-
cedure RobustPolynomialLearning+ in Algorithm 5 takes O(d log(1/p)) samples from x(t) =
P (t)+g(t) over [0, T] and reports a degree d polynomial Q(t) in time O(dω log(1/p)) such that, with
probability at least 1− p,

‖P (t)−Q(t)‖2T . ‖g(t)‖2T .
where ω < 2.373 is matrix multiplication exponent.

18

Proof. We run algorithm RobustPolynomialLearning R rounds with O(d) independent and
fresh samples per round. We will obtain R degree-d polynomials Q1(t), Q2(t), · · · , QR(t). We say a
polynomial Qi(t) is good if ‖Qi(t)−P (t)‖2T . ‖g(t)‖2T . Using the Chernoff bound, with probability
at least 1 − 2−Ω(R), at least a 3/4 fraction of the polynomials are “good”. We output polynomial
Q(t) = Qj∗(t) such that

j∗ = arg min
j∈[R]

(median{‖Qj(t)−Q1(t)‖2T , ‖Qj(t)−Q2(t)‖2T , · · · , ‖Qj(t)−QR(t)‖2T }) (8)

The Equation (8) can be solved in following straightforward way. For i 6= j, it takes O(d) time to
compute ‖Qj(t) − Qi(t)‖2T . Because of the number of pairs is O(R2), thus it takes O(R2d) time
write down a R × R matrix. For each column, we run linear time 1-median algorithm. This step
takes O(R2) time. At the end, j∗ is index of the column that has the smallest median value. Thus,
polynomial Q(t) = Qj∗(t) 1 the 0 with probability at least 1− p by choosing R = O(log(1/p)). The
running time is not optimized yet.

To improve the dependence on R for running time, we replace the step of solving Equation (8)
by an approach that is similar to [MP14]. We choose a new set of samples S, say S = {t1, t2, · · · , tn}
and n = O(d). Using Fact B.4, we can compute Qi(tj) for all i, j ∈ [R]× [n] in O(Rdpoly(log(d)))
time. Define

Q̃j = median
i∈[R]

Qi(tj),∀j ∈ [n]. (9)

Our algorithm will output a degree-d polynomial Q which is the optimal solution of this problem,
min

degree-d Q′
‖Q′−Q̃‖S,w.2 In the rest of the proof, we will show that ‖Q−P‖T . ‖g‖T with probability

at least 1− 2−Ω(R).
Notice that Equation (9) implies that Q̃j − P (tj) = median

i∈[R]
(Qi(tj)− P (tj)). Fix a coordinate j

and applying the proof argument of Lemma 6.1 in [MP14], we have

(Q̃j − P (tj))
2 . mean

good i
(Qi(tj)− P (tj))

2

Taking the weighted summation over all the coordinates j, we have

‖Q̃− P‖2S,w . mean
good i

‖Qi − P‖2S,w

Using Corollary 4.2, for each good i,

‖Qi − P‖2S,w . ‖Qi − P‖2T
Combining the above two inequalities gives

‖Q̃− P‖2S,w . mean
good i

‖Qi − P‖2T . ‖g‖2T (10)

Because Q is the optimal solution for Q̃, then

‖Q̃−Q‖2S,w ≤ ‖Q̃− P‖2S,w . ‖g‖2T (11)

Using Corollary 4.2 and for any good i, i′, ‖Qi − Qi′‖T . ‖g‖T , we can replace P by Qi′ in the
Equation (10). Thus, for any Qi′ where i′ is good,

‖Q̃−Qi′‖2S,w . ‖g‖2T (12)

2Outputting Q = argmin
degree-d Q′

‖Q′ − x‖S,w is not good enough, because it only gives constant success probability.

19

For any good i′,

‖Qi′ −Q‖T
. ‖Qi′ −Q‖S,w by Corollary 4.2

≤ ‖Qi′ − Q̃‖S,w + ‖Q̃−Q‖S,w by triangle inequality
. ‖g‖T by Equation (11) and (12)

Thus, our algorithm takesO(dR) samples from x(t) = P (t)+g(t) over [0, T] and reports a polynomial
Q(t) in time O(Rdω) such that, with probability at least 1 − 2−Ω(R), ‖P (t) − Q(t)‖2T . ‖g(t)‖2T .
Choosing R = O(log(1/p)) completes the proof.

5 Bounding the Magnitude of a Fourier-sparse Signal in Terms of
Its Average Norm

The main results in this section are two upper bounds, Lemma 5.1 on max
t∈[0,T]

|x(t)|2 and Lemma 5.5

on |x(t)|2 for t > T , in terms of the typical signal value ‖x‖2T = 1
T

∫ T
0 |x(t)|2dt. We prove Lemma

5.1 in Section 5.1 and Lemma 5.5 in Section 5.2

5.1 Bounding the maximum inside the interval

The goal of this section is to prove Lemma 5.1.

Lemma 5.1. For any k-Fourier-sparse signal x(t) : R→ C and any duration T , we have

max
t∈[0,T]

|x(t)|2 . k4 log3 k · ‖x‖2T

Proof. Without loss of generality, we fix T = 1. Then ‖x‖2T =
∫ 1

0 |x(t)|2dt. Because ‖x‖2T is the
average over the interval [0, T], if t∗ = arg max

t∈[0,T]
|x(t)|2 is not 0 or T = 1, we can rescale the two

intervals [0, t∗] and [t∗, T] to [0, 1] and prove the desired property separately. Hence we assume
|x(0)|2 = max

t∈[0,T]
|x(t)|2 in this proof.

Claim 5.2. For any k, there exists m = O(k2 log k) such that for any k-Fourier-sparse signal x(t),
any t0 ≥ 0 and τ > 0, there always exist C1, · · · , Cm ∈ C such that the following properties hold,

Property I |Cj | ≤ 11 for all j ∈ [m],

Property II x(t0) =
∑

j∈[m]

Cj · x(t0 + j · τ).

We first use this claim to finish the proof of Lemma 5.1. We choose t0 = 0 such that ∀τ > 0,
there always exist C1, · · · , Cm ∈ C, and

x(0) =
∑

j∈[m]

Cj · x(j · τ).

By the Cauchy-Schwarz inequality, it implies that for any τ ,

|x(0)|2 ≤ m
∑

j∈[m]

|Cj |2|x(j · τ)|2

. m
∑

j∈[m]

|x(j · τ)|2. (13)

20

At last, we obtain

|x(0)|2 = m

∫ 1/m

0
|x(0)|2dτ

. m ·
∫ 1/m

0
(m

m∑

j=1

|x(j · τ)|2)dτ

= m2 ·
m∑

j=1

∫ 1/m

0
|x(j · τ)|2dτ

= m2 ·
m∑

j=1

1

j

∫ j/m

0
|x(τ)|2dτ

≤ m2 ·
m∑

j=1

1

j
·
∫ 1

0
|x(τ)|2dτ

. m2 logm · ‖x‖2T
where the first inequality follows by Equation (13), the second inequality follows by j/m ≤ 1
and the last step follows by

∑m
i=1

1
i = O(logm). From m = O(k2 log k), we obtain |x(0)|2 =

O(k4 log3 k‖x‖2T).

To prove Claim 5.2, we use the following lemmas about polynomials. We defer their proofs to
Appendix A.2.

Lemma 5.3. Let Q(z) be a degree k polynomial, all of whose roots are complex numbers with
absolute value 1. For any integer n, let rn,k(z) =

∑k−1
l=0 r

(l)
n,k · zl denote the residual polynomial of

rn,k(z) ≡ zn (mod Q(z)).

Then, each coefficient of rn,k is bounded: |r(l)
n,k| ≤ 2knk−1 for any l.

Lemma 5.4. For any k ∈ Z and any z1, · · · , zk on the unit circle of C, there always exists a degree

m = O(k2 log k) polynomial P (z) =
m∑
j=0

cjz
j with the following properties:

Property I P (zi) = 0,∀i ∈ {1, · · · , k},
Property II c0 = 1,

Property III |cj | ≤ 11,∀j ∈ {1, · · · ,m}.

Proof of Claim 5.2. For x(t) =
k∑
i=1
vie

2πifit, we fix t0 and τ then rewrite x(t0+j ·τ) as a polynomial

of bi = vi · e2πifit0 and zi = e2πifiτ for each i ∈ [k].

x(t0 + j · τ) =

k∑

i=1

vie
2πifi·(t0+j·τ)

=
k∑

i=1

vie
2πifit0 · e2πifi·jτ

=

k∑

i=1

bi · zji .

21

Given k and z1, · · · , zk, let P (z) =
∑m

j=0 cjz
j be the degree m polynomial in Lemma 5.4.

m∑

j=0

cjx(t0 + jτ) =

m∑

j=0

cj

k∑

i=1

bi · zji

=

k∑

i=1

bi

m∑

j=0

cj · zji

=

k∑

i=1

biP (zi)

= 0, (14)

where the last step follows by Property I of P (z) in Lemma 5.4. From the Property II and III of
P (z), we obtain x(t0) = −∑m

j=1 cjx(t0 + jτ).

5.2 Bounding growth outside the interval

Here we show signals with sparse Fourier transform cannot grow too quickly outside the interval.

Lemma 5.5. Let x(t) be a k-Fourier-sparse signal. For any T > 0 and any t > T ,

|x(t)|2 ≤ k7 · (2kt/T)2.5k · ‖x‖2T .
Proof. For any t > T , let t = t0 + n · τ such that t0 ∈ [0, T/k], τ ∈ [0, T/k] and n ≤ 2kt

T . We define
bi = vie

2πifit0 , and zi = e2πifiτ such that x(t0 + n · τ) =
∑

j∈[k] bjz
n
j .

By Lemma 5.3, we have for any z1, z2, · · · , zk and any n,

zn ≡
k−1∑

i=0

aiz
i (mod

k∏

i=1

(z − zi)),

where |ai| ≤ 2k · nk,∀i ∈ {0, 1, · · · , k − 1}. Thus, we obtain

x(t0 + nτ) =

k∑

j=1

bjz
n
j =

k∑

j=1

bj(

k−1∑

i=0

aiz
i
j).

From the fact that x(t0 + i · τ) =
∑

j∈[k] bjz
i
j , we simplify it to be

x(t0 + nτ) =
k−1∑

i=0

ai

k∑

j=1

bjz
i
j =

k−1∑

i=0

aix(t0 + i · τ).

Because (t0+i·τ) ∈ [0, T] for any i = 0, · · · , k−1, we have |x(t0+iτ)|2 ≤ max
t∈[0,T]

|x(t)|2 . k4 log3 k‖x‖2T
from Lemma 5.1. Hence

|x(t0 + n · τ)|2 ≤ k
k−1∑

i=0

|ai|2 · |x(t0 + i · τ)|2

≤ k
k−1∑

i=0

n2.2k · max
t∈[0,T]

|x(t)|2

≤ k7 · (2kt/T)2.2k‖x‖2T .
Thus, we complete the proof.

22

6 Hash Functions and Filter Functions

6.1 Permutation function and hash function

We first review the permutation function Pσ,a,b and the hash function hσ,b in [PS15], which translates
discrete settings to the continuous setting.

Definition 6.1. For any signal x(t) : R→ C and a, b, σ ∈ R, let (Pσ,a,bx)(t) = x
(
σ(t− a)

)
e−2πiσbt.

Lemma 6.2. P̂σ,a,bx(σ(f − b)) = 1
σe
−2πiσaf x̂(f) and P̂σ,a,bx(f) = 1

σe
−2πiσa(f/σ+b)x̂(f/σ + b)

For completeness, we provide a proof of Lemma 6.2 in Appendix A.4.

Definition 6.3. [PS15] Let πσ,b(f) = 2πσ(f − b) (mod 2π) and hσ,b(f) = round(πσ,b(f) · B2π) be
the hash function that maps frequency f ∈ [−F, F] into bins {0, · · · , B − 1}.
Claim 6.4. [PS15] For any ∆ > 0, let σ be a sample uniformly at random from [1

B∆ ,
2
B∆].

(I) If ∆ ≤ |f+ − f−| < (B−1)∆
2 , then Pr[hσ,b(f

+) = hσ,b(f
−)] = 0

(II) If (B−1)∆
2 ≤ |f+ − f−|, then Pr[hσ,b(f

+) = hσ,b(f
−)] . 1

B

From previous work [HIKP12b, HIKP12a, PS15], uniformly sampling from [A, 2A] for some large
A ≥ T̃ provides an almost uniform sample on [0, T̃] when taken modulo over T̃ .

Lemma 6.5. For any T̃ , and 0 ≤ ε̃, δ̃ ≤ T̃ , if we sample σ̃ uniformly at random from [A, 2A], then

2ε̃

T̃
− 2ε̃

A
≤ Pr

[
σ̃ (mod T̃) ∈ [δ̃ − ε̃, δ̃ + ε̃]

]
≤ 2ε̃

T̃
+

4ε̃

A
. (15)

6.2 Filter function

We state the properties of filter function (H(t), Ĥ(f)) and (G(t), Ĝ(f)), the details of proofs are
presented in Appendix C.1 and C.2.

Lemma 6.6. Given s0, s1, 0 < s3 < 1, ` > 1, 0 < δ < 1, where ` = Θ(k log(k/δ)).The filter function
(H(t), Ĥ(f)) has the following properties,

Property I : H(t) ∈ [1− δ, 1], when |t| ≤ (
1

2
− 2

s1
)s3.

Property II : H(t) ∈ [0, 1], when (
1

2
− 2

s1
)s3 ≤ |t| ≤

1

2
s3.

Property III : H(t) ≤ s0 · (s1(
|t|
s3
− 1

2
) + 2)−`, ∀|t| > 1

2
s3.

Property IV : supp(Ĥ(f)) ⊆ [− s1`

2s3
,
s1`

2s3
].

For any exact k-Fourier-sparse signal x∗(t), we shift the interval from [0, T] to [−1/2, 1/2] and
consider x∗(t) for t ∈ [−1/2, 1/2] to be our observation, which is also x∗(t) · rect1(t).

Property V :

∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect1(t))
∣∣2dt < δ

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

Property VI :

∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ∈ [1− ε, 1] ·

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

for arbitrarily small constant ε.

23

40 30 20 10 0 10 20 30 40
0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Given signal (Frequency domain)

Ĥ(f)

x̂ ∗ (f)

f= ±s1 `/(2s3)

4 3 2 1 0 1 2 3 4
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fourier transform (Time domain)

H(t)

x ∗ (t)

t= ±0.5

t= ±0.5s3

t= ±(0.5−2/s1)s3

Figure 2: The filter function (H(t), Ĥ(f)) with a k-Fourier-sparse signal. The property I, II and III
are presented in the bottom one, the property IV is presented in the top one.

Lemma 6.7. Given B > 1, δ > 0, α > 0, we set l = Ω(log(δ/k)). The filter function (G(t), Ĝ(f))[B, δ, α, l]
satisfies the following properties,

Property I : Ĝ(f) ∈ [1− δ/k, 1], if |f | ≤ (1− α)
2π

2B
.

Property II : Ĝ(f) ∈ [0, 1], if (1− α)
2π

2B
≤ |f | ≤ 2π

2B
.

Property III : Ĝ(f) ∈ [−δ/k, δ/k], if |f | > 2π

2B
.

Property IV : supp(G(t)) ⊂ [
l

2
· −B
πα

,
l

2
· B
πα

].

Property V : max
t
|G(t)| . poly(B, l).

6.3 HashToBins

We first define two functions G(j)
σ,b(t) and Ĝ

(j)
σ,b(f), then show the result returned by Procedure

HashToBins in Algorithm 6 satisfying some nice properties. The details of proofs are presented
in Appendix C.4.

24

− (1−α)π
B

(1−α)π
B

− π
B

π
B

Figure 3: G and Ĝ. [PS15]

Definition 6.8. ∀σ > 0, b and j ∈ [B]. Define,

G
(j)
σ,b(t) =

1

σ
G(t/σ)e2πit(j/B−σb)/σ

Ĝ
(j)
σ,b(f) = Ĝdis(

j

B
− σf − σb) =

∑

i∈Z
Ĝ(i+

j

B
− σf − σb)

Lemma 6.9. Let u ∈ CB be the result of HashToBins under permutation Pσ,a,b, and let j ∈ [B].
Define

ẑ = x̂ ·H · Ĝ(j)
σ,b,

so
z = (x ·H) ∗G(j)

σ,b.

Let vector û ∈ CB denote the B-dimensional DFT of u, then ∀j ∈ [B],

û[j] = zσa.

7 Frequency Recovery

The goal of this section is to prove Theorem 2.6, which is able to recover the frequencies of a signal
x∗ has k-sparse Fourier transform under noise.

Theorem 2.6. Let x∗(t) =
k∑
j=1

vje
2πifjt and x(t) = x∗(t) + g(t) be our observable signal where

‖g(t)‖2T ≤ c‖x∗(t)‖2T for a sufficiently small constant c. Then Procedure FrequencyRecov-
eryKCluster returns a set L of O(k) frequencies that covers all heavy clusters of x∗, which
uses poly(k, log(1/δ)) log(FT) samples and poly(k, log(1/δ)) log2(FT) time. In particular, for ∆ =
poly(k, log(1/δ))/T and N 2 := ‖g(t)‖2T + δ‖x∗(t)‖2T , with probability 1− 2−Ω(k), for any f∗ with

∫ f∗+∆

f∗−∆
|x̂ ·H(f)|2df ≥ TN 2/k, (16)

there exists an f̃ ∈ L satisfying
|f∗ − f̃ | . ∆

√
∆T .

25

7.1 Overview

We give an overview of proving Theorem 2.6. Instead of starting with k-cluster recovery, we first
show how to achieve one-cluster recovery.

One-cluster recovery. we start with x∗(t) =
∑k

j=1 vje
2πifjt where there exists f0 and ∆ such

that fj is in [f0 −∆, f0 + ∆] for each j ∈ [k] and consider its properties for frequency recovery.

Definition 7.1 ((ε,∆)-one-cluster signal). We say that a signal z(t) is an (ε,∆)-one-cluster signal
around f0 iff z(t) and ẑ(f) satisfy the following two properties:

Property I :

∫ f0+∆

f0−∆
|ẑ(f)|2df ≥ (1− ε)

∫ +∞

−∞
|ẑ(f)|2df

Property II :

∫ T

0
|z(t)|2dt ≥ (1− ε)

∫ +∞

−∞
|z(t)|2dt.

The main result of one-cluster recovery is to prove that the two properties in Definition 7.1 with
a sufficiently small constant ε are sufficient to return f̃0 close to f0 with high probability, which
provides a black-box for k-cluster recovery algorithm.

We first prove that the pair of conditions, Property I and Property II in Definition 7.1, are
sufficient to obtain an estimation of e2πif0 in Section 7.2. We also provide the proof of the correctness
of Procedures GetLegal1Sample and GetEmpirical1Engergy in Section 7.2.

Lemma 7.2. For a sufficiently small constant ε > 0, any f0 ∈ [−F, F], and ∆ > 0, given β̂ h 1
∆
√

∆T

and an (ε,∆)-one-cluster signal z(t) around f0, Procedure GetLegal1Sample in Algorithm 3 with
any β ≤ 2β̂ takes O((T∆)3) samples to output α ∈ R satisfying

|z(α+ β)− z(α)e2πif0β| ≤ 0.08(|z(α)|+ |z(α+ β)|),
with probability at least 0.6.

The following lemma shows that for any (ε,∆)-one-cluster signal z(t) around f0, we could use
the above procedure to find a frequency f̃0 approximating f0 with high probability.

Lemma 7.3. For a sufficiently small constant ε > 0, any f0 ∈ [−F, F], and ∆ > 0, given an (ε,∆)-
one-cluster signal z(t) around f0 , Procedure FrequencyRecovery1Cluster in Algorithm 4
returns f̃0 with |f̃0 − f0| . ∆ ·

√
∆T with probability at least 1− 2−Ω(k).

We provide a proof of Lemma 7.3 in Section 7.4. We show z(t) = (x∗(t) + g(t)) · H(t) satisfy
Properties I and II (Definition 7.1) when all frequencies in x̂∗ are in a small range in Section 7.3.

Lemma 7.4. For any f0 ∈ [−F, F], ∆′ > 0, and x∗(t) =
∑k

j=1 vje
2πift with |fj − f0| ≤ ∆′ for all

j ∈ [k], let x(t) = x∗(t) + g(t) be our observable signal whose noise ‖g‖2T ≤ c‖x∗‖2T for a sufficiently
small constant c and H(t) be the filter function defined in Section 6 with | supp(Ĥ)| = ∆h. Then
z = H · x is an (O(

√
c),∆h + ∆′)-one-cluster signal around f0.

From all discussion above, we summarize the result of frequency recovery when x̂∗ is in one
cluster.

Theorem 7.5. For any f0 ∈ [−F, F], ∆′ > 0, and x∗(t) =
∑k

j=1 vje
2πifjt with |fj − f0| ≤ ∆′

for all j ∈ [k], let x(t) = x∗(t) + g(t) be our observable signal whose noise ‖g‖2T ≤ c‖x∗‖2T for a
sufficiently small constant c and H(t) be the filter function defined in Section 6 with | supp(Ĥ)| =
∆h. Then Procedure FrequencyRecovery1Cluster in Algorithm 4 with ∆ = ∆′ + ∆h takes
poly(k, log(1/δ)) · log(FT) samples, runs in poly(k, log(1/δ)) · log2(FT) time, returns a frequency
f̃0 satisfying |f̃0 − f0| . ∆

√
∆T with probability at least 1− 2−Ω(k).

26

k-cluster recovery. Given any x∗(t) =
∑k

j=1 vje
2πifjt, we plan to convolve the filter function

G(t) on x(t) · H(t) and use Lemma 7.3 as a black box to find a list of frequencies that covers
{f1, · · · , fk}.

We fix ∆ = poly(k, log(1/δ))/T , B = Θ(k) and sample σ uniformly at random from [1
B∆ ,

2
B∆]

for k-cluster recovery. We will cover all f∗ ∈ [−F, F] with the following property :
∫ f∗+∆

f∗−∆
|x̂ ·H(f)|2df ≥ TN 2/k, (17)

We consider one frequency f∗ ∈ [−F, F] satisfying (17) and use j = hσ,b(f
∗) to denote its index in

[B] after hashing (σ, b). Recall that for j ∈ [B], any σ > 0 and any b,

G
(j)
σ,b(t) =

1

σ
G(t/σ)e2πit(j/B−σb)/σ such that Ĝ(j)

σ,b(f) =
∑

i∈Z
Ĝ(i+

j

B
− σf − σb).

We set ẑ = x̂ ·H · Ĝ(j)
σ,b and z = (x ·H) ∗G(j)

σ,b for f
∗ and j = hσ,b(f

∗). In Section 7.5, we show that
with high probability over the hashing (σ, b), (z, ẑ) satisfies Property I with [f∗ −∆, f∗ + ∆] and
Property II in Definition 7.1 such that we could use Lemma 7.3 on z to recover f∗.

Lemma 7.6. Let f∗ ∈ [−F, F] satisfy (17). For a random hashing (σ, b), let j = hσ,b(f
∗) be the

bucket that f∗ maps to under the hash such that z = (x · H) ∗ G(j)
σ,b and ẑ = x̂ ·H · Ĝ(j)

σ,b. With
probability at least 0.9, z(t) is an (ε,∆)-one-cluster signal around f∗ .

Combining Lemma 7.6 and Lemma 7.3, we could recover any heavy frequency f∗ satisfying (17)
with probability at least 0.8. Then we repeat this procedure to guarantee that we cover all heavy
frequencies and finish the proof of the main frequency recovery Theorem 2.6 in Section 7.6.

7.2 Analysis of GetLegal1Sample and GetEmpirical1Energy

Let I = [f0 − ∆, f0 + ∆] and I = (−∞,+∞) \ I in this proof. We define
(
zI(t), ẑI(f)

)
and(

zI(t), ẑI(f)
)
as follows:

ẑI(f) =

{
ẑ(f) if f ∈ I
0 if f ∈ I

, ẑI(f) =

{
0 if f ∈ I
ẑ(f) if f ∈ I

We consider zI(t) as the “signal” to recover f0 and treat zI(t) as the “noise”. We first show some
basic properties of zI(t).

Claim 7.7. For zI(t), we have
∫ T

0 |zI(t)|2dt ≤ ε
∫ +∞
−∞ |z(t)|2dt. For zI(t), we have

∫ T

0
|zI(t)|2dt ≥ (1− 5

√
ε)

∫ +∞

−∞
|z(t)|2dt and

∫ T

0
|zI(t)|2dt ≥ (1− 6

√
ε)

∫ +∞

−∞
|zI(t)|2dt.

Proof. From the definition and Property I in Definition 7.1, we know

z(t) = zI(t) + zI(t) and
∫ +∞

−∞
|ẑI(f)|2df ≤ ε

∫ +∞

−∞
|ẑ(f)|2df.

Notice that Property I(in Definition 7.1) indicates that
∫ T

0
|zI(t)|2dt ≤

∫ +∞

−∞
|zI(t)|2dt =

∫ +∞

−∞
|ẑI(f)|2df ≤ ε

∫ +∞

−∞
|ẑ(f)|2df.

27

On the other hand, from Property II(in Definition 7.1), we know

(1−ε)
∫ +∞

−∞
|z(t)|2dt ≤

∫ T

0
|zI(t)+zI(t)|2dt ≤

∫ T

0
|zI(t)|2dt+2

∫ T

0
|zI(t)|·|zI(t)|dt+

∫ T

0
|zI(t)|2dt.

We have
∫ T

0 |zI(t)|2dt ≤ 2
∫ +∞
−∞ |z(t)|2dt from the above inequality. From

∫ T
0 |zI(t)|2dt ≤ ε

∫ +∞
−∞ |ẑ(f)|2df ,

we bound ∫ T

0
|zI(t)| · |zI(t)|dt ≤

√
2ε

∫ +∞

−∞
|z(t)|2dt

by the Cauchy-Schwartz inequality and have
∫ T

0
|zI(t)|2dt ≥ (1− 5

√
ε)

∫ +∞

−∞
|z(t)|2dt. (18)

Because
∫ +∞
−∞ |zI(t)|2dt ≤ ε

∫ +∞
−∞ |z(t)|2dt, inequality (18) also indicates that

∫ T

0
|zI(t)|2dt ≥ (1− 6

√
ε)

∫ +∞

−∞
|zI(t)|2dt.

One useful property of zI(t) is that its maximum can be bounded by its average on [0, T].

Claim 7.8. ∀t ∈ [0, T], |zI(t)| ≤ 2
√

∆T · ‖zI‖T .

Proof. From the definition |zI(t)|, it is upper bounded by
∫ f0+∆
f0−∆ |ẑI(f)|df for any t ∈ [0, T]. On

the other hand,
∫ f0+∆

f0−∆
|ẑI(f)|df ≤

√
2∆(

∫ f0+∆

f0−∆
|ẑI(f)|2df)1/2

=
√

2∆(

∫ +∞

−∞
|zI(t)|2dt)1/2

≤ 2
√

∆(

∫ T

0
|zI(t)|2dt)1/2

= 2
√

∆T‖zI‖T .

Claim 7.9. Given β̂ =
Cβ

∆·
√

∆T
with a sufficiently small constant Cβ, for any two β̂-close samples

in zI(t), we have that

∀α ∈ [0, T], ∀β ∈ [β̂, 2β̂], |zI(α)e2πif0β − zI(α+ β)| ≤ 0.01 · ‖zI‖T .

28

Proof. From the definition of the Fourier transform, we have

|zI(a+ β)− zI(a)e2πif0β| =
∣∣∣∣
∫ f0+∆

f0−∆
ẑI(f)e2πi(fa+f0β)(e2πi(f−f0)β − 1)df

∣∣∣∣

≤ 2 · (2π∆β) ·
∫ f0+∆

f0−∆
|ẑI(f)|df by Taylor expansion

≤ 4πβ∆ ·
√

2∆

(∫ f0+∆

f0−∆
|ẑI(f)|2df

) 1
2

by Hölder inequality

≤ 10πβ̂∆ ·
√

2∆

(∫ T

0
|zI(t)|2dt

) 1
2

by inequality (18)

≤ 10−2‖zI‖T .

We consider how to output an α such that e2πif0β ≈ z(α+ β)/z(α) with high probability in the
rest of this section.

If we can sample from zI(t), we already know |zI(α)e2πif0β − zI(α + β)| ≤ 0.01‖zI‖T from
Claim 7.9. Then it is enough to find any α such that |zI(α)| ≥ 0.5‖zI‖T . From Claim 7.8, we can
take O(

√
∆T) samples

(
zI(α), zI(α+ β)

)
where each α is uniformly sampled from [0, T] such that

with high probability, the sample zI(α) with the largest norm |zI(α)| satisfies |zI(α)| ≥ 0.5‖zI‖T .
Then we have e2πif0β ≈ zI(α+ β)/zI(α).

Next, we move to z(t) = zI(t) + zI(t) and plan to output α ∈ [0, T] with probability at least
0.5 such that |zI(α)| ≤ 0.1|zI(α)| and |zI(α + β)| ≤ 0.1|zI(α + β)|. Because the “noise” zI(t) has
‖zI(t)‖2T ≥ ε‖zI(t)‖2T for a constant ε and the bound

√
∆T in Claim 7.8 is a polynomial in k, the

approach for zI(t) cannot guarantee that z(α+ β)/z(α) ≈ e2πif0β with probability more than 1/2.
The key observation is as follows:

Observation 7.10. For a sufficiently small ε and ‖zI‖2T ≤ ε‖z‖2T , let DT be the weighted distribution
on [0, T] according to |z(t)|2, i.e., DT (t) = |z(t)|2

T‖z‖2T
. If we sample α ∈ [0, T] from the distribution DT

instead of the uniform distribution on [0, T], |zI(α)| ≤ 0.01|zI(α)| with probability 0.9.

It follows from the fact that

E
α∼DT

|zI(α)|2
|z(α)|2 =

∫ T

0

|zI(α)|2
|z(α)|2 ·

|z(α)|2
T‖z‖2T

dα =

∫ T
0 |zI(α)|2dα

T‖z‖2T
≤ ε.

In Procedure GetLegal1Sample, we collect (∆T)2 samples (in expectation)
(
z(α), z(α+ β)

)

in Sheavy with |z(α)| ≥ 0.49‖z‖T and resample one α from these samples according to their norm
|z(α)|2 + |z(α+ β)|2. We show its correctness as follows.

Because we do not know 0.5‖z‖T , we use zemp to approximate it.

Claim 7.11. Procedure GetEmpirical1Energy in Algorithm 3 takes O((T∆)2) samples to output
zemp such that zemp ∈ [0.8‖z‖T , 1.2‖z‖T] with prob. 0.9.

Proof. We know z2
emp = Ei∈[Rest][|z(αi)|2] = Ei∈[Rest][|zI(αi) + zI(αi)|2].

Notice that Ei∈[Rest][|zI(αi)|2] is in [0.99‖zI‖T , 1.01‖zI‖T] with prob. 0.99 from the Chernoff
bound and Claim 7.8.

29

At the same time, Eαi [|zI(αi)|2] = ‖zI‖2T . With prob. 0.92, Ei∈[Rest][|zI(αi)|2] ≤ 13‖zI‖2T . For
a sufficiently small ε and ‖zI‖2T ≤ ε‖zI‖2T , Ei∈[Rest][|zI(αi)|2] ≤ 13ε‖zI‖2T .

At last, we bound the cross terms of |zI(αi) + zI(αi)|2 by the Cauchy-Schwartz inequality,

E
i∈Rest

[|zI(αi)zI(αi)|+ |zI(αi)zI(αi)|]

≤ 2 E
i∈Rest

[|zI(αi)| · |zI(αi)|]

≤ 2

(
E

i∈[Rest]
[|zI(αi)|2] · E

i∈[Rest]
[|zI(αi)|2]

)1/2

≤ 10
√
ε‖zI‖2T .

For a sufficiently small ε, we have Ei∈[Rest][|z(αi)|2]1/2 is in [0.9‖zI‖T , 1.1‖zI‖T], which is also in
[0.8‖z‖T , 1.2‖z‖T] because of Property II.

We assume zemp ∈ [0.8‖z‖T , 1.2‖z‖T] and focus on U = {t ∈ [0, T]
∣∣|z(t)| ≥ 0.5zemp}. Notice

that ∫

U
|z(t)|2dt =

∫ T

0
|z(t)|2dt−

∫

[0,T]\U
|z(t)|2dt ≥ (1− 0.62)

∫ T

0
|z(t)|2dt.

Let Rheavy = |Sheavy|. From Claim 7.8 and ε, E[Rheavy] ≥ Rrepeat/(T∆). So we assume Rheavy ≥
0.01Rrepeat/(T∆) = 0.01(T∆)2 in the rest of this section and think each αi ∈ Sheavy is a uniform
sample from U over the randomness on Sheavy.

Claim 7.12. With probability 0.95,
∑

i∈Sheavy
(|zI(αi)|2 + |zI(αi+β)|2) ≤ 10−4

∑
i∈Sheavy

(|z(αi)|2 +

|z(αi + β)|2) for a sufficiently small ε and ‖zI‖2T ≤ ε‖z‖2T .

Proof. At first,

E
Sheavy

 ∑

i∈Sheavy

(|z(αi)|2 + |z(αi + β)|2)

 ≥ Rheavy · E

t∼U
[|z(t)|2] = Rheavy ·

∫
U |z(t)|2dt

|U | .

At the same time,

E
Sheavy

 ∑

i∈Sheavy

[|zI(αi)|2 + |zI(αi + β)|2]

 = Rheavy · E

t∼U
[|zI(t)|2 + |zI(t+ β)|2] ≤ 2

∫ 0
T |zI(t)|2dt

|U | .

From
∫
U |z(t)|2dt ≥ 0.64

∫ T
0 |z(t)|2dt and

∫ 0
T |zI(t)|2dt ≤ ε

∫ T
0 |z(t)|2dt, we get the conclusion.

We assume all results in the above claims hold and prove that the sample from Sheavy is a good
sample such that zI(α) is small.

Claim 7.13. If we sample i ∈ Sheavy according to the weight |z(αi)|2 + |z(αi + β)|2, with prob. at
least 0.9, |zI(αi)|+ |zI(αi + β)| ≤ 0.05(|z(αi)|+ |z(αi + β)|).

30

Proof. Similar to the proof of the key observation, we compute the expectation of |z
I(αi)|2+|zI(αi+β)|2
|z(αi)|2+|z(αi+β)|2

over the sampling in Sheavy:

∑

i∈Sheavy

|z(αi)|2 + |z(αi + β)|2∑
j∈Sheavy

|z(αj)|2 + |z(αj + β)|2 ·
|zI(αi)|2 + |zI(αi + β)|2
|z(αi)|2 + |z(αi + β)|2

=

∑
i∈Sheavy

|zI(αi)|2 + |zI(αi + β)|2

∑
i∈Sheavy

|z(αi)|2 + |z(αi + β)|2

≤ 10−4.

By Markov’s inequality, when we sample i ∈ Sheavy according to the weight |z(αi)|2 + |z(αi + β)|2,
|zI(αi)|2+|zI(αi+β)|2
|z(αi)|2+|z(αi+β)|2 ≤ 10−3 with probability 0.9. We have that with prob. at least 0.9, |zI(αi)| +
|zI(αi + β)| ≤ 0.05(|z(αi)|+ |z(αi + β)|).

We assume all above claims hold and finish the proof by setting α = αi. From Claim 7.9, we
know that

|zI(α)e2πif0β − zI(α+ β)| ≤ 0.01 · E
t∈[0,T]

[|zI(α)|2]1/2 ≤ 0.03|zI(α)|.

Now we add back the noise zI(α) and zI(α+ β) to get

|z(α)e2πif0β−z(α+β)| ≤ |zI(α)e2πif0β−zI(α+β)|+ |zI(α)|+ |zI(α+β)| ≤ 0.08(|z(α)|+ |z(α+β)|).

7.3 A cluster of frequencies, times H, is a one-cluster signal per Definition 7.1

The goal of this section is to prove Lemma 7.4. Without loss of generality, we assume g(t) = 0 for
any t /∈ [0, T] and notice that supp(Ĥ ∗ x̂∗) ⊆ f0 + [−∆,∆] for ∆ = ∆′ + ∆h from the definition of
Ĥ. From the Property VI (presented in Lemma 6.6) of (H, Ĥ),

∫ T

0
|x∗(t)|2dt = (1± c)

∫ +∞

−∞
|H(t) · x∗(t)|2dt.

From the first two properties of (H, Ĥ), we bound the energy of g ·H:
∫ +∞

−∞
|H(t) · g(t)|2dt ≤ (1 + c)

∫ T

0
|g(t)|2dt.

Let z(t) = (x∗(t) + g(t))H(t). We use the triangle inequality on the above two inequalities:
∫ T

0
|z(t)|2dt

≥
∫ T

0
|H(t) · x∗(t)|2dt−

∫ T

0
|H(t) · g(t)|2dt− 2

∫ T

0
|H(t) · x∗(t)| · |H(t) · g(t)|dt

≥ (1− c)
∫ T

0
|x∗(t)|2dt− (1 + c)

∫ T

0
|g(t)|2dt− 2

√
(1 + c)2

∫ T

0
|g(t)|2dt

∫ T

0
|x∗(t)|2dt·

≥
(
1− 5

√
c
) ∫ T

0
|x∗(t)|2dt,

31

where we use the Cauchy-Schwarz inequality and
∫ T

0 |g(t)|2dt ≤ c
∫ T

0 |x∗(t)|2dt in the last step.
Similarly,

∫ +∞

−∞
|z(t)|2dt

≤ (1 + c)

∫ T

0
|x∗(t)|2dt+ (1 + c)

∫ T

0
|g(t)|2dt+ 2

√
(1 + c)2

∫ T

0
|x∗(t)|2dt

∫ T

0
|g(t)|2dt

≤ (1 + 5
√
c)

∫ T

0
|x∗(t)|2dt.

Hence we obtain Property II(in Definition 7.1) when c is sufficiently small.
Then we observe that

∫ f0+∆h

f0−∆h

|ẑ(f)|2df

≥
∫ f0+∆h

f0−∆h

| ̂H · (x∗ + g)|2df

≥
∫ f0+∆h

f0−∆h

|Ĥ · x∗|2 − |Ĥ · g|2 − 2|Ĥ · x∗| · |Ĥ · g|df

≥
∫ f0+∆h

f0−∆h

|Ĥ · x∗|2df −
∫ +∞

−∞
|Ĥ · g|2df − 2

√∫ f0+∆h

f0−∆h

|Ĥ · x∗|2df

∫ +∞

−∞
|Ĥ · g|2df

=

∫ +∞

−∞
|H · x∗|2dt−

∫ +∞

−∞
|H · g|2dt− 2

√∫ f0+∆h

f0−∆h

|H · x∗|2dt

∫ +∞

−∞
|H · g|2dt

≥ (1− c)− c(1 + c)− 3
√
c

1 + 5
√
c

∫ +∞

−∞
|z(t)|2dt.

Thus we have Property I(in Definition 7.1) for z.

7.4 Frequency recovery of one-cluster signals

The goal of this section is prove Theorem 7.5. We first show the correctness of Procedure Lo-
cate1Inner. Second, we analyze the Procedure Locate1Signal. At end, we rerun Procedure
Locate1Signal and use median analysis to boost the constant success probability.3

Lemma 7.14. Let f0 ∈ region(q′). Let β is sampled from [st4∆ ,
st

2∆l] and let γ denote the output of
Procedure GetLegal1Sample in Algorithm 4. Then using the pair of samples z(γ + β) and z(γ),
we have

I. for the q′ with probability at least 1− s, vq′ will increase by one.
II. for any q such that |q − q′| > 3, with probability at least 1− 15s, vq will not increase.

Proof. We replace f0 by θ in the rest of the proof. By Lemma 7.2, we have that for any β̂ ≤ β ≤ 2β̂,
Procedure GetLegal1Sample outputs a γ ∈ [0, T] satisfying

|z(γ + β)− z(γ)e2πif0β| ≤ 0.1(|z(γ)|+ |z(γ + β)|)

with probability at least 0.6.
3The proofs in this section are identical to [HIKP12b] and [PS15].

32

Furthermore, there exists such some constant g ∈ (0, 1) such that with probability 1− g,

‖φ(z(γ + β))− (φ(z(γ))− 2πβθ)‖© . sin−1(
1

g
),

where ‖x − y‖© = min
z∈Z
|x − y + 2πz| denote the “circular distance” between x and y. We can set

s = Θ(g−1). There exists some constant p = Θ(s), with probability at least 1− p,
‖o− 2πβθ‖© < sπ/2

where o := φ(z(γ + β)/z(γ)). The above equation shows that o is a good estimate for 2πβθ with
good probability. We will now show that this means the true region Qq′ gets a vote with large
probability.

For each q′ with θ ∈ [l−∆l
2 + q′−1

t ∆l, l−∆l
2 + q′

t ∆l] ⊂ [−F, F], we have that θq′ = l−∆l
2 + q′−0.5

t ∆l
satisfies that

θ − θq′ ≤
∆l

2t
.

Note that we sample β uniformly at random from [β̂, 2β̂], then 2β̂ = st
2∆l ≤ cT

10A
3
2
(Note that A is

some constant > 1), which implies that 2πβ∆l
2t ≤ sπ

2 . Thus, we can show the observation o is close
to the true region in the following sense,

‖o− 2πβθq′‖©
≤ ‖o− 2πβθ‖© + ‖2πβθ − 2πβθq′‖© by triangle inequality

≤ sπ

2
+ 2π‖βθ − βθq′‖©

≤ sπ.

Thus, vq′ will increase in each round with probability at least 1− s.
On the other side, consider q with |q− q′| > 3. Then |θ− θq| ≥ 7∆l

2t , and (assuming β ≥ st
4∆l) we

have
2πβ|θ − θq| ≥ 2π

st

4∆l
|θ − θq| =

sπt

2∆l
|θ − θq| ≥

7sπ

4
>

3sπ

2
.

There are two cases: |θ − θq| ≤ ∆l
st and |θ − θq| > ∆l

st .
First, if |θ − θq| ≤ ∆l

st . In this case, from the definition of β it follows that

2πβ|θ − θq| ≤
sπt

∆l
|θ − θq| ≤ π

Combining the above equations implies that

Pr
[
2πβ(θ − θq) (mod 2π) ∈ [−3s

4
2π,

3s

4
2π]
]

= 0

Second, if |θ−θq| > ∆l
st . We show this claim is true : Pr[2πβ(θ−θq) (mod 2π) ∈ [−3s

4 2π, 3s
4 2π]] . s.

To prove it, we apply Lemma 6.5 by setting T̃ = 2π, σ̃ = 2πβ, δ̃ = 0, ε = 3s
4 2π, A = 2πβ̂,

∆f = |θ − θq|. By upper bound of Lemma 6.5, the probability is at most

2ε̃

T̃
+

4ε̃

A∆f
=

3s

2
+

3s

β̂∆f
≤ 3s

2
+

3s
st

4∆l
∆l
st

< 15s

Then in either case, with probability at least 1− 15s, we have

‖2πβθq − 2πβθ‖© >
3s

4
2π

which implies that vq will not increase.

33

Lemma 7.15. Procedure Locate1Inner in Algorithm 4 uses Rloc “legal” samples, and then af-
ter Procedure Locate1Signal in Algorithm 4 running Procedure Locate1Inner Dmax times, it
outputs a frequency f̃0 such that

|f̃0 − f0| . ∆ ·
√
T∆

with arbitrarily large constant probability.

Proof. For each observation, vq′ incremented with probability at least 1− p and vq is incremented
with probability at most 15s + p for |q − q′| > 3. The probabilities corresponding to different
observations are independent. Then after Rloc observations, there exists some constant c < 1

2 , for
any q such that |q − q′| > 3,

Pr[False region gets more than half votes]
= Pr[vj,q > Rloc/2]

≤
(
Rloc

Rloc/2

)
(15s+ p)Rloc/2

≤ cΩ(Rloc)

Similarly, on the other side,

Pr[True region gets less than half votes]
= Pr[vj,q′ < Rloc/2]

≤
(
Rloc

Rloc/2

)
(p)Rloc/2

≤ cΩ(Rloc)

Taking the union bound over all the t regions, it gives with probability at least 1− tfΩ(Rloc) we can
find some region q such that |q − q′| < 3.

If we repeat the above procedure Dmax rounds, each round we choose the “False” region with
probability at most 1 − tcΩ(Rloc). Thus, taking the union bound over all the Dmax rounds, we will
report a region has size h ∆

√
∆T and contains f0 with probability at least 1−Dmaxtc

Ω(Rloc).
The reason for not ending up with region that has size h ∆ is, the upper bound of the sample

range of β force us to choose β is at most . T

(∆T)
3
2
by Claim 7.9

It remains to explain how to set Dmax, t, and Rloc. At the beginning of the first round, we start
with frequency interval of length 2F , at the beginning of the last round, we start with frequency
interval of length t ·∆

√
T∆. Each round we do a t-ary search, thus

Dmax = logt(
2F

t∆
√
T∆

) ≤ logt(F/∆).

We can set Rloc h log1/c(t/c) and t > Dmax, e.g. t = log(F/∆). Thus, the probability becomes,

1−Dmaxtc
Ω(Rloc) ≥ 1− t2cΩ(Rloc) ≥ 1− poly(1/t, c)

which is larger than any constant probability.

Using the same parameters setting in the proof of Lemma 7.15, we show the running time and
sample complexity of Procedure Locate1Signal,

34

Lemma 7.16. Procedure Locate1Signal in Algorithm 4 uses
O(poly(k, log(1/δ))) · log(FT) samples and runs in O(poly(k, log(1/δ))) · log2(FT) time.

Proof. The number of “legal” observations is

DmaxRloc = O(logt(F/∆) log1/c(t/c)) = O(log(F/∆))

The total number of samples is

Rest +RrepeatDmaxRloc = O(T∆h)2 + (T∆h)3 · log(FT) = poly(k, log(1/δ)) · log(FT)

where the first step follows by Claim 7.11 and Lemma 7.2 and the last step follows by the setting
of ∆h in Appendix C.3.

The running time includes two parts, one is approximately computing H(t) for all the samples,
each sample takes poly(k, log(1/δ)) time according to Lemma C.8; the other is for each legal sample
we need to assign vote to some regions.

poly(k, log(1/δ)) · (Rest +RrepeatDmaxRloc) +DmaxRloct = poly(k, log(1/δ)) log2(FT)

Lemma 7.17 only achieves constant success probability, using median analysis we can boost the
success probability,

Lemma 7.17. Let f̃0 denote the frequency output by Procedure FrequencyRecovery1Cluster
in Algorithm 5, then with probability at least 1− 2−Ω(k),

|f̃0 − f0| . ∆
√
T∆

Proof. Because of Procedure FrequencyRecovery1Cluster taking the median of O(k) inde-
pendent results by repeating algorithm Locate1Signal O(k) times. Each sample Lr is close to f̃0

with sufficiently large probability. Thus, using the Chernoff bound will output f̃0 with probability
1− 2−Ω(k) such that

|f̃0 − f0| . ∆
√
T∆.

Combining Lemma 7.17 with the sample complexity and running time in Lemma 7.15, we are
able to finish the proof of Theorem 7.5.

7.5 The full signal, after multiplying by H and convolving with G, is one-
clustered.

The goal of this section is to prove Lemma 7.6. We fix f∗ ∈ [−F, F] satisfying (17) in this section.
We first define a good hashing (σ, b) of f∗ as follows.

Definition 7.18. We say that a frequency f∗ is well-isolated under the hashing (σ, b) if, for j =
hσ,b(f

∗), we have that the signal
ẑ(j) = x̂ ·H · Ĝ(j)

σ,b

satisfies, over the interval If∗ = (−∞,∞) \ (f∗ −∆, f∗ + ∆),
∫

If∗
|ẑ(j)(f)|2df . ε · TN 2/k.

35

For convenience, we simplify z(j) by using z in the rest of this section.

Lemma 7.19. Let f∗ be any frequency. Then f∗ is well-isolated by a hashing (σ, b) with probability
≥ 0.9 given B = Θ(k) and σ ∈ [1

B∆ ,
2
B∆] chosen uniformly at random.

Proof. For any other frequency f ′ in x∗, its contribution in ẑ depends on how far it is from f∗.
Either it is:

• Within ∆ of f∗, f ′ and f∗ will be mapped into the same bucket with probability at least 0.99.

• Between ∆ and 1/σ far, from Claim 6.4, f ′ and f∗ will always mapped into different buckets.
Hence f ′ always contributes in the εδ

k region of Property III in Lemma 6.7 about filter function
(G(t), Ĝ(f)), i.e., it contributes at most εδ

k ·
∫ f ′+∆
f ′−∆ |x̂ ·H|2df . Overall it will contribute

εδ

k
·
∫
|x̂ ·H|2df =

εδ

k

∫
|x ·H|2dt.

• More than 1/σ far, in which case they contribute in the same region with probability at most
3/B. By a union bound, it is at most 3k/B ≤ 0.01

Without loss of generality, we assume supp(ĝ ·H) ∩ supp(x̂∗ ·H) = ∅, otherwise we treat it as
a part of x∗ ·H. We first consider frequency f∗ ∈ x̂∗ ·H under G(j)

σ,b.

Lemma 7.20. Let f∗ satisfying
∫ f∗+∆
f∗−∆ |x̂∗ ·H(f)|2df ≥ TN 2/k and ẑ = x̂∗ ·H · Ĝ(j)

σ,b where j =

hσ,b(f
∗). If f∗ is well-isolated, then z and ẑ satisfying Property I(in Definition 7.1), i.e.,

∫ T

0
|z(t)|2dt ≥ (1− ε)

∫ +∞

−∞
|z(t)|2dt.

Proof. We first notice that z(t) = x∗(t) ·H(t) ∗G(j)
σ,b(t) and lower bound

∫ +∞
−∞ |z(t)|2dt as follows :

∫ +∞

−∞
|x∗(t) ·H(t) ∗G(j)

σ,b(t)|2dt

=

∫ +∞

−∞
|x̂∗ ·H(f) · Ĝ(j)

σ,b(f)|2df by FT

≥
∫ f0+∆

f0−∆
|x̂∗ ·H(f) · Ĝ(j)

σ,b(f)|2df

≥ (1− δ)2

∫ f0+∆

f0−∆
|x̂∗ ·H(f) |2df

≥ (1− δ)2TN 2/k

≥ 0.9
δ

k

∫ T

0
|x∗(t)|2dt (19)

We give an upper bound
∫ 0
−∞ |z(t)|2dt +

∫ +∞
T |z(t)|2dt . ε δk

∫ T
0 |x∗(t)H(t)|2dt in the rest of this

proof.

36

Consider the case t < 0, by definition of Convolution,

z(j)(t) = x∗(t) ·H(t) ∗G(j)
σ,b(t) =

∫ +∞

−∞
G

(j)
σ,b(t− τ) · (x∗ ·H)(τ)dτ

Without loss of generality, we can shift the original signal and H(t) from [0, T] to [−T/2, T/2],
by Property of H(t), we know that if s3T/2 ≤ |t| ≤ T/2, then H(t) ≤ 2−OΘ(`). Note that G(t) is
compact and has support DB, we also assume its compact region is [−DB/2, DB/2] (Recall that
D = l

απ).
Thus, by definition of convolution,

z(t)

=

∫ DBσ/2

−DBσ/2
G

(j)
σ,b(s) · (x ·H)(t− τ)dτ

=
1

σ

∫ DBσ/2

−DBσ/2
G(s/σ)e2πis(j/B−σb)/σ · (x ·H)(t− τ)dτ

≤ 1

σ

∫ DBσ/2

−DBσ/2
|G(τ/σ)| · |(x ·H)(t− τ)|dτ

≤
(

1

σ

∫ DBσ/2

−DBσ/2
|G(τ/σ)|dτ

)
·
(

max
|τ |≤DBσ/2

|(x ·H)(t− τ)|
)

So, if t /∈ [−T/2, T/2], then t − s /∈ [−T/2 + DBσ/2, T/2 − DBσ/2]. By Property V of G(t),
|G(t)| ≤ poly(k, log(1/δ)). Because of the parameter setting4, we have the fact [−Ts3/2, T s3/2] ⊆
[−T/2 + DBσ/2, T/2 − DBσ/2] ⊆ [−T/2, T/2]. Thus, we know T (1 − s3)/2 > DBσ/2, then for
any t− τ ∈ [−T/2,−T/2 +DBσ/2] ∪ [T/2−DBσ/2, T/2] = S, then

|z(t)|2 .
(
DBσ · 1

σ
· poly(k, log(1/δ))

)2 · 2−Θ(`) · k4 · ‖x∗(t)‖2T . poly(k, log(1/δ)) · 2−Θ(`) · ‖x∗(t)‖2T .

Thus, taking the integral over S,
∫

S
|z(t)|2dt . |S| · 2−Θ(`) poly(k, log(1/δ)) · ‖x∗(t)‖2 . 2−Θ(`)T‖x∗(t) ·H(t)‖2T

By property of filter function H(t), Ĥ(f), we have

|(x ·H)(t)|2 ≤ (
t

T
)−`‖x∗(t) ·H(t)‖2T if t ≥ 3T

Thus for any constant ε,
∫ −T/2

−∞
|z(t)|2dt+

∫ +∞

T/2
|z(t)|2dt . 2−`T‖x∗(t) ·H(t)‖2T ≤ 0.9ε · δ

k

∫ T/2

−T/2
|x∗(t)|2dt (20)

where the last inequality follows by ` & k log(k/δ). Shifting the interval from [−T/2, T/2] to [0, T],
the same result is still holding. Combining Equation (19) and (20) completes the proof of Property
II.

4We will set B to be O(k), D to be poly(k) and σ to be T/ poly(k).

37

We consider frequency f∗ ∈ ĝ ·H under G(j)
σ,b and show the energy of noise g(t) is evenly dis-

tributed over B bins on expectation.

Lemma 7.21. Given any noise g(t) : [0, T]→ C and g(t) = 0,∀t /∈ [0, T]. We have, ∀j ∈ [B],

E
σ,b

[∫ +∞

−∞
|g(t)H(t) ∗G(j)

σ,b(t)|2dt

]
.

1

B

∫ +∞

−∞
|g(t)H(t)|2dt

Proof. Because of Fourier Transform preserves `2 norm, it suffices to prove

E
σ,b

[∫ +∞

−∞
|ĝ ·H(f) · Ĝ(j)

σ,b(f)|2df

]
.

1

B

∫ +∞

−∞
|ĝ ·H(f)|2df

Since Ĝ(j)
σ,b(f) is a periodic function and outputs at most 1 on O(1/B) fraction of the period, and

outputs ≤ δ on other part. Thus, for any frequency f , we have

E
σ,b

[
|Ĝ(j)

σ,b(f)|2
]
.

1

B

Thus, we have

E
σ,b

[∫ +∞

−∞
|ĝ ·H(f) · Ĝ(j)

σ,b(f)|2df

]

≤ E
σ,b

[∫ +∞

−∞
|ĝ ·H(f)|2 · |Ĝ(j)

σ,b(f)|2df

]

=

∫ +∞

−∞
|ĝ ·H(f)|2 · E

σ,b
[|Ĝ(j)

σ,b(f)|2]df

≤
∫ +∞

−∞
|ĝ ·H(f)|2df ·max

f

[
E
σ,b

∣∣∣Ĝ(j)
σ,b(f)

∣∣∣
2
]

.
1

B

∫ +∞

−∞
|ĝ ·H(f)|2df,

which completes the proof.

Proof of Lemma 7.6. Let j = hσ,b(f
∗), signal

ẑ = x̂ ·H · Ĝ(j)
σ,b, (21)

and region If∗ = (f∗−∆, f∗+ ∆) with complement If∗ = (−∞,∞) \ If∗ . From Property I of G in
Lemma 6.7, we have that

Ĝ
(l)
σ,b(f) & 1

for all f ∈ If∗ , so by (17) ∫

If∗
|ẑ(f)|2df ≥ TN 2/k.

On the other hand, f∗ is will-isolated with probability 0.9:
∫

If∗
|ẑ(f)|2df . εTN 2/k.

Hence, ẑ satisfies the Property I(in Definition 7.1) of one-mountain recovery. Combining Lemma 7.20
and Lemma 7.21, we know that (x∗ · H) ∗ G(j)

σ,b always satisfies Property II(in Definition 7.1) and
∫ +∞
−∞ |g(t)H(t) ∗G(j)

σ,b(t)|2dt is less than 20TN 2/B ≤ εTN 2/k with probability at least 0.95, which

indicates that z = (x∗+g) ·H ∗G(j)
σ,b satisfies Property II(in Definition 7.1) with probability 0.95.

38

7.6 Frequency recovery of k-clustered signals

The goal of this section is to prove that the frequencies found by Procedure FrequencyRecov-
eryKCluster in Algorithm 8 have some reasonable guarantee.

We first notice that Lemma 7.6 and Lemma 7.3 imply the following lemma by a union bound.

Lemma 7.22. Let x∗(t) =
k∑
j=1

vje
2πifjt. We observe x(t) = x∗(t) + g(t), where ‖g(t)‖2T ≤ c‖x∗(t)‖2T

for a sufficiently small constant c and define N 2 := ‖g(t)‖2T+δ‖x∗(t)‖2T . Then Procedure OneStage
returns a set L of O(k) frequencies that covers the heavy frequencies of x∗. In particular, for any
f∗ with ∫ f∗+∆

f∗−∆
|x̂ ·H(f)|2df ≥ TN 2/k, (22)

there will exist an f̃ ∈ L satisfying |f∗ − f̃ | .
√
T∆ ·∆T with probability 0.99.

Lemma 7.23. Let x∗(t) =
k∑
j=1

vje
2πifjt and R = O(k). We observe x(t) = x∗(t) + g(t), where

‖g(t)‖2T ≤ c‖x∗(t)‖2T for a sufficiently small constant c and choose N 2 := ‖g(t)‖2T + δ‖x∗(t)‖2T .
Then Algorithm MultipleStages returns a set L of O(k) frequencies that approximates the heavy
frequencies of x∗. In particular, with probability 1− 2−Ω(k), for any f∗ such that

∫ f∗+∆

f∗−∆
|x̂ ·H(f)|2df ≥ TN 2/k, (23)

there will exist an f̃ ∈ L satisfying |f∗ − f̃ | .
√
T∆∆.

Proof. Let A ⊂ [−F, F] denote the set of frequencies f∗ satisfying Equation (22). Let A′ ⊂ [−F, F]
denote a net of A of distance 2∆, so the intervals used in Equation (22) for each f∗ ∈ A′ are disjoint.
Then

|A′| ≤ 2k + k = 3k

because each frequency in x∗ contributes to at most two of the intervals, and the total mass of ĝ is
at most k times the threshold TN 2.

Let L1, . . . , LR be the results of R rounds of Algorithm OneStage. We say that a frequency
f ∈ A′ is successfully recovered in round r if there exists an f̃ ∈ Lr such that |f − f̃ | ≤ ∆a, where

∆a = ∆
√
T∆ .

√
T∆∆.

By Lemma 7.22, each frequency is successfully recovered with 0.8 probability in each round. Then
by the Chernoff bound, with 1 − 2−Ω(k) probability, every f ∈ A′ will be successfully recovered in
at least 0.6R rounds.

Then, by Lemma 7.24, we output a set L of O(B) frequencies such that every f ∈ A′ is within
∆a of some f̃ ∈ L. Hence every f ∈ A is within 2∆a of some f̃ ∈ L.

Lemma 7.24. Let L1, . . . , LR by sets of frequencies and f∗ be any frequency. Then L = MergedStages(L1,

. . . , LR) is a set of 2
∑
|Lr|
R frequencies satisfying

min
f̃∈L
|f∗ − f̃ | ≤ median

r∈[R]
min
f∈Lr

|f∗ − f |.

Proof. The algorithm is to take the union, sort, and take every R
2 th entry of the sorted list.

Let ∆ = medianr∈[R] minf∈Lr |f∗− f |. We have that at least R/2 different f ∈ ⋃r Lr lie within
∆ of f∗. This set forms a sequential subsequence of the sorted list of frequencies, so our output will
include one.

39

7.7 Time and sample complexity of frequency recovery of k-clustered signals

The goal of this section is to show that Procedure FrequencyRecoveryKCluster takes
poly(k, log(1/δ)) log(FT) samples, and runs in poly(k, log(1/δ)) log2(FT) time.

In order to analyze the running time and sample complexity. We need to extend the one-cluster
version Procedure GetLegal1Sample and GetEmpirical1Energy (in Algorithm 3) to k-cluster
version GetLegalKSample and GetEmpiricalKEnergy(in Algorithm 7)5,

Lemma 7.25. Procedure GetLegalKSample in Algorithm 7 runs Procedure HashToBins Rrepeat =
O((T∆)3) times to output two vectors v̂, v̂′ ∈ CB such that, for each j ∈ [B],

|v̂j − v̂′je2πifjβ| ≤ 0.08(|v̂j |+ |v̂′j |),

holds with probability at least 0.6.

Using the definition of z in Definition 7.18.

Claim 7.26. Procedure GetEmpiricalKEnergy in Algorithm 7 runs Procedure HashTobins
RestO((T∆)2) times to output a vector zemp ∈ RB such that, for each j ∈ [B],

zjemp ∈ [0.8‖z(j)‖T , 1.2‖z(j)‖T],

holds with probability at least 0.9.

Claim 7.27. Algorithm LocateKSignal in Algorithm 6 uses O(poly(k, log(1/δ)) · log(FT)), and
runs in O(poly(k, log(1/δ)) · log2(FT)).

Proof. We first calculate the number of samples. All the samples is basically all the Fourier samples,
each time needs B log(k/δ). In total it calls HashToBins O(Rest +RrepeatDmaxRloc) times where
DmaxRloc = Θ(log(FT)) by similar analysis as one-cluster frequency recovery. Thus, the total
number of samples is

(Rest +RrepeatDmaxRloc)B log(k/δ) = poly(k, log(1/δ)) · log(FT).

Then, we analyze the running time.
The expected running time includes the following parts: the first part is running Procedure

HashToBins O(Rest + RrepeatDmaxRloc) times, each run takes O(B log(k/δ) + B logB) samples.
For each such sample we need poly(k, log(1/δ)) time to compute H(t) according to Lemma C.8 and
there are poly(k, log(1/δ)) log(FT)) many samples; the second part is updating the counter v,which
takes O(DmaxRlocBt) time. Thus, in total

poly(k, log(1/δ)) ·O(Rest +RrepeatDmaxRloc) ·O(B log(k/δ) +B logB) +O(DmaxRlocBt)

= poly(k, log(1/δ)) · log2(FT),

where by similar analysis as one-cluster recovery, t = Θ(log(FT)) and DmaxRloc = Θ(log(FT)).

To boost the success probability, Procedure MultipleStages reruns Procedure LocateKSig-
nal O(k) times. At the end, Procedure FrequencyRecoveryKCluster combining Procedure
MultipleStages and MergedStages directly, and the running time and sample complexity of
MultipleStages are dominating MergedStages. Thus we have

Lemma 7.28. Procedure FrequencyRecoveryKCluster in Algorithm 8 uses O(poly(k, log(1/δ))·
log(FT)), and runs in O(poly(k, log(1/δ)) · log2(FT)).

5We omitted the proofs here, because the proofs are identical to the one-cluster situation.

40

8 One-cluster Signal Recovery

8.1 Overview

In this section, we consider x∗ whose frequencies in x̂∗ are in the range [f0 −∆′, f0 + ∆′] for some
frequency f0 and ∆′ > 0 and provide an algorithm to approximate it by a polynomial.

We fix T in this section and recall that 〈f(t), g(t)〉T := 1
T

∫ T
0 f(t)g(t)dt such that ‖e2πifit‖T =

√
〈e2πifit, e2πifit〉T = 1. For convenience, given

k∑
j=1

vje
2πifjt, we say the frequency gap of this signal

is min
i 6=j
|fi − fj |.

For simplicity, we first consider frequencies clustered around 0. The main technical lemma in this
section is that any signal x∗ with bounded frequencies in x̂∗ can be approximated by a low-degree
polynomial on [0, T].

Lemma 2.3. For any ∆ > 0 and any δ > 0, let x∗(t) =
∑

j∈[k] vje
2πifjt where |fj | ≤ ∆ for each

j ∈ [k]. There exists a polynomial P (t) of degree at most

d = O(T∆ + k3 log k + k log 1/δ)

such that
‖P (t)− x∗(t)‖2T ≤ δ‖x∗‖2T .

One direct corollary is that when x̂∗ are in the range [f0 + ∆′, f0 + ∆′], we can approximate x∗

by P (t) · e2πif0t for some low degree polynomial P .
We give an overview of this section first. We first show some technical tools in Section 8.2, 8.3.

In Section 8.4, using those tools, we can show for any k-Fourier-sparse signal, there exists another
k-Fourier-sparse signal with bounded frequency gap close to the original signal. In Section 8.5,
we show that for any k-Fourier-sparse signal with bounded frequency gap, then there exists a low
degree polynomial close to it. In Section 8.6, we show how to transfer low degree polynomial back
to a Fourier-sparse signal. Combining all the above steps finishes the proof of Lemma 2.3.

We apply Theorem 7.5 of frequency estimation on x∗ to obtain an estimation f̃0 of f0 and use
Theorem 4.5 on the approximation Q(t)e2πif̃0t of x∗ to recover the signal. We summarize this result
as follows.

Theorem 8.1 (One-cluster Signal Recovery). Let x∗(t) =
k∑
j=1

vje
2πifjt where ∀j ∈ [k], |fj − f0| ≤ ∆

and x(t) = x∗(t) + g(t) be our observable signal. For any δ > 0 and any T > 0, let N 2 :=
‖g‖2T +δ‖x∗‖2T . Procedure CFT1Culster in Algorithm 5 finds a polynomial P (t) of degree at most
d = O

(
(T∆h + T∆)1.5 + k3 log k + k log 1/δ

)
and a frequency f̃0 such that

‖P (t) · e2πif̃0t − x∗(t)‖2T . N 2 (24)

The algorithm uses O(kd)+poly(k, log(1/δ)) log(FT) samples, run in O(kdω)+poly(k, log(1/δ)) log2(FT)
time, and succeeds with probability at least 1− 2−Ω(k).

Proof. We apply the algorithm in Theorem 7.5 to obtain an estimation f̃0 with poly(k) log(FT)
samples and poly(k) log2(FT) running time such that |f̃0−f0| . (∆h+∆)

√
T (∆h + ∆) holds with

probability at least 1− 2−Ω(k). Notice that |fj − f̃0| ≤ |fj − f0|+ |f̃0 − f0| . (T (∆h + ∆))1.5.

41

We consider x′(t) = e−2πif̃0tx(t) =
k∑
j=1

vje
2πi(fj−f̃0)t . By Lemma 2.3, there exists a polynomial

P (t) of degree at most

d = O
(
(T∆h + T∆)1.5 + k3 log k + k log 1/δ

)

such that it approximates x′ by

‖P (t)− x′(t)‖T ≤
δ

4
‖x′(t)‖T =

δ

4
‖x∗(t)‖T .

which indicates ‖Q(t)− e−2πif̃0t · x∗(t)‖T ≤ δ
4‖x∗(t)‖T .

Because we can sample x(t), we can also sample e−2πif̃0t · x(t) = Q(t) + g′(t) for g′(t) =

e−2πif̃0t · g(t) + (e−2πif̃0t · x∗(t)−Q(t)). Hence we apply the algorithm in Theorem 4.5 and choose
R = O(k) in that proof. Then Procedure RobustPolynomialLearning+ takes O(kd) samples
and O(kdω) time to find a degree d polynomial P (t) approximating Q(t) such that

‖P (t)−Q(t)‖T . ‖g′(t)‖T ,

holds with probability at least 1− 2−Ω(k). It indicates

‖P (t)− e−2πif̃0t · x∗(t)‖T . ‖P (t)−Q(t)‖T + ‖Q(t)− x∗(t)‖ . δ‖x∗(t)‖T + ‖g(t)‖T h N .

Therefore we know ‖e2πif̃0t · P (t)− x∗(t)‖2T . N 2.

8.2 Bounding the Gram matrix determinant

We define Gram matrix for e2πif1t, e2πif2t, · · · , e2πifkt and provide lower/upper bounds for its deter-
minant.

Definition 8.2 (Gram matrix). We define Gramf1,··· ,fk to be

〈e2πif1t, e2πif1t〉T 〈e2πif1t, e2πif2t〉T · · · 〈e2πif1t, e2πifkt〉T
〈e2πif2t, e2πif1t〉T 〈e2πif2t, e2πif2t〉T · · · 〈e2πif2t, e2πifkt〉T

· · · · · · · · · · · ·
〈e2πifkt, e2πif1t〉T 〈e2πifkt, e2πif2t〉T · · · 〈e2πifkt, e2πifkt〉T

Note that the above matrix is a Hermitian matrix with complex entries, thus both its determinant
and all eigenvalues are in R.

We defer the proof of the following Theorem to Appendix A.1.

Theorem 8.3. For real numbers ξ1, . . . , ξk, let Gξ1,...,ξk be the matrix whose (i, j)-entry is
∫ 1

−1
e2πi(ξi−ξj)tdt.

Then
det(Gξ1,...,ξk) = 2Õ(k2)

∏

i<j

min(|ξi − ξj |2, 1).

We use the following corollary in this section.

42

Corollary 8.4. There exists a universal constant α > 0 such that, for any T > 0 and real numbers
f1, · · · , fk, the k × k Gram matrix of e2πif1t, e2πif2t, · · · , e2πifkt whose (i, j)-entry is

Gramf1,··· ,fk(i, j) = 〈e2πifit, e2πifjt〉T =
1

T

∫ T

0
e2πi(fi−fj)tdt.

satisfies

k−αk
2
∏

i<j

min((|fi − fj |T)2, 1) ≤ det (Gramf1,··· ,fk) ≤ kαk2
∏

i<j

min((|fi − fj |T)2, 1).

Based on Corollary 8.4, we show the coefficients of a k-Fourier-sparse signal can be upper
bounded by the energy ‖x‖2T .

Lemma 2.2. There exists a universal constant c > 0 such that for any x(t) =
k∑
j=1

vje
2πifjt with

frequency gap η = min
i 6=j
|fi − fj |,

‖x(t)‖2T ≥ k−ck
2

min
(

(ηT)2k, 1
) k∑

j=1

|vj |2.

Proof. Let ~vi denote the vector e2πifit and V = {~v1, · · · , ~vk}. Notice that ‖~vi‖2T = 〈~vi, ~vi〉 =

1. For each ~vi, we define ~v‖i to be the projection of ~vi into the linear subspace span{V \ ~vi} =

span{~v1, · · · , ~vi−1, ~vi+1, · · · , ~vk} and ~v⊥i = ~vi − ~v
‖
i which is orthogonal to span{V \ ~vi} by the

definition.
Therefore from the orthogonality,

‖x(t)‖2T ≥ max
j∈[k]
{|vj |2 · ‖~v⊥j ‖2T } ≥

1

k

k∑

j=1

|vj |2 · ‖~v⊥j ‖2T .

It is enough to estimate ‖~v⊥j ‖2T from Claim 3.12:

‖~v⊥j ‖2T =
det(Gram(V))

det(Gram(V \ ~vi))
≥ k−2αk2

∏

j 6=i
min ((fj − fi)T, 1)2 ≥ k−2αk2(ηT)2k−2,

where we use Corollary 8.4 to lower bound it in the last step.

8.3 Perturbing the frequencies does not change the subspace much

We show that for a k-Fourier-sparse signal with unboundedly close frequency gap, there always
exists another k-Fourier-sparse signal with slightly separated gap.

Lemma 8.5 (Slightly Shifting one Frequency). There is a universal constant C0 > 0 such that for

any x(t) =
k∑
j=1

vje
2πifjt and any frequency fk+1, there always exists

x′(t) =
k−1∑

j=1

v′je
2πifjt + v′k+1e

2πifk+1t

with k coefficients v′1, v
′
2, · · · , v′k−1, v

′
k+1 satisfying

‖x′(t)− x(t)‖T ≤ kC0k2 · (|fk − fk+1|T) · ‖x(t)‖T

43

Proof. We abuse the notation e2πifjt to denote a vector in the linear subspace. We plan to shift fk
to fk+1 and define

V = {e2πif1t, · · · , e2πifk−1t, e2πifkt}
V ′ = {e2πif1t, · · · , e2πifk−1t, e2πifk+1t}
U = {e2πif1t, · · · , e2πifk−1t}
W = {e2πif1t, · · · , e2πifk−1t, e2πifkt, e2πifk+1t}

where f1, f2, · · · , fk are original frequencies in x. The idea is to show that any vector in the linear
subspace span{V } is close to some vector in the linear subspace span{V ′}.

For convenience, we use ~u‖ to denote the projection of vector e2πifkt to the linear subspace
span{U} = span{e2πif1t, · · · , e2πifk−1t} and ~w‖ denote the projection of vector e2πifk+1t to this
linear subspace span{U}. Let ~u⊥ = e2πifkt − ~u‖ and ~w⊥ = e2πifk+1t − ~w‖ be their orthogonal part
to span{U}.

From the definition e2πifkt = ~u‖ + ~u⊥ and ~u‖ ∈ span{U} = span{e2πif1t, · · · , e2πifk−1t}, we
rewrite the linear combination

x(t) =
k∑

j=1

vje
2πifjt =

k−1∑

j=1

αje
2πifjt + vk · ~u⊥

for some scalars α1, · · · , αk−1.
We will substitute ~u⊥ by ~w⊥ in the above linear combination and find a set of new coefficients.

Let ~w⊥ = ~w1 + ~w2 where ~w1 = 〈~u⊥, ~w⊥〉
‖~u⊥‖2T

~u⊥ is the projection of ~w⊥ to ~u⊥. Therefore ~w2 is the

orthogonal part of the vector e2πifk+1t to span{V } = span{e2πif1t, · · · , e2πifk−1t, e2πifkt}. We use
δ = ‖~w2‖T

‖~w⊥‖T
for convenience.

Notice that the min
β∈C

‖~u⊥−β·~w⊥‖T
‖~u⊥‖T

= δ and β∗ = 〈~u⊥, ~w⊥〉
‖~w⊥‖2T

is the optimal choice. Therefore we set

x′(t) =
k−1∑

j=1

βje
2πifjt + vk · β∗ · ~w⊥ ∈ span{e2πif1t, · · · , e2πifk−1t, e2πifk+1t}

where the coefficients β1, · · · , βk−1 guarantee that the projection of x′ onto span{U} is as same as
the projection of x onto span{U}. From the choice of β∗ and the definition of x′,

‖x(t)− x′(t)‖2T = δ2 · |vk|2 · ‖~u⊥‖2T ≤ δ2 · ‖x(t)‖2T .

44

Eventually, we show an upper bound for δ2 from Claim 3.12.

δ2 =
‖~w2‖2T
‖~w⊥‖2T

=
det(GramW)

det(GramV)
/

det(GramV ′)

det(GramU)
by Claim 3.12

=
det(GramW)

det(GramV)
· det(GramU)

det(GramV ′)
by Corollary 8.4

≤ k4αk2 ·

k+1∏
i=1

k+1∏
j=1
j 6=i

min(|fi − fj |T, 1)

k∏
i=1

k∏
j=1
j 6=i

min(|fi − fj |T, 1)

·

k−1∏
i=1

k−1∏
j=1
j 6=i

min(|fi − fj |T, 1)

k−1∏
i=1

k−1∏
j=1
j 6=i

min(|fi − fj |T, 1) ·
k−1∏
i=1

min(|fi − fk+1|2T 2, 1)

= k4αk2 |fk − fk+1|2T 2

Lemma 8.6. For any k frequencies f1 < f2 < · · · < fk, there exists k frequencies f ′1, · · · , f ′k such
that min

i∈[k−1]
f ′i+1 − f ′i ≥ η and for all i ∈ [k], |f ′i − fi| ≤ kη.

Proof. We define the new frequencies f ′i as follows: f ′1 = f1 and f ′i = max{f ′i−1 + η, fi} for i ∈
{2, 3, · · · , k}.

8.4 Existence of nearby k-Fourier-sparse signal with frequency gap bounded
away from zero

We combine the results in the above section to finish the proof of Lemma 2.3. We first prove

that for any x∗(t) =
k∑
j=1

vje
2πifjt, there always exists another k-Fourier-sparse signal x′ close to

x∗(t) =
k∑
j=1

vje
2πifjt such that the frequency gap in x′ is at least η ≥ 2− poly(k). Then we show how

to find a low degree polynomial P (t) approximating x′(t).

Lemma 2.1. There is a universal constant C1 > 0 such that, for any x∗(t) =
k∑
j=1

vje
2πifjt and any

δ > 0 , there always exist η ≥ δ
T · k−C1k2 and x′(t) =

k∑
j=1

v′je
2πif ′jt satisfying

‖x′(t)− x∗(t)‖T ≤ δ‖x∗(t)‖T

with min
i 6=j
|f ′i − f ′j | ≥ η and max

j∈[k]
{|f ′j − fj |} ≤ kη.

Proof. Using Lemma 8.6 on frequencies f1, · · · , fk, we obtain k new frequencies f ′1, · · · , f ′k such that
their gap is at least η and maxi |fi − f ′i | ≤ kη. Next we use the hybrid argument to find x′.

45

Let x(0)(t) = x∗(t). For i = 1, · · · , t, we apply Lemma 8.5 to shift fi to f ′i and obtain

x(i)(t) =

k∑

j=i+1

v
(i)
j e2πifjt +

i∑

j=1

v
(i)
j e2πif ′jt.

From Lemma 8.5, we know ‖x(i)(t)− x(i−1)(t)‖T ≤ kC0k2(|fi − f ′i |T)‖x(i−1)‖T . Thus we obtain

(
1− kC0k2(kηT)

)i
‖x(0)(t)‖T ≤ ‖x(i)(t)‖T ≤

(
1 + kC0k2(kηT)

)i
‖x(0)(t)‖T ,

which is between
[(

1− i · kC0k2(kηT)
)
‖x(0)(t)‖T ,

(
1 + 2i · kC0k2(kηT)

)
‖x(0)(t)‖T

]
for η ≤ 1

5T ·
k−C1k2 with some C1 > C0.

At last, we set x′(t) = x(k)(t) and bound the distance between x′(t) and x∗(t) by

‖x(k)(t)− x(0)(t)‖T ≤
k∑

i=1

‖x(i)(t)− x(i−1)(t)‖T by triangle inequality

≤
k∑

i=1

kC0k2(|fi − f ′i |T)‖x(i−1)(t)‖T by Lemma 8.5

≤
k∑

i=1

2kC0k2(kηT)‖x(i−1)(t)‖T by max
i
|fi − f ′i | ≤ kη

≤ k · 2kC0k2(kηT)‖x∗(t)‖T
≤ δ‖x∗(t)‖T

where the last inequality follows by the sufficiently small η.

8.5 Approximating k-Fourier-sparse signals by polynomials

For any k-Fourier-sparse signal with frequency gap bounded away from zero, we show that there
exists a low degree polynomial which is close to the original k-Fourier-sparse signal in ‖·‖T distance.

Lemma 8.7 (Existence of low degree polynomial). Let x∗(t) =
k∑
j=1

vje
2πifjt, where ∀j ∈ [k], |fj | ≤ ∆

and min
i 6=j
|fi − fj | ≥ η. There exists a polynomial Q(t) of degree

d = O
(
T∆ + k log 1/(ηT) + k2 log k + k log(1/δ)

)

such that,
‖Q(t)− x∗(t)‖2T ≤ δ‖x∗(t)‖2T (25)

Proof. For each frequency fj , let Qj(t) =
d−1∑
k=0

(2πifjt)
k

k! be the first d terms in the Taylor Expansion

of e2πifjt. For any t ∈ [0, T], we know the difference between Qj(t) and e2πifjt is at most

|Qj(t)− e2πifjt| ≤ |(2πifjT)d

d!
| ≤ (

2πT∆ · e
d

)d.

46

We define

Q(t) =
k∑

j=1

vjQj(t)

and bound the distance between Q and x∗ from the above estimation:

‖Q(t)− x∗(t)‖2T =
1

T

∫ T

0
|Q(t)− x∗(t)|2dt

=
1

T

∫ T

0
|
k∑

j=1

vj(Qj(t)− e2πifjt)|2dt

≤ 2k
k∑

j=1

1

T

∫ T

0
|vj |2 · |Qj(t)− e2πifjt|2dt by triangle inequality

≤ k

k∑

j=1

|vj |2 · (
2πT∆ · e

d
)2d by Taylor expansion

On the other hand, from Lemma 2.2, we know

‖x∗(t)‖2T ≥ (ηT)2k · k−ck2
∑

j

|vj |2.

Because d = 10 ·πe(T∆+k log 1/(ηT)+k2 log k+k log(1/δ)) is large enough, we have k(2πT∆·e
d)2d ≤

δ(ηT)2k · k−ck2 , which indicates that ‖Q(t)− x∗(t)‖2T ≤ δ‖x∗‖2T from all discussion above.

8.6 Transferring degree-d polynomial to (d+1)-Fourier-sparse signal

In this section, we show how to transfer a degree-d polynomial to (d+1)-Fourier-sparse signal.

Lemma 8.8. For any degree-d polynomial Q(t) =
d∑
j=0

cjt
j, any T > 0 and any ε > 0, there always

exist γ > 0 and

x∗(t) =
d+1∑

i=1

αie
2πi(γi)t

with some coefficients α0, · · · , αd such that

∀t ∈ [0, T], |x∗(t)−Q(t)| ≤ ε.

47

Proof. We can rewrite x∗(t),

x∗(t) =
d+1∑

i=1

αie
2πiγit

=

d+1∑

i=1

αi

∞∑

j=0

(2πiγit)j

j!

=

∞∑

j=0

(2πiγt)j

j!

d+1∑

i=1

αi · ij

=

d∑

j=0

(2πiγt)j

j!

d+1∑

i=1

αi · ij +

∞∑

j=d+1

(2πiγt)j

j!

d+1∑

i=1

αi · ij

= Q(t) +

d∑

j=0

(2πiγt)j

j!

d+1∑

i=1

αi · ij −Q(t)

︸ ︷︷ ︸
C1

+

∞∑

j=d+1

(2πiγt)j

j!

d+1∑

i=1

αi · ij

︸ ︷︷ ︸
C2

.

Our goal is to show there exists some parameter γ and coefficients {α0, α1, · · · , αd} such that the
term C1 = 0 and |C2| ≤ ε. Let’s consider C1,

C1 =
d∑

j=0

(
t

T
)j

(
(2πiγT)j

j!

d+1∑

i=1

αii
j − cj

)

To guarantee C1 = 0, we need to solve a linear system with d + 1 unknown variables and d + 1
constraints,

Find α1, α2, · · ·αd+1

s.t.
(2πiγT)j

j!

d+1∑

i=1

αii
j − cj = 0, ∀j ∈ {0, 1, · · · , d}

Define c′j = cjj!/(2πiγ)j , let α and c′ be the length-(d + 1) column vectors with αi and c′j . Let
A ∈ Rd+1×d+1 denote the Vandermonde matrix where Ai,j = ij ,∀i, j ∈ [d+ 1]×{0, 1, · · · , d}. Then
we need to guarantee Aα = c′. Using the definition of determinant, det(A) =

∏
i<j
|i− j| ≤ 2O(d2 log d).

Thus σmax(A) ≤ 2O(d2 log d) and then

σmin(A) =
det(A)
∏d−1
i=1 σi

≥ 2−O(d3 log d).

We show how to upper bound |αi|,

max
i∈[d+1]

|αi| ≤ ‖α‖2 = ‖A†c′‖2 ≤ ‖A†‖2 · ‖c′‖2 ≤
1

σmin(A)

√
d+ 1 max

0≤j≤d

|cj |j!
(2πγT)j

48

Plugging the above equation into C2, we have

|C2| =

∣∣∣∣∣∣

∞∑

j=d+1

(2πiγt)j

j!

d+1∑

i=1

αi · ij
∣∣∣∣∣∣

≤
∞∑

j=d+1

(2πγt)j

j!

d+1∑

i=1

|αi| · ij

≤
∞∑

j=d+1

(2πγt)j

j!
(d+ 1)d+1 max

i∈[d+1]
|αi|

≤
∞∑

j=d+1

(2πγt)j

j!
(d+ 1)d+2 1

σmin(A)

d!

(2πγT)d
max

0≤j≤d
|cj |

≤ ε

where the last step follows by choosing sufficiently small

γ . ε/

(
T2Θ(d3 log d) max

0≤j≤d
|cj |
)
.

9 k-cluster Signal Recovery

9.1 Overview

In this section, we prove Lemma 9.1 as the main technical lemma to finish the proof of main
Theorem 1.1, which shows how to learn x∗(t) =

∑k
j=1 vje

2πifjt with noise.

Lemma 9.1. Let x∗(t) =
∑k

j=1 vje
2πifjt and x(t) = x∗(t) + g(t) be our observation. For any δ > 0

and T > 0, let N 2 := 1
T

∫ T
0 |g(t)|2dt + δ · 1

T

∫ T
0 |x∗(t)|2dt. For ∆ = poly(k, log(1/δ))/T , Procedure

SignalRecoveryKCluster+ in Algorithm 8 takes l = O(k) frequencies f̃1, · · · , f̃l as input and
finds l polynomials Q1, · · · , Ql of degree d = O((T∆)1.5 + k3 log k + k log 1/δ) such that

x̃(t) =
∑

j∈[l]

Qj(t)e
2πif̃jt satisfies ‖x̃(t)− x∗(t)‖2T . N 2. (26)

The procedure succeeds with probability at least 1− 2−Ω(k), uses poly(k, log(1/δ)) · log(FT) samples,
and runs in poly(k, log(1/δ)) · log2(FT) time.

For any set W = {t1, · · · , tm} where each ti ∈ [0, T], we use

‖~v‖W =

√∑
i∈W |~v(ti)|2
|W | for any ~v : [0, T]→ C

in this section. We first show that Procedure SignalRecoveryKCluster succeeds with constant
probability, then prove that Procedure SignalRecoveryKCluster+ succeeds with probability
at least 1− 2−Ω(k).

49

9.2 Heavy clusters separation

Recall the definition of “heavy” clusters.

Definition 2.4. Given x∗(t) =
k∑
j=1

vje
2πifjt, any N > 0, and a filter function (H, Ĥ) with bounded

support in frequency domain. Let Lj denote the interval of supp(̂e2πifjt ·H) for each j ∈ [k].
Define an equivalence relation ∼ on the frequencies fi by the transitive closure of the relation

fi ∼ fj if Li ∩ Lj 6= ∅. Let S1, . . . , Sn be the equivalence classes under this relation.
Define Ci = ∪

f∈Si
Li for each i ∈ [n]. We say Ci is a “heavy” cluster iff

∫
Ci
|Ĥ · x∗(f)|2df ≥

T · N 2/k.

By reordering Ci, we can assume {C1, C2, · · · , Cl} are heavy clusters, where l ≤ n ≤ k.

Claim 2.5. Given x∗(t) =
k∑
j=1

vje
2πifjt and any N > 0, let H be the filter function defined in

Appendix C.1 and C1, · · · , Cl be the heavy clusters from Definition 2.4. For

S =

{
j ∈ [k]

∣∣∣∣fj ∈ C1 ∪ · · ·Cl
}
,

we have x(S)(t) =
∑
j∈S

vje
2πifjt approximating x∗ within distance ‖x(S)(t)− x∗(t)‖2T . N 2.

Proof. Let x(S)(t) =
∑

j∈[k]\S
vje

2πifjt. Notice that ‖x∗ − x(S)‖2T = ‖x(S)‖2T .

From the property VI of filter function (H, Ĥ) in Appendix C.1, we have
∫ +∞

−∞
|x(S)(t) ·H(t)|2dt ≥ 0.9

∫ T

0
|x(S)(t)|2dt = 0.9 · T‖xS‖2T .

From Definition 2.4, we have
∫ +∞

−∞
|x(S)(t) ·H(t)|2dt =

∫ +∞

−∞
| ̂x(S) ·H(f)|2df

=

∫

[−∞,+∞]\C1∪···∪Cl
|x̂∗ ·H(f)|2df

≤ k · TN 2/k.

Overall, we have ‖x(S)‖2T . N 2.

From the guarantee of Theorem 2.6, for any j ∈ S, min
i∈[l]
|fj − f̃i| ≤ ∆

√
∆T . From now on, we

focus on the recovery of x(S), which is enough to approximate x∗ from the above claim. Because
we are looking for x̃ approximating x(S) within distance O(N 2), from Lemma 2.1, we can assume
there is a frequency gap η ≥ δ

10T k
−O(k2) among x(S).

50

9.3 Approximating clusters by polynomials

In this section, we show how to approximate x(S) by x′(t) =
∑

i∈[l] e
2πif̃itPi(t) where P1, · · · , Pl are

low degree polynomials.

Claim 9.2. For any x(S)(t) =
∑

j∈S vje
2πifjt with a frequency gap η = min

i 6=j
|fi−fj | and l frequencies

f̃1, · · · , f̃l with the property ∀j ∈ S,mini∈[l] |fj − f̃i| ≤ ∆
√

∆T , let

d = 5π
(
(T∆)1.5 + k3 log k + log 1/δ

)
and V =

{
tje2πif̃it|i ∈ [l], j ∈ {0, · · · , d}

}
.

There exists x′(t) ∈ span{V } that approximates x(S)(t) as follows:

∀t ∈ [0, T], |x′(t)− x(S)(t)| ≤ δ‖x(S)‖T .

Proof. From Lemma 2.2, we know

‖x(S)‖2T ≥ (ηT)2k · k−ck2
∑

j∈S
|vj |2.

For each frequency fj , we use pj to denote the index in [l] such that |fj− f̃pj | ≤ ∆
√

∆T . We rewrite

x(S)(t) =
l∑

i=1

e2πif̃i

 ∑

j∈S:pj=i

vje
2πi(fj−f̃i)t

 .

For d = 5π((T∆)1.5 + k3 log k + log 1/δ) and each e2πi(fj−f̃pj)t, let Qj(t) =
∑d−1

i=0
(2πi(fj−f̃pj)t)

i

i! be

the first d terms in the Taylor Expansion of e2πi(fj−f̃pj)t. For any t ∈ [0, T], we know the difference
between Qj(t) and e2πi(fj−f̃pj)t is at most

∀t ∈ [0, T], |Qj(t)− e2πi(fj−f̃pj)t| ≤ |(2πi(fj − f̃pj)T)d

d!
| ≤ (

8π(∆T)1.5

d
)d.

Let x′ =
∑l

i=1 e
2πif̃it

(∑
j∈S:pj=i

vjQj(t)
)
. From all discussion above, we know for any t ∈ [0, T],

|x′(t)− x(S)(t)|2 ≤

∑

j∈S
|vj |(

8π(T∆)1.5

d
)d

2

≤ k(
8π(T∆)1.5

d
)2d
∑

j

|vj |2

≤ k(8π(T∆)1.5

d)2d

(ηT)2k · k−ck2 ‖x
(S)‖2T

≤ δ2‖x(S)‖2T .

We provide a property of functions in span{V } such that we can use the Chernoff bound and
the ε-net argument on vectors in span{V }.

51

Claim 2.7. For any ~u ∈ span

{
e2πif̃it · tj

∣∣∣∣j ∈ {0, · · · , d}, i ∈ [l]

}
, there exists some universal con-

stants C1 ≤ 4 and C2 ≤ 3 such that

max
t∈[0,T]

{|~u(t)|2} . (ld)C1 logC2(ld) · ‖~u‖2T

Proof. From Lemma 8.8, we can approximate each polynomial in ~u by a linear combination of
{1, e2πi·γt, · · · , e2πi·(γd)t} such that we obtain u∗ ∈ span

{
e2πi·(γj)t · e2πif̃it|i ∈ [l], j ∈ {0, · · · , d+ 1}

}

for some small γ such that ∀t ∈ [0, T], |~u(t)− u∗(t)| ≤ 0.01‖~u‖T .
From Lemma 5.1, we know

max
t∈[0,T]

|u∗(t)|2 ≤ C ·
(
(ld+ 1)4 · log3(ld+ 1)

)
‖u∗‖2T .

For some constant C ′, we have

max
t∈[0,T]

|~u(t)|2 ≤ C ′
(
(kd)C1 logC2 d

)
‖~u‖2T .

9.4 Main result, with constant success probability

In this section, we show that the output x̃ is close to x′ with high probability using the ε-net
argument, which is enough to prove ‖x̃ − x‖T . N 2 from all discussion above. Because we can
prove Lemma 9.6(which is the main goal of this section), then combining ‖x′−x∗‖T ≤ ‖x′−x(S)‖T +
‖x(S) − x∗‖T . δ‖x∗‖T and Lemma 9.6, we have ‖x∗ − x̃‖T . ‖g‖T + δ‖x∗‖T , which finishes the
proof of Procedure SignalRecoveryKCluster in Algorithm 8 achieving the Equation (26) with
constant success probability but not 1 − 2−Ω(k). We will boost the success probability in Section
9.5.

We first provide an ε-net P for the unit vectors Q = {~u ∈ span{V }
∣∣‖~u‖2T = 1} in the linear sub-

space span{V } where V =
{
tj · e2πif̃it

∣∣j ∈ {0, 1, · · · , d}, i ∈ [l]
}

from the above discussion. Notice
that the dimension of span{V } is at most l(d+ 1).

Claim 9.3. There exists an ε-net P ⊂ span{V } such that

1. ∀~u ∈ Q,∃~w ∈ P, ‖~u− ~w‖T ≤ ε.

2. |P| ≤
(

5 l(d+1)
ε

)2l(d+1)
.

Proof. Let P ′ be an ε
l(d+1) -net in the unit circle of C with size at most (4 l(d+1)

ε + 1)2, i.e.,

P ′ =
{

ε

2l(d+ 1)
j1 + i

ε

2l(d+ 1)
j2

∣∣∣∣j1, j2 ∈ Z, |j1| ≤
2l(d+ 1)

ε
, |j2| ≤

2l(d+ 1)

ε

}
.

Observe that the dimension of span{V } is at most l(d + 1). Then we take an orthogonal basis
~w1, · · · , ~wl(d+1) in span{V } and set

P = {
l(d+1)∑

i=1

αi ~wi
∣∣∀i ∈ [l(d+ 1)], αi ∈ P ′}.

Therefore P is an ε-net for Q and |P| ≤
(

5 l(d+1)
ε

)2l(d+1)
.

52

We first prove that W is a good estimation for all functions in the ε-net P.
Claim 9.4. For any ε > 0, there exists a universal constant C3 ≤ 5 such that for a set S of i.i.d.
samples chosen uniformly at random over [0, T] of size |S| ≥ 3(kd)C3 logC3 d/ε

ε2
,then with probability at

least 1− k−k, for all ~w ∈ P, we have

‖~w‖W ∈ [(1− ε)‖~w‖T , (1 + ε)‖~w‖T] .

Proof. From Claim 2.7 and Lemma 3.5, for each ~w ∈ P,

Pr
[
‖~w(t)‖W /∈

[
(1− ε)‖~w‖T , (1 + ε)‖~w‖T

]]
≤ 2

− |W |ε2

3(kd)C1 logC2+0.5 d ≤ 2−kd log1.5 d
ε .

From the union bound, ‖~w‖W ∈ [(1 − ε)‖~w‖T , (1 + ε)‖~w‖T] for any ~w ∈ P with probability at
least 1− (dε)

−kd log0.5 d · |P| ≥ 1− d−d.

Then We prove that W is a good estimation for all functions in span{V } using the property of
ε-nets.

Claim 9.5. For any ε > 0, there exists a universal constant C3 ≤ 5 such that for a set W of i.i.d.
samples chosen uniformly at random over [0, T] of size |W | ≥ 3(kd)C3 logC3 d/ε

ε2
,then with probability

at least 1− d−d, for all u ∈ span{V }, we have

‖~u‖W ∈ [(1− 3ε)‖~u‖T , (1 + 3ε)‖~u‖T]

Proof. We assume that the above claim is true for any ~w ∈ P. Without loss of generality, we
consider ~u ∈ Q such that ‖~u‖T = 1.

Let ~w0 be the vector in P that minimizes ‖~w − ~u‖T for all ~w ∈ P, i.e., ~w0 = arg min
~w∈P

‖~w − ~u‖T .
Define ~u1 = ~u− ~w0 and notice that ‖~u1‖T ≤ ε because P is a ε-net. If ‖~u1‖T = 0, then we skip the
rest of this procedure. Otherwise, we define α1 = ‖~u1‖T and normalize ũ1 = ~u1/α1.

Then we choose ~w1 to be the vector in P that minimizes ‖~w − ũ1‖T for all ~w ∈ P. Similarly,
we set ~u2 = ũ1 − ~w1 and α2 = ‖~u2‖T . Next we repeat this process for ũ2 = ~u2/α2 and so on. The
recursive definition can be summarized in the following sense,

initial : ũ0 = ~u and m = 10 log1/ε(ld) + 1,

For i ∈ {0, 1, 2, · · · ,m} : ~wi = arg min
~w∈P

‖~w − ũi‖T ,

~ui+1 = ũi − ~wi and αi+1 = ‖~ui+1‖T ,
if αi+1 = 0, stop.
if αi+1 6= 0, ũi+1 = ~ui+1/αi+1 and continue,

Eventually, we have ~u = ~w0 + α1 ~w1 + α1α2 ~w2 + · · ·+∏m
j=1 αj(~wm + ~um+1) where each |αi| ≤ ε

and each ~wi is in the ε-net P. Notice that ‖~um+1‖T ≤ 1 and ‖~um+1‖W ≤ (ld+ 1)3 · ‖~um+1‖T from
Claim 2.7. We prove a lower bound for ‖~u‖W ,

‖~u‖W = ‖~w0 + α1 ~w1 + α1α2 ~w2 + · · ·+
m∏

j=1

αj(~wm + ~um+1)‖W

≥ ‖~w0‖W − ‖α1 ~w1‖W − ‖α1α2 ~w2‖W − · · · − ‖
m∏

j=1

αj ~wm‖W − ‖
m∏

j=1

αj~um+1‖W

≥ (1− ε)− ε(1 + ε)− ε2(1 + ε)− · · · − εm(1 + ε)− εm‖~um+1‖W
≥ 1− ε− (1 + ε)ε

1− ε − ε
m · (ld+ 1)3 ≥ 1− 3ε.

53

Similarly, we have ‖~u‖W ≤ 1 + 3ε.

Lemma 9.6. With probability at least 0.99 over the m i.i.d samples in W ,

‖x′(t)− x̃(t)‖T ≤ 2200
(
‖g(t)‖T + ‖x(S)(t)− x′(t)‖T

)
.

Proof. Let g′(t) = g(t) + x∗(t)− x′(t) such that x(t) = x′(t) + g′(t). Then we choose ε = 0.03 and
bound:

‖x′(t)− x̃(t)‖T
≤ (1 + 3ε)‖x′(t)− x̃(t)‖W with prob. 1− 2−Ω(d log d) by Claim 9.5
= 1.09‖x′(t)− x̃(t)‖W by ε = 0.03

= 1.09‖x(t)− g′(t)− x̃(t)‖W by x′(t) = x(t)− g′(t)
≤ 1.09‖x(t)− x̃(t)‖W + 1.09‖g′(t)‖W by triangle inequality
≤ 1.09‖x(t)− x′(t)‖W + 1.09‖g′(t)‖W by x̃ = arg min

y∈span{V }
‖x− y‖W

= 2.18‖g′(t)‖W . by x(t)− x′(t) = g(t)

From the fact that EW [‖g′‖W] = ‖g′‖T , ‖g′‖W ≤ 1000‖g′‖T with probability at least .999. It
indicates ‖x′(t)− x̃(t)‖T ≤ 2200‖g′‖T with probability at least 0.99 from all discussion above.

9.5 Boosting the success probability

In order to achieve 1 − 2−Ω(k) for the main theorem, we cannot combine Procedure SignalRe-
coveryKCluster with FrequencyRecoveryKCluster directly. However, using the similar
proof technique in Theorem 4.5, we are able to boost the success probability by using Procedure
SignalRecoveryKCluster+ in Algorithm 8. It runs Procedure SignalRecoveryKCluster
R = O(k) times in parallel for independent fresh samples and report R different d-Fourier-sparse
signals x̃i(t). Then, taking m = poly(k) new locations {t1, t2, · · · , tm}, and computing Ã as before
and b̃j by taking the median of {x̃1(tj), · · · , x̃R(tj)}. At the end, solving the linear regression for
matrix Ã and vector b̃. Thus, we complete the proof of Lemma 9.1.

Because we can transfer a degree-d polynomial to a d-Fourier-sparse signal by Lemma 8.8, the
output of Procedure CFTKCluster in Algorithm 8 matches the main theorem,

Theorem 1.1. Let x(t) = x∗(t) + g(t), where x∗ is k-Fourier-sparse signal with frequencies in
[−F, F]. Given samples of x over [0, T] we can output x̃(t) such that with probability at least
1− 2−Ω(k),

‖x̃− x∗‖T . ‖g‖T + δ ‖x∗‖T .
Our algorithm uses poly(k, log(1/δ)) · log(FT) samples and poly(k, log(1/δ)) · log2(FT) time. The
output x̃ is poly(k, log(1/δ))-Fourier-sparse signal.

54

References

[BCG+14] Petros Boufounos, Volkan Cevher, Anna C Gilbert, Yi Li, and Martin J Strauss. What’s
the frequency, Kenneth?: Sublinear Fourier sampling off the grid. In Algorithmica(A
preliminary version of this paper appeared in the Proceedings of RANDOM/APPROX
2012, LNCS 7408, pp. 61-72), pages 1–28. Springer, 2014.

[BM86] Y. Bresler and A. Macovski. Exact maximum likelihood parameter estimation of su-
perimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 34(5):1081–1089, Oct 1986.

[Bou14] Jean Bourgain. An improved estimate in the restricted isometry problem. In Geometric
Aspects of Functional Analysis, pages 65–70. Springer, 2014.

[BS12] Markus Blaser and Chandan Saha. Lecture 6: Multipoint evaluation of a polynomial.
Max-Planck-Institut für Informatik Class Notes, Computational Number Theory and
Algebra, pages 1–4, 2012.

[CDL13] Albert Cohen, Mark A Davenport, and Dany Leviatan. On the stability and accuracy
of least squares approximations. Foundations of computational mathematics, 13(5):819–
834, 2013.

[CF14] Emmanuel J Candès and Carlos Fernandez-Granda. Towards a mathematical theory of
super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956,
2014.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, 23:493–507, 1952.

[CNW15] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate matrix
product in terms of stable rank. arXiv preprint arXiv:1507.02268, 2015.

[CRT06] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery
from incomplete and inaccurate measurements. Communications on pure and applied
mathematics, 59(8):1207–1223, 2006.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progres-
sions. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 1–6. ACM, 1987.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 81–90, 2013.

[DB13] Marco F Duarte and Richard G Baraniuk. Spectral compressive sensing. Applied and
Computational Harmonic Analysis, 35(1):111–129, 2013.

[Dun10] Mark Dunster. Legendre and Related Functions. Handbook of Mathematical Functions,
Cambridge University Press, 2010.

[FL12] Albert Fannjiang and Wenjing Liao. Coherence pattern-guided compressive sensing with
unresolved grids. SIAM Journal on Imaging Sciences, 5(1):179–202, 2012.

55

[GGI+02] Anna C Gilbert, Sudipto Guha, Piotr Indyk, S Muthukrishnan, and Martin Strauss.
Near-optimal sparse Fourier representations via sampling. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, pages 152–161. ACM, 2002.

[GMS05] Anna C Gilbert, S Muthukrishnan, and Martin Strauss. Improved time bounds for
near-optimal sparse Fourier representations. InOptics & Photonics 2005, pages 59141A–
59141A. International Society for Optics and Photonics, 2005.

[GZ16] Venkatesan Guruswami and David Zuckerman. Robust Fourier and polynomial curve
fitting. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Sympo-
sium on. IEEE, 2016.

[Haz01] Michiel Hazewinkel. Gram matrix. Encyclopedia of Mathematics, Springer, 2001.

[HIKP12a] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse
Fourier transform. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing. ACM, 2012.

[HIKP12b] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical
algorithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 1183–1194. SIAM, 2012.

[HK15] Qingqing Huang and Sham M Kakade. Super-resolution off the grid. In Advances in
Neural Information Processing Systems, pages 2647–2655, 2015.

[HR15] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled Fourier
matrices. arXiv preprint arXiv:1507.01768, 2015.

[IK14] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any constant
dimension. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 514–523. IEEE, 2014.

[IKP14] Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly) Sample-optimal sparse Fourier
transform. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 480–499. SIAM, 2014.

[Iwe13] Mark A Iwen. Improved approximation guarantees for sublinear-time Fourier algo-
rithms. Applied And Computational Harmonic Analysis, 34(1):57–82, 2013.

[Kap16] Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-
optimal sample complexity in sublinear time. In Symposium on Theory of Computing
Conference, STOC’16, Cambridge, MA, USA, June 19-21, 2016, 2016.

[Mas69] James L Massey. Shift-register synthesis and BCH decoding. Information Theory, IEEE
Transactions on, 15(1):122–127, 1969.

[Moi15] Ankur Moitra. The threshold for super-resolution via extremal functions. In STOC,
2015.

[MP14] Gregory T Minton and Eric Price. Improved concentration bounds for count-sketch.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 669–686. Society for Industrial and Applied Mathematics, 2014.

56

[NN13] Jelani Nelson and Huy L Nguyên. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, pages 117–126. IEEE, 2013.

[PS15] Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on,
pages 583–600. IEEE, 2015.

[RPK86] Robert Roy, Arogyaswami Paulraj, and Thomas Kailath. Esprit–a subspace rotation
approach to estimation of parameters of cisoids in noise. Acoustics, Speech and Signal
Processing, IEEE Transactions on, 34(5):1340–1342, 1986.

[RV08] Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaus-
sian measurements. Communications on Pure and Applied Mathematics, 61(8):1025–
1045, 2008.

[Sch81] Ralph Otto Schmidt. A signal subspace approach to multiple emitter location spectral
estimation. Ph. D. Thesis, Stanford University, 1981.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[Tar09] Robert E. Tarjan. Lecture 10: More chernoff bounds, sampling, and the chernoff +
union bound. Princeton Class Notes, Probability and Computing, pages 1–9, 2009.

[TBR15] Gongguo Tang, Badri Narayan Bhaskar, and Benjamin Recht. Near minimax line spec-
tral estimation. Information Theory, IEEE Transactions on, 61(1):499–512, 2015.

[TBSR13] Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht. Com-
pressed sensing off the grid. Information Theory, IEEE Transactions on, 59(11):7465–
7490, 2013.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In STOC, pages 887–898. ACM, 2012.

[Woo14] David P Woodruff. Sketching as a tool for numerical linear algebra. arXiv preprint
arXiv:1411.4357, 2014.

[YX15] Zai Yang and Lihua Xie. Achieving high resolution for super-resolution via reweighted
atomic norm minimization. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pages 3646–3650. IEEE, 2015.

57

A Technical Proofs

A.1 Proof of Theorem 8.3

We prove the following Theorem

Theorem 8.3. For real numbers ξ1, . . . , ξk, let Gξ1,...,ξk be the matrix whose (i, j)-entry is

∫ 1

−1
e2πi(ξi−ξj)tdt.

Then
det(Gξ1,...,ξk) = 2Õ(k2)

∏

i<j

min(|ξi − ξj |2, 1).

First, we note by the Cauchy-Binet formula that the determinant in question is equal to
∫ 1

−1

∫ 1

−1
. . .

∫ 1

−1

∣∣∣det([e2πiξitj]i,j)
∣∣∣
2
dt1dt2 . . . dtk. (27)

We next need to consider the integrand in the special case when
∑ |ξi| ≤ 1/8.

Lemma A.1. If ξi ∈ R and tj ∈ R,
∑

i |ξi|(maxi |ti|) ≤ 1/8 then

|det([e2πiξitj]i,j)| = Θ

(2π)(

k
2)
∏
i<j |ti − tj ||ξi − ξj |
1!2! · · · k!

 .

Proof. Firstly, by adding a constant to all the tj we can make them non-negative. This multiplies
the determinant by a root of unity, and at most doubles

∑
i |ξi|(maxi |ti|).

By continuity, it suffices to consider the ti to all be multiples of 1/N for some large integer N .
By multiplying all the tj by N and all ξi by 1/N , we may assume that all of the tj are non-negative
integers with t1 ≤ t2 ≤ . . . ≤ tk.

Let zi = exp(2πiξi). Then our determinant is

det

([
z
tj
i

]
i,j

)
,

which is equal to the Vandermonde determinant times the Schur polynomial sλ(zi) where λ is the
partition λj = tj − (j − 1).

Therefore, this determinant equals
∏

i<j

(zi − zj)sλ(z1, z2, . . . , zk).

The absolute value of ∏

i<j

(zi − zj)

is approximately
∏
i<j(2πi)(ξi − ξj), which has absolute value (2π)(

k
2)
∏
i<j |ξi − ξj |. We have left

to evaluate the size of the Schur polynomial.

58

By standard results, sλ is a polynomial in the zi with non-negative coefficients, and all exponents
at most maxj |tj | in each variable. Therefore, the monomials with non-zero coefficients will all have
real part at least 1/2 and absolute value 1 when evaluated at the zi. Therefore,

|sλ(z1, . . . , zk)| = Θ(|sλ(1, 1, . . . , 1)|).

On the other hand, by the Weyl character formula

sλ(1, 1, . . . , 1) =
∏

i<j

tj − ti
j − i =

∏
i<j |ti − tj |
1!2! . . . k!

.

This completes the proof.

Next we prove our Theorem when the ξ have small total variation.

Lemma A.2. If there exists a ξ0 so that
∑ |ξi − ξ0| < 1/8, then

det(Gξ1,...,ξk) = Θ

(
23k(k−1)/2πk(k−1)

∏
i<j |ξi − ξj |2

(k!)3
∏k−1
n=0(2n)!

)
.

Proof. By translating the ξi we can assume that ξ0 = 0.
By the above we have

Θ(
(2π)k(k−1)

∏
i<j |ξi − ξj |2

(1!2! · · · k!)2
)

∫ 1

−1
. . .

∫ 1

−1

∏

i<j

|ti − tj |2dt1 . . . dtk.

We note that by the Cauchy-Binet formula the latter term is the determinant of the matrix M with
Mi,j =

∫ 1
−1 t

i+jdt. This is the Graham matrix associated to the polynomials ti for 0 ≤ i ≤ k − 1.
Applying Graham-Schmidt (without the renormalization step) to this set yields the basis Pnαn
where αn = 2n(n!)2

(2n)! is the inverse of the leading term of Pn. This polynomial has norm α2
n2/(2n+1).

Therefore, the integral over the ti yields

k−1∏

n=0

2n+1(n!)2

(n+ 1)(2n)!
.

This completes the proof.

Next we extend this result to the case that all the ξ are within poly(k) of each other.

Proposition A.3. If there exists a ξ0 so that |ξi − ξ0| = poly(k) for all i, then

det(Gξ1,...,ξk) = 2Õ(k2)
∏

i<j

min(|ξi − ξj |2, 1).

Proof. We begin by proving the lower bound. We note that for 0 < x < 1,

det(Gξ1,...,ξk) ≥
∫ x

−x

∫ x

−x
. . .

∫ 1

−1

∣∣∣det([e2πiξitj]i,j)
∣∣∣
2
dt1dt2 . . . dtk = xk det(Gξ1/x,ξ2/x,...,ξk/k).

Taking x = 1/ poly(k), we may apply the above Lemma to compute the determinant on the right
hand side, yielding an appropriate lower bound.

59

To prove the lower bound, we note that we can divide our ξi into clusters, Ci, where for any i, j
in the same cluster |ξi − ξj | < 1/k and for i and j in different clusters |ξi − ξj | ≥ 1/k2. We then
note as a property of Graham matrices that

det(Gξ1,...,ξk) ≤
∏

Ci

det(G{ξj∈Ci}) = 2Õ(k2)
∏

i<j, in same cluster

|ξi − ξj |2 = 2Õ(k2)
∏

i<j

|ξi − ξj |2.

This completes the proof.

Finally, we are ready to prove our Theorem.

Proof. Let I(t) be the indicator function of the interval [−1, 1].
Recall that there is a function h(t) so that for any function f that is a linear combination of

at most k complex exponentials that |h(t)f(t)|2 = Θ(|I(t)f(t)|2) and so that ĥ is supported on an
interval of length poly(k) < kC about the origin.

Note that we can divide our ξi into clusters, C〉, so that for i and j in a cluster |ξi − ξj | < kC+1

and for i and j in different clusters |ξi − ξj | > kC .
Let G̃ξ1,ξ2,...,ξ′k be the matrix with (i, j)-entry

∫
R |h(t)|2e(2πi)(ξi−ξj)tdt.

We claim that for any k′ ≤ k that

det(G̃ξ1,ξ2,...,ξ′k) = 2O(k′) det(Gξ1,ξ2,...,ξ′k).

This is because both are Graham determinants, one for the set of functions I(t) exp((2πi)ξjt) and
the other for h(t) exp((2πi)ξjt). However since any linear combination of the former has L2 norm a
constant multiple of that the same linear combination of the latter, we have that

G̃ξ1,ξ2,...,ξ′k = Θ(Gξ1,ξ2,...,ξ′k)

as self-adjoint matrices. This implies the appropriate bound.
Therefore, we have that

det(Gξ1,...,ξk) = 2O(k) det(G̃ξ1,...,ξk).

However, note that by the Fourier support of h that
∫

R
|h(t)|2e(2πi)(ξi−ξj)tdt = 0

if |ξi − ξj | > kC , which happens if i and j are in different clusters. Therefore G̃ is block diagonal
and hence its determinant equals

det(G̃ξ1,...,ξk) =
∏

C〉

det(G̃{ξj∈Ci}) = 2O(k)
∏

C〉

det(G{ξj∈Ci}).

However the Proposition above shows that
∏

C〉

det(G{ξj∈Ci}) = 2Õ(k2)
∏

i<j

min(1, |ξi − ξj |2).

This completes the proof.

60

A.2 Proofs of Lemma 5.3 and Lemma 5.4

We fix z1, · · · , zk to be complex numbers on the unit circle and use Q(z) to denote the degree-k

polynomial
k∏
i=1

(z − zi).

Lemma 5.3. Let Q(z) be a degree k polynomial, all of whose roots are complex numbers with
absolute value 1. For any integer n, let rn,k(z) =

∑k−1
l=0 r

(l)
n,k · zl denote the residual polynomial of

rn,k(z) ≡ zn (mod Q(z)).

Then, each coefficient of rn,k is bounded: |r(l)
n,k| ≤ 2knk−1 for any l.

Proof. By definition, rn,k(zi) = zni . From the polynomial interpolation, we have

rn,k(z) =
k∑

i=1

∏
j∈[k]\i

(z − zj)zni
∏

j∈[k]\i
(zi − zj)

.

Let SymS,i be the symmetry polynomial of z1, · · · , zk with degree i among subset S ⊆ [k], i.e.,
SymS,i =

∑
S′⊆(Si)

∏
j∈S′

zj . Then

r
(l)
n,k = (−1)k−1−l

k∑

i=1

Sym[k]\i,k−1−l ·zni∏
j∈[k]\i

(zi − zj)
.

We omit (−1)k−1−l in the rest of proof and use induction on n, k, and l to prove |r(l)
n,k| ≤

(
k−1
l

)(
n
k−1

)
.

Base Case of n: For any n < k, from the definition, r(z) = zn and |r(l)
n,k| ≤ 1.

Suppose it is true for any n < n0. We consider rln0,k
from now on. When k = 1, rn,0 = zn1 is

bounded by 1 because z1 is on the unit circle of C.
Given n0, suppose the induction hypothesis is true for any k < k0 and any l < k. For k = k0,

61

we first prove that |r(k0−1)
n0,k0

| ≤
(
n0

k0−1

)
then prove that |r(l)

n0,k0
| ≤

(
k0−1
l

)(
n0

k0−1

)
for l = k0 − 2, · · · , 0.

r
(k0−1)
n0,k0

=

k0∑

i=1

zn0
i∏

j∈[k0]\i
(zi − zj)

=

k0−1∑

i=1

zn0
i∏

j∈[k0]\i
(zi − zj)

+
zn0
k0∏

j∈[k0]\k0
(zk0 − zj)

=

k0−1∑

i=1

zn0
i − zn0−1

i zk0 + zn0−1
i zk0∏

j∈[k0]\i
(zi − zj)

+
zn0
k0∏

j∈k0\k0
(zk0 − zj)

=

k0−1∑

i=1

zn0−1
i∏

j∈[k0−1]\i
(zi − zj)

+
zn0−1
i zk0∏

j∈k0\i
(zi − zj)

+

zn0
k0∏

j∈k0\k0
(zk0 − zj)

=

k0−1∑

i=1

zn0−1
i∏

j∈[k0−1]\i
(zi − zj)

+

zk0

k0∑

i=1

zn0−1
i∏

j∈k0\i
(zi − zj)

= r
(k0−2)
n0−1,k0−1 + zk0 · r

(k0−1)
n0−1,k0

Hence |r(k0−1)
n0,k0

| ≤ |r(k0−2)
n0−1,[k0−1]|+ |r

(k0−1)
n0−1,k0

| ≤
(
n0−2
k0−2

)
+
(
n0−2
k0−1

)
=
(
n0−1
k0−1

)
. For l < k0 − 1, we have

r
(l)
n0,k0

=

k0∑

i=1

Sym[k0]\i,k0−1−l ·zn0
i∏

j∈[k0]\i
(zi − zj)

let l′ = k0 − 1− l

=

k0−1∑

i=1

(
Sym[k0−1]\i,l′ + Sym[k0−1]\i,l′−1 ·zk0

)
zn0
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑

i=1

Sym[k0−1]\i,l′ ·(zi − zk0)zn0−1
i + Sym[k0−1]\i,l′ ·zk0zn0−1

i + Sym[k0−1]\i,l′−1 ·zk0zn0
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

=

k0−1∑

i=1

Sym[k0−1]\i,l′ ·(zi − zk0)zn0−1
i + Sym[k0−1],l′ ·zk0zn0−1

i∏
j∈[k0]\i

(zi − zj)
+

Sym[k0−1],l′ ·zn0
k0∏

j<k0

(zk0 − zj)

=

k0−1∑

i=1

Sym[k0−1]\i,l′ z
n0−1
i∏

j∈[k0−1]\i
(zi − zj)

+

k0−1∑

i=1

Sym[k0−1],l′ ·zk0zn0−1
i∏

j∈[k0]\i
(zi − zj)

+
Sym[k0−1],l′ ·zn0

k0∏
j<k0

(zk0 − zj)

= r
(l−1)
n0−1,k0−1 + Sym[k0−1],k0−1−l ·zk0 · r

(k0−1)
n0−1,k0

By induction hypothesis, |r(l)
n0,k0
| ≤

(
k0−2
l−1

)(
n0−1
k0−2

)
+
(
k0−1
l

)(
n0−1
k0−1

)
≤
(
k0−1
l

)(
n0

k0−1

)
.

Now we finish the proof of Lemma 5.4.

62

Lemma 5.4. For any k ∈ Z and any z1, · · · , zk on the unit circle of C, there always exists a degree

m = O(k2 log k) polynomial P (z) =
m∑
j=0

cjz
j with the following properties:

Property I P (zi) = 0,∀i ∈ {1, · · · , k},
Property II c0 = 1,

Property III |cj | ≤ 11,∀j ∈ {1, · · · ,m}.

Let m = 10k2 log k and P denote a set of polynomials that has degree at most m, and all the
coefficients are integers chosen from {−5, · · · ,−1, 0, 1, · · · , 5}, i.e.,

P :=

{
P (z) =

m∑

i=0

αiz
i | ∀i ∈ {0, 1, · · · ,m}, |αi| ≤ 2

}
.

Claim A.4. There exists P ∗(z) =
m∑
i=0
αiz

i with coefficient |αi| ≤ 10 for any i ∈ {0, 1, · · · ,m}, such
that every coefficient of P ∗(z) mod Q(z) is bounded by 2−m.

Proof. For P (z) =
m∑
i=0
αiz

i ∈ P, P (z) mod Q(z) ≡
m∑
i=0
αirn,k(z) from the definition rn,k(z). Hence

P (z) mod Q(z) =

m∑

i=0

αi

k−1∑

l=0

r
(l)
i,kz

l =

k−1∑

l=0

zl
m∑

i=0

αir
(l)
i,k.

Each coefficient in P (z) mod Q(z) is bounded by |
m∑
i=0
αir

(l)
i,k| ≤ 5

m∑
i=0

2kik−1 ≤ 2kmk.

At the same time, |P| = 11m. From the pigeonhole principle and
(

2kmk

(2−m)2

)k
< 11m, there exists

P1, P2 ∈ P such that for P ∗(z) = P1(z)− P2(z), P ∗(z) mod Q(z) =
k−1∑
i=0

γiz
i where each coefficient

|γi| ≤ 2−m.

Let r(z) =
k−1∑
i=0

γiz
i = P ∗(z) mod Q(z) for convenience. If P ∗(0) (the constant term of P ∗) is

nonzero, then |P ∗(0) − r(0)| ≥ 0.99 from the above lemma. Therefore the polynomial P ∗(z)−r(z)
P ∗(0)−r(0)

satisfies the three properties in Lemma 5.4.
Otherwise, we assume zl is the first term in P ∗(z) with a non-zero coefficient. Let

r−l,k(z) = z−l mod Q(z) =

k∑

i=1

∏
j∈[k]\i

(z − zj)z−li
∏

j∈[k]\i
(zi − zj)

.

For convenience, we use zS =
∏
i∈S
zi for any subset S ⊆ [k]. Notice that z−li =

zl
[k]\i
zl
[k]

. Hence r−l,k(z) =

r′l,k(z)/z
l
[k] where r

′ is the polynomial for k units roots z[k]\1, · · · , z[k]\k. So each coefficients of r is
still bounded by 2klk, which is less than 2−m/2.

Eventually we choose P ∗(z)/zl− r(z) · r−l,k(z) and renormalize it to satisfy the three properties
in Lemma 5.4.

63

A.3 Proof of Lemma 4.3

Lemma 4.3. For any degree d polynomial P (t) : R→ C with derivative P ′(t), we have,
∫ 1

−1
(1− t2)|P ′(t)|2dt ≤ 2d2

∫ 1

−1
|P (t)|2dt. (28)

Given a degree d polynomial P (x), we rewrite P (x) as a linear combination of the Legendre
polynomials:

P (x) =
d∑

i=0

αiLi(x).

We use Fi(x) = (1− x2)L′i(x) for convenience. From the definition of the Legendre polynomials in
the Equation (3), F ′i (x) = −i(i+ 1) · Li(x) and F ′′i (x) = −i(i+ 1) · L′i(x).

Hence we have
∫ −1

1
(1− x2)|P ′(x)|2dx =

∫ −1

1
(1− x2)P ′(x) · P ′(x)dx

=

∫ −1

1

∑

i∈[d]

αiFi(x)

 ·

∑

i∈[d]

αi
−F ′′i (x)

i(i+ 1)

dx

=

∑

i∈[d]

αiFi(x)

 ·

∑

i∈[d]

αi
−F ′i (x)

i(i+ 1)

∣∣∣∣
1

−1

+

∫ −1

1

∑

i∈[d]

αiF
′
i (x)

 ·

∑

i∈[d]

αi
F ′i (x)

i(i+ 1)

 dx

=

∫ −1

1

∑

i∈[d]

αi · i(i+ 1) · Li(x)

 ·

∑

i∈[d]

αi
i(i+ 1) · Li(x)

i(i+ 1)

 dx

=
∑

i∈[d]

|αi|2i(i+ 1)‖Li‖2T

≤ d(d+ 1)‖P‖2T

A.4 Proof of Lemma 6.2

Lemma 6.2. P̂σ,a,bx(σ(f − b)) = 1
σe
−2πiσaf x̂(f) and P̂σ,a,bx(f) = 1

σe
−2πiσa(f/σ+b)x̂(f/σ + b)

64

Proof. Let’s compute the Fourier Transform of (Pσ,a,bx)(t),

P̂σ,a,bx(f)

=

∫ +∞

−∞
(Pσ,a,b(x))(t)e−2πiftdt

=

∫ +∞

−∞
x(σ(t− a))e−2πiσbte−2πiftdt

=e−2πi(σab+fa)

∫ +∞

−∞
x(σ(t− a))e−2πiσb(t−a)e−2πif(t−a)dt by shifting t by a

=e−2πi(σab+fa)

∫ +∞

−∞
x(σt)e−2πiσbte−2πiftdt by replacing t− a by t

=
1

σ
e−2πi(σab+fa)

∫ +∞

−∞
x(σt)e−2πibσte−2πifσt/σdσt

=
1

σ
e−2πi(σab+fa)

∫ +∞

−∞
x(t)e−2πi(b+f/σ)tdt by replacing tσ by t

=
1

σ
e−2πiaσ(f/σ+b)x̂(f/σ + b) by definition of FT

The first result follows immediately by replacing f/σ + b by f ′, which gives

P̂σ,a,bx(σ(f ′ − b)) =
1

σ
e−2πiaσf ′ x̂(f ′).

Thus, we complete the proof of this Lemma.

A.5 Proof of Lemma 3.5

Lemma 3.5. Given any function x(t) : R→ C with max
t∈[0,T]

|x(t)|2 ≤ d‖x(t)‖2T . Let S denote a set of

points from 0 to T . If each point of S is chosen uniformly at random from [0, T], we have

Pr

[∣∣∣∣∣
1

|S|
∑

i∈S
|x(ti)|2 − ‖x(t)‖2T]

∣∣∣∣∣ ≥ ε‖x(t)‖2T

]
≤ e−Ω(ε2|S|/d)

Proof. Let M denote max
t∈[0,T]

|x(t)|2. Replacing Xi by
|x(ti)|2
M and n by |S| in Lemma B.2, we obtain

that

Pr[|X − µ| > εµ] ≤ 2 exp(−ε
2

3
µ)

=⇒ Pr

[∣∣∣∣∣
∑

i∈S

|x(ti)|2
M

− |S|‖x(t)‖2T
M

∣∣∣∣∣ > ε|S|‖x(t)‖2T
M

]
≤ 2 exp(−ε

2

3
µ)

=⇒ Pr

[∣∣∣∣∣
1

|S|
∑

i∈S
|x(ti)|2 − ‖x(t)‖2T

∣∣∣∣∣ ≥ ε‖x(t)‖2T

]
≤ 2 exp(−ε

2

3
µ)

=⇒ Pr

[∣∣∣∣∣
1

|S|
∑

i∈S
|x(ti)|2 − ‖x(t)‖2T

∣∣∣∣∣ ≥ ε‖x(t)‖2T

]
≤ 2 exp(−ε

2

3
|S|‖x(t)‖2T

M
)

which is less than 2 exp(− ε2

3 |S|/d), thus completes the proof.

65

A.6 Proof of Lemma 3.10

Lemma 3.10. For any polynomial P (t) of degree at most d from R to C, for any interval [S, T],

max
t∈[S,T]

|P (t)|2 ≤ (d+ 1)2 · 1

T − S

∫ T

S
|P (t)|2dx.

Proof. Let t∗ = arg max
t∈[S,T]

|P (t)|2. If t∗ ∈ (S, T), then it is enough to prove that

|P (t∗)|2 ≤ (d+ 1)2 1

t∗ − S

∫ t∗

S
|P (x)|2dx and |P (t∗)|2 ≤ (d+ 1)2 1

T − t∗
∫ T

t∗
|P (x)|2dx

on the two intervals [S, t∗] and [t∗, T] separately.
Without loss of generality, we will prove the inequality for S = −1 and t∗ = T = 1. We find the

minimum ‖P (x)‖2T assuming |P (1)|2 = 1. Because the first (d+ 1) Legendre polynomials provide a
basis of polynomials of degree at most d and their evaluation Ln(1) = 1 for any n, we consider:

min
α0,α1,··· ,αd∈C

∫ 1

−1
|P (x)|2dx

s.t. P (x) =
d∑

i=0

αiLi(x)

|P (1)| = |
d∑

i=0

αi| = 1.

We simplify the integration of P (x)2 over [−1, 1] by the orthogonality of Legendre polynomials:
∫ 1

−1
|P (x)|2dx =

∫ 1

−1

(
d∑

i=0

αiLi(x)

)
·

d∑

j=0

αjLj(x)

 dx

=

∫ 1

−1

d∑

i=0

|αi|2Li(x)2 +
∑

i 6=j
αiαjLi(x)Lj(x)dx

=
d∑

i=0

|αi|2
2

2i+ 1
by Fact 3.9

Using
∫ 1
−1 |P (x)|2dx =

d∑
i=0
|αi|2 2

2i+1 , we simplify the optimization problem to

min
α0,α1,··· ,αd∈C

d∑

i=0

|αi|2
2

2i+ 1

s.t.

∣∣∣∣∣
d∑

i=0

αi

∣∣∣∣∣ = 1

From the Cauchy-Schwarz inequality, we have
∣∣∣∣∣
d∑

i=0

αi

∣∣∣∣∣

2

≤
(

d∑

i=0

|αi|2
2

2i+ 1

)(
d∑

i=0

2i+ 1

2

)
.

Therefore
d∑
i=0
|αi|2 2

2i+1 ≥ 2
(d+1)2

and |P (1)|2 ≤ (d+ 1)2 · 1
2

∫ 1
−1 |P (x)|2dx.

66

Algorithm 1 Linear regression algorithms
1: procedure LinearRegression(A, b,) — Fact B.3
2: x′ ← arg min

x
‖Ax− b‖2.

3: return x′

4: end procedure
5: procedure LinearRegressionW(A, b, w) — Fact B.3

6: x′ ← arg min
x

d∑
i=1
wi|(Ax)i − bi|2.

7: return x′

8: end procedure

B Known Facts

This section provides a list of well-known facts existing in literature.

B.1 Inequalities

We state the Hölder’s inequality for complex numbers. We will use the corresponding version
p = q = 2 of Cauchy-Schwarz inequality for complex numbers.

Lemma B.1 (Hölder’s inequality). If S is a measurable subset of Rn with the Lebesgue measure,
and f and g are measurable complex-valued functions on S, then

∫

S
|f(x)g(x)|dx ≤ (

∫

S
|f(x)|pdx)

1
p (

∫

S
|g(x)|qdx)

1
q

Lemma B.2 (Chernoff Bound [Tar09],[Che52]). Let X1, X2, · · · , Xn be independent random vari-
ables. Assume that 0 ≤ Xi ≤ 1 always, for each i ∈ [n]. Let X = X1 + X2 + · · · + Xn and

µ = E[X] =
n∑
i=1

E[Xi]. Then for any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp(− ε2

2 + ε
µ) and Pr[X ≥ (1− ε)µ] ≤ exp(−ε

2

2
µ).

B.2 Linear regression

Given a linear subspace span{~v1, · · · , ~vd} and n points, we always use `2-regression to find a vector
as the linear combination of ~v1, · · · , ~vd that minimizes the distance of this vector to those n points.

Fact B.3. Given an n × d matrix A and an n × 1 column vector b , it takes O(ndω−1) time to
output an x′ such that

x′ = arg min
x
‖Ax− b‖2.

where ω is the exponent of matrix multiplication[Wil12].

Notice that weighted linear regression can be solved by linear regression solver as a black-box.

67

Algorithm 2 Multipoint evaluation of a polynomial
1: procedure MultipointEvaluation(P, {t1, t2, · · · , td}) — Fact B.4
2: return P (t1), P (t2), · · · , P (td)
3: end procedure

B.3 Multipoint evaluation of a polynomial

Given a degree-d polynomial, and n locations. The naive algorithm of computing the evaluations
at those n locations takes O(nd). However, the running time can be improved to O(n poly(log d))
by using this well-known result,

Fact B.4 ([BS12]). Given a degree-d polynomial P (t), and a set of d locations {t1, t2, · · · , td}. There
exists an algorithm that takes O(d logc d) time to output the evaluations {P (t1), P (t2), · · · , P (td)},
for some constant c.

C Analysis of Hash Functions and Filter Functions

C.1 Analysis of filter function (H(t), Ĥ(f))

We construct the Filter function (H(t), Ĥ(f)) in this section.
We fix the interval to be supp(rect1) = [−1/2, 1/2] instead of [0, T] for convenience. We first de-

fine the filter functionH1(t) which preserves the energy of a k-Fourier-sparse signal x∗ on [−1/2, 1/2]
to the signal H1 · x∗ on [−∞,+∞].

Definition C.1. Let s1 = Θ(k4 log4 k), ` = Ω(k log k/δ) be a even number, and s0 = C0s1

√
`

for some constant C0 that will normalize H1(0) = 1. Recall that rects(t) = 1 iff |t| ≤ s/2 and
̂rects(f) = sinc(fs) = sin(πfs)

πfs .
We define the filter function H1(t) and its Fourier transform Ĥ1(f) as follows:

Ĥ1(f) = s0 · (rects1(f))∗` · sinc (fs2) ,

= s0 ·
(1

−s1/2 s1/2

)∗` ·
1

−1/s2 1/s2

H1(t) = s0 · (sinc(s1t))
·` ∗ rects2(t)

= s0 ·
(1

−1/s1 1/s1

)·` ∗
1

−s2/2 s2/2

where s0 is a fixed parameter s.t. H1(0) = 1.

We provide some basic properties about our filter function. Notice that sinc(t) = sin(πt)
πt (sinc(0)

is defined to be 1) has the following properties (shown in Figure 4):

1. ∀t ∈ R, 1− (πt)2

3! ≤ sinc(t) ≤ 1.

2. ∀|t| ≤ 1.2/π, sinc(t) ≤ 1− t2

8 .

3. ∀|t| > 1.2/π, | sinc(t)| ≤ 1
π|t| .

68

1

−1 1

sinc(t)

1− t2

8
1
π|t|

Figure 4: The Property of sinc(t).

Claim C.2.
∫ 1.2
πs1

− 1.2
πs1

(sinc(s1t))
`dt h 1

s1
√
`
.

Proof. We use the above properties for the sinc function to prove the upper bound:
∫ + 1.2

πs1

− 1.2
πs1

(sinc(s1t))
`dt =

1

s1

∫ +1.2/π

−1.2/π
(sinc(t))`dt

=
2

s1

(∫ √8/`

0
(sinc t)`dt+

∫ 1.2/π

√
8/`

(sinc(t))`dt

)

≤ 2

s1

√

8/`+

1.2/π√
8/`
−1

∑

i=1

∫ (i+1)
√

8/`

i
√

8/`
(1− x2/8)`dx

≤ 2

s1

√

8/`+

1.2/π√
8/`
−1

∑

i=1

√
8/` · 2−i2

.
1

s1

√
`
.

We prove the lower bound:

∫ 1.2
πs1

− 1.2
πs1

(sinc(s1t))
`dt =

2

s1

(∫ √8/`

0
(sinc t)`dt+

∫ 1.2/π

√
8/`

(sinc(t))`dt

)

≥ 2

s1

(∫ √8/`

0
(1− π2t2

6
)`dt

)

&
1

s1

√
`
.

We bound the integration outside [− 1.2
πs1

, 1.2
πs1

] from the last property of the sinc function.

Claim C.3.
∫ +∞

1.2
πs1

(sinc(s1t))
`dt = O(1.2−`).

From these two claims, we have the existence of s0.

Claim C.4. There exists a universal constant C0 and s0 = C0s1

√
` such that H1(0) = 1.

69

6 4 2 0 2 4 6
0.2

0.0

0.2

0.4

0.6

0.8

1.0
(sinc(t))`

6 4 2 0 2 4 6
0.2

0.0

0.2

0.4

0.6

0.8

1.0
(sinc(t))`

Figure 5: The light red area represents
∫ (1/2−2/s1)−t

(1/2−2/s1) s0 · sinc (s1(τ))` dτ and the light green area

represents
∫ 1/2−2/s1+t

1/2−2/s1
s0 · sinc (s1(τ))` dτ .

Proof. Because ` is a large even number,
∫

rect1−2/s1
sinc(s1t)

`dt h 1
s1
√
`
from all discussion above.

We show several useful properties about the Filter functions
(
H1(t), Ĥ1(f)

)
.

Lemma C.5. Given s0, s1, s2, `, where s2
2 + 1

s1
≤ 1/2 and s0 = C0s1

√
` for some constant C0. The

filter function (H1(t), Ĥ1(f))[s0, s1, s2, `] has the following properties,

Property I : H1(t) ∈ [1− s0

s1
· 2π−`

`− 1
, 1], if |t| ≤ s2

2
− 1

s1
.

Property II : H1(t) ∈ [0, 1], if
s2

2
− 1

s1
≤ |t| ≤ 1

2

Property III : H1(t) ≤ s0s2

(
(s1|t| − s1 + 2)2 + 1

)−`
, ∀|t| > 1

2

Property IV : supp(Ĥ1(f)) ⊆ [−s1`

2
,
s1`

2
]

Proof of Property I. First, H1(0) = 1 follows by definition of s0, then we can prove the upper
bound for H1(t) by showing for any t > 0, H1(0)−H1(t) > 0 always holds ,

70

By definition of sinc function, we know that sinc(s1t)
` reaches 0 at all the points { 1

s1
+i 2

s1
|i ∈ N}.

By definition of s1, we know that 1
s1
� 1

2 − 1
s1
. For any t > 0,

H1(0)−H1(t)

=

∫
s0 · sinc (s1(τ))` · rect1−2/s1(0− τ)dτ −

∫
s0 · sinc (s1(τ))` · rect1−2/s1(t− τ)dτ

=

∫ 1/2−2/s1

−(1/2−2/s1)
s0 · sinc (s1(τ))` dτ −

∫ 1/2−2/s1+t

−(1/2−2/s1)+t
s0 · sinc (s1(τ))` dτ

=

∫ −(1/2−2/s1)+t

−(1/2−2/s1)
s0 · sinc (s1(τ))` dτ −

∫ 1/2−2/s1+t

1/2−2/s1

s0 · sinc (s1(τ))` dτ shown in Figure 5

≥ 0,

where the last inequality follows by choosing s1 to be an integer. Thus, we prove an upper bound
for H1(t). Third, we show the lower bound for H1(t),

H1(t) =

∫ +∞

−∞
s0 · sinc(s1τ)·` rects2(t− τ)dτ

=

∫ t+
s2
2

t− s2
2

s0 · sinc(s1τ)·`dτ

= 1−
∫ +∞

t+
s2
2

s0 · sinc(s1τ)·`dτ

︸ ︷︷ ︸
A

−
∫ t− s2

2

−∞
s0 · sinc(s1τ)·`dτ

︸ ︷︷ ︸
B

Thus, as long as we can upper bound the term A and B, then we will have a lower bound for the
H1(t), for any |t| ≤ s2

2 − 1
s1
.

A =

∫ +∞

t+
s2
2

s0 · sinc(s1τ)·`dτ

≤
∫ +∞

1
s1

s0 · sinc(s1τ)·`dτ

≤
∫ +∞

1
s1

s0 · (s1πτ)−`dτ

= s0 · (s1π)−`
1

`− 1
(1/s1)−`+1

=
s0

s1
· (π)−`

1

`− 1

Similarly, we can bound the term B in the same way.

Proof of Property II. In the proof of Property I, we already show that ∀t, H1(t) ≤ 1. Thus, the
upper bound of Property II is also holding. The lower bound follows by both sinc(s1t)

·` and rects2(t)
are always nonnegative, thus the convolution of these two functions has to be nonnegative.

71

Proof of Property III. Let’s prove the case when t > 1, since H1(t) is symmetric, then the case
t < −1 will also hold. By definition of (H1(t), Ĥ1(f)), we have

H1(t) = s0 ·
∫ +∞

−∞
sinc(s1(t− τ))·` rects2(τ)dτ

= s0 ·
∫ s2

2

− s2
2

sinc(s1(t− τ))·`dτ

= s0 ·
∫ s2

2

− s2
2

sinc(s1(τ − t))·`dτ

We’d like to choose a middle point τ0, and then separated the interval into two parts, one is [− s2
2 , τ0]

and the other is [τ0,
s2
2]. To choose a reasonable τ0, we need to use the following simple facts,

(
sin(x)

x
)` ≤ x−` if x ≥ 1.2

(
sin(x)

x
)` ≤ (1− x2

8
)` if x < 1.2

Thus, |πs1(τ0− t)| = 1.2, which implies that τ+
0 = t+ 1.2

πs1
or τ−0 = t− 1.2

πs1
. By relationship between

s1 and s2, we know τ−0 > 1
2 − 1.2

πs1
> 1

2 − 1
s1
≥ s2

2 . Thus, we can use the case x < 1.2 to upper bound
the H1(t),

H1(t)

≤ s0 · s2 · max
τ∈[−s2/2,s2/2]

sinc(s1(τ − t))·`

≤ s0 · s2 max
τ∈[−s2/2,s2/2]

(1− (s1π(τ − t))2

8
)`

= s0 · s2(1− (s1π(s22 − t))2

8
)`

≤ s0 · s2 · (e−
(s1π(

s2
2 −t))

2

8)` by 1− x ≤ e−x

≤ s0 · s2 · (e(s1(t−s2/2))2)−` by 1 < π2/8

≤ s0 · s2 · (1 + (s1(t− s2/2))2)−` by 1 + x ≤ ex

≤ s0 · (1 + (s1(t− s2/2))2)−` by s1 ≤ 1.

Thus, we complete the proof.

Proof of Property IV. Because of the support of rects1(f) is s1, then the support of (rects1(f))∗` =
s1`. Since Ĥ1(f) is defined to be the (rects1(f))∗` multiplied by sinc(fs2), thus supp(Ĥ1(f)) ⊆
[− s1`

2 ,
s1`
2].

Definition C.6. Given any 0 < s3 < 1, 0 < δ < 1, we define (H(t), Ĥ(f)) to be the filter function
(H1(t), Ĥ1(f)) by doing the following operations

• Setting ` = Θ(k log(k/δ)),

72

• Setting s2 = 1− 2
s1
,

• Shrinking by a factor s3 in time domain,

H(t) = H1(t/s3) (29)

Ĥ(f) = s3Ĥ1(s3f) (30)

We call the “heavy cluster" around a frequency f0 to be the support of δf0(f)∗ Ĥ(f) in the frequency
domain and use

∆h = | supp(Ĥ(f))| = s1 · `
s3

(31)

to denote the width of the cluster.

We show several useful properties about the Filter functions
(
H(t), Ĥ(f)

)
.

Lemma 6.6. Given s0, s1, 0 < s3 < 1, ` > 1, 0 < δ < 1, where ` = Θ(k log(k/δ)).The filter function
(H(t), Ĥ(f)) has the following properties,

Property I : H(t) ∈ [1− δ, 1], when |t| ≤ (
1

2
− 2

s1
)s3.

Property II : H(t) ∈ [0, 1], when (
1

2
− 2

s1
)s3 ≤ |t| ≤

1

2
s3.

Property III : H(t) ≤ s0 · (s1(
|t|
s3
− 1

2
) + 2)−`, ∀|t| > 1

2
s3.

Property IV : supp(Ĥ(f)) ⊆ [− s1`

2s3
,
s1`

2s3
].

For any exact k-Fourier-sparse signal x∗(t), we shift the interval from [0, T] to [−1/2, 1/2] and
consider x∗(t) for t ∈ [−1/2, 1/2] to be our observation, which is also x∗(t) · rect1(t).

Property V :

∫ +∞

−∞

∣∣x∗(t) ·H(t) · (1− rect1(t))
∣∣2dt < δ

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

Property VI :

∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ∈ [1− ε, 1] ·

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt.

for arbitrarily small constant ε.

The Property I, II, III and IV follow by filter function H(t), Ĥ(f) inheriting H1(t), Ĥ1(f).

Proof of Property V. ∀t /∈ [−1/2, 1/2], we have,

|x∗(t) ·H(t)|2

≤ |x∗(t)|2 · |H(t)|2

≤ |x∗(t)|2 · (s1(|t| − 1/2) + 2)−` by Property III of H1(t)

≤ k7 · (2kt)2.5k ·
∫ +∞

−∞
|x∗(t) · rect1(t)|2dt · (s1(

|t|
s3
− 1

2
) + 2)−` by Lemma 5.5

≤ tO(k log k) ·
∫ +∞

−∞
|x∗(t) · rect1(t)|2dt · (s1(

|t|
s3
− 1

2
) + 2)−`/2. (32)

73

40 30 20 10 0 10 20 30 40
0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Given signal (Frequency domain)

Ĥ(f)

x̂ ∗ (f)

Ĥ ·x ∗ (f)

f= ±s1 `/(2s3)

4 3 2 1 0 1 2 3 4
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fourier transform (Time domain)

H(t)

x ∗ (t)

H ·x ∗ (t)

t= ±0.5

t= ±0.5s3

t= ±(0.5−2/s1)s3

Figure 6: Ĥ · x∗(f) and H · x∗(t).

Thus taking the integral finishes the proof because ` & k log(k/δ).

Proof of Property VI. First, because of for any t, |H1(t)| ≤ 1, thus we prove the upper bound for
LHS, ∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt ≤

∫ +∞

−∞
|x∗(t) · 1 · rect1(t)|2dt.

Second, as mentioned early, we need to prove the general case when s3 = 1 − 1/ poly(k). Define
interval S = [−s3(1

2− 1
s1

), s3(1
2− 1

s1
)], by definition, S ⊂ [−1/2, 1/2]. Then define S = [−1/2, 1/2]\S,

which is [−1/2,−s3(1
2 − 1

s1
)) ∪ (s3(1

2 − 1
s1

), 1/2]. By Property I, we have
∫

S
|x∗(t) ·H(t)|2dt ≥ (1− δ)2

∫

S
|x∗(t)|2dt (33)

74

Then we can show
∫

S
|x∗(t)|2dt

≤ |S| · max
t∈[−1/2,1/2]

|x∗(t)|2

≤ (1− s3(1− 2

s1
)) · Õ(k4)

∫ 1
2

− 1
2

|x∗(t)|2dt by Lemma 5.1

.
∫ 1

2

− 1
2

|x∗(t)|2dt by min(
1

1− s3
, s1) ≥ Õ(k4) (34)

Combining Equations (33) and (34) gives a lower bound for LHS,
∫ +∞

−∞
|x∗(t) ·H(t) · rect1(t)|2dt

≥
∫

S
|x∗(t)H(t)|2dt

≥ (1− 2δ)

∫

S
|x∗(t)|2dt by Equation (33)

≥ (1− 2δ)

∫

S∪S
|x∗(t)|2dt− (1− 2δ)

∫

S
|x∗(t)|2dt

≥ (1− 2δ)

∫

S∪S
|x∗(t)|2dt− (1− 2δ)ε

∫

S∪S
|x∗(t)|2dt by Equation (34)

≥ (1− 2δ − ε)
∫ 1

2

− 1
2

|x∗(t)|2dt

≥ (1− 2ε)

∫ +∞

−∞
|x∗(t) · rect1(t)|2dt by ε� δ

Remark C.7. To match (H(t), Ĥ(f)) on [−1/2, 1/2] with signal x(t) on [0, T], we will scale the
time domain from [−1/2, 1/2] to [−T/2, T/2] and shift it to [0, T]. For example, the rectangle
function in Property V and VI will be replaced by rectT (t− T/2). For the parameters s0, s1, s3, δ, `
in the definition of H, we always treat them as numbers. We assume T has seconds as unit and ∆h

has Hz as unit . For example, in time domain, the Property I becomes that given T > 0,

H(t) ∈ [1− δ, 1] if |t− T

2
| ≤ (

1

2
− 1

s1
)s3 · T

In frequency domain, the Property IV becomes

supp(Ĥ(f)) ⊆ [−∆h

2
,
∆h

2
], where ∆h =

s1`

s3T
. (35)

Lemma C.8. Let H(t) denote the function defined in Definition C.6. For any t ∈ [−1
2 ,

1
2], there

exists an algorithm that takes O(s1 + ` log(s1) + log(1/ε)) time to output a value H̃(t) such that

(1− ε)H(t) ≤ H̃(t) ≤ (1 + ε)H(t).

75

40 30 20 10 0 10 20 30 40
0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Given signal (Frequency domain)

Ĥ(f)

x̂ ∗ (f)

Ĥ ·x ∗ (f)

f= ±s1 `/(2s3)

4 3 2 1 0 1 2 3 4
0.10

0.05

0.00

0.05

0.10

0.15

Fourier transform (Time domain)

H(t)

x ∗ (t)

t= ±0.5

4 3 2 1 0 1 2 3 4
0.10

0.05

0.00

0.05

0.10

0.15

Fourier transform (Time domain)
H(t)

x ∗ (t)

H ·x ∗ (t)

t= ±0.5

4 3 2 1 0 1 2 3 4
0.10

0.05

0.00

0.05

0.10

0.15

Fourier transform (Time domain)
H(t)

x ∗ (t)

H ·x ∗ (t)

t= ±0.5

Figure 7: Property VI of filter function H(t), the light green area represents RHS(without scalar)
of Property VI of filter H, the light red area represents LHS of Property VI of filter H, the light
yellow area represents the difference. Property VI says the light yellow area is only a small constant
fraction of the light green area.

76

Proof. We will show that using a low degree polynomial with sufficiently large degree is able to
approximate the sinc function. By definition of filter function,

H(t) = s0 ·
∫ +∞

−∞
sinc(s1τ)·` rects2(t− τ)dτ

= s0 ·
∫ t+

s2
2

t− s2
2

(
sin(πs1τ)

πs1τ
)`dτ

=
s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(
sin(τ)

τ
)`dτ

=
s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(∞∑

i=0

(−1)i
τ2i

(2i+ 1)!

)`
dτ by Taylor expansion

=
s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(A+B)`dτ

where the last step follows by setting A =
∑d

i=0(−1)i τ2i

(2i+1)! , and B =
∑∞

i=d+1(−1)i τ2i

(2i+1)! .
Denote I+ = (t+ s2

2)πs1 and I− = (t− s2
2)πs1. Because of t ∈ [−1/2, 1/2], then max(|I+|, |I−|) =

O(s1). The goal is to show that

(1− ε)
∫ I+

I−
(A+B)`dτ ≤

∫ I+

I−
A`dτ ≤ (1 + ε)

∫ I+

I−
(A+B)`dτ

Let’s prove an upper first,

∫ I+

I−
(A+B −B)`dτ

=

∫ I+

I−
(A+B)`dτ +

∑̀

j=1

∫ I+

I−

(
`

j

)
(A+B)`−j(−B)jdτ

≤
∫ I+

I−
(A+B)`dτ +

∑̀

j=1

∫ I+

I−

(
`

j

)
|A+B|`−j |B|jdτ

≤
∫ I+

I−
(A+B)`dτ +

∑̀

j=1

∫ I+

I−

(
`

j

)
|A+B|`−jdτ · max

τ∈[I−,I+]
|B|j

≤
∫ I+

I−
(A+B)`dτ + `2` · max

τ∈[I−,I+]
|B| by |H(t)| ≤ 1 and |B|j ≤ |B|

≤
∫ I+

I−
(A+B)`dτ + ε · (s1)−Θ(`) by Claim C.9

≤(1 + ε)

∫ I+

I−
(A+B)`dτ by Claim C.10

where all the steps by setting d & s1+` log(s1)+log(1/ε). Similarly, we can prove a lower bound.

Claim C.9. Let B(τ) =
∑+∞

i=d+1(−1) τ2i

(2i+1)! , if d & τ+` log(s1)+log(1/ε) then |B(τ)| ≤ ε(1/s1)O(`).

77

Proof. We first show, for any i ≥ d+ 1,

τ2i

(2i+ 1)!

≤ τ2i

e((2i+ 1)/e)2i+1
by e(n/e)n ≤ n!

≤ 2−2i by i & τ

≤ ε(1/s1)O(`) by i & ` log(s1) + log(1/ε)

Second, we can show that

+∞∑

i=d+1

(−1)
τ2i

(2i+ 1)!
.

τ2(d+1)

(2(d+ 1) + 1)!
≤ ε(1/s1)O(`)

Thus, we complete the proof.

Claim C.10. mint∈[−1/2,1/2] |H(t)| ≥ (s1)−Ω(`).

Proof. By the property of H(t),

min
1
2
s3<|t|≤ 1

2

H(t) = min
|t|≤ 1

2

H(t)

Thus, it suffices to prove a lower bound on H(t) for any t such that 1
2s3 < |t| ≤ 1

2 . Because of
symmetric property, we only need to prove a lower bound for one side. Let’s consider t ∈ [1

2s3, 1/2],

H(t) ≥ s0

πs1

∫ (t+
s2
2

)πs1

(t− s2
2

)πs1

(
sin(τ)

τ
)`dτ

≥ s0

πs1

∫ (t+
s2
2

)πs1

(t+
s2
4

)πs1

(
sin(τ)

τ
)`dτ

≥ s0

πs1
·Θ((t+

s2

2
)s1) · 1

2
· π ·Θ((t+

s2

2
)πs1)−`

≥ (s1)−Ω(`)

C.2 Analysis of filter function (G(t), Ĝ(f))

We construct (G(t), Ĝ(f)) in a similar way of (H1(t), Ĥ1(f)) by switching the time domain and the
frequency domain of (H1(t), Ĥ1(f)) and modify the parameters for the permutation hashing Pσ,a,b.

Definition C.11. Given B > 1, δ > 0, α > 0, we construct G(t), Ĝ(f) by doing the following
operations,

• s2 = π
2B ,

• s1 = B
απ ,

• ` = l = Θ(log(k/δ)).

78

1

log0.5(1/δ)

log1(1/δ)

log1.5(1/δ)

log2(1/δ)

poly log(1/δ)

1− 1/k4 1− 1/k5 k k4 k5 k6

s3

`

s1

∆h

Figure 8: Parameters for s1, s3 and `.

Then G(t), Ĝ(f) becomes

G(t) = b0 · (rects1(t))∗l · sinc(ts2)

= b0 · (rect B
(απ)

(t))∗l · sinc(t
π

2B
),

Ĝ(f) = b0 · (sinc(s1f))·l ∗ rects2(f)

= b0 · (sinc(
B

απ
f))·l ∗ rect π

2B
(f).

where the scalar b0 = Θ(s1

√
l) = Θ(B

√
l/α) satisfying Ĝ(0) = 1.

Lemma 6.7. Given B > 1, δ > 0, α > 0, we set l = Ω(log(δ/k)). The filter function (G(t), Ĝ(f))[B, δ, α, l]
satisfies the following properties,

Property I : Ĝ(f) ∈ [1− δ/k, 1], if |f | ≤ (1− α)
2π

2B
.

Property II : Ĝ(f) ∈ [0, 1], if (1− α)
2π

2B
≤ |f | ≤ 2π

2B
.

Property III : Ĝ(f) ∈ [−δ/k, δ/k], if |f | > 2π

2B
.

Property IV : supp(G(t)) ⊂ [
l

2
· −B
πα

,
l

2
· B
πα

].

Property V : max
t
|G(t)| . poly(B, l).

Proof. The first five Properties follows from Lemma 6.6 directly.

C.3 Parameters setting for filters

One-cluster Recovery. In one-cluster, we donot need filter function (G(t), Ĝ(f)).
In section C.1, by Equation (34) in the proof of Property VI of filter function (H(t), Ĥ(f)), we

need min(1
1−s3 , s1) ≥ Õ(k4).

79

In section C.1, by Equation (32) in the proof of Property V of filter function (H(t), Ĥ(f)), we
set ` & k log(k/δ).

∆h is determined by the parameters of filter (H(t), Ĥ(f)) in Equation (35): ∆h h s1`
s3T

in section
C.1. Combining the setting of s1, s3 `, we should set ∆h ≥ Õ(k5 log(1/δ))/T .

k-cluster Recovery. Note that in the k-cluster recovery, we need to use filter function (G(t), Ĝ(f)).
We choose l = log(k/δ), α h 1, B h k , and D = l/α.

By proof of Property II of z in Lemma 7.20 from section 7.6, we need T (1− s3) > σBl. By the
same reason in one-cluster recovery, 1−s3 ≤ 1

Õ(k4)
. Combining T (1−s3) > σBl and 1−s3 ≤ 1

Õ(k4)
,

we obtain
T

Õ(k4)
> σBl (36)

Because in our algorithm, we will sample σ from [1
B∆h

, 2
B∆h

]. Thus, plugging σ = Θ(1
B∆h

) in
Equation (36) we have

T

Õ(k4)
>

l

∆h

which implies another lower bound for ∆h,

∆h ≥ Õ(k4)l/T

Combining the above bound with previous lower bound in one-cluster recovery, we get

∆h ≥ Õ(k4 log(1/δ))/T + Õ(k5 log(1/δ))/T = Õ(k5 log(1/δ))/T

For s1 and `, we still choose the same setting as before, s1 h Õ(k4) and ` h O(k log(k/δ)).

C.4 Analysis of HashToBins

In this section, we explain the correctness of Procedure HashToBins in Algorithm 6. Before giving
the proof of that algorithm, we show how to connect CFT, DTFT and DFT.

Lemma C.12. For any signal W : R→ C, let A : Z→ C and B : [n]→ C be defined as follows:

A[i] = W (i),∀i ∈ Z and B[i] =
∑

j∈Z
A[i+ jn],∀i ∈ [n].

Then we consider the Fourier transform on W,A, and B:

CFT Ŵ : R→ C,

DTFT Â : [0, 1]→ C,

DFT B̂ : [n]→ C.

We have:
∀f ∈ [0, 1), Â(f) =

∑

j∈Z
Ŵ (f + j); ∀i ∈ [n], B̂[i] =

∑

j∈Z
Ŵ (i/n+ j).

80

Proof. Recall that Combs(t) =
∑

j∈Z δjs(t). First, we show Â(f) =
∑

j∈Z e
2πijfA[j] equals to

∑
j∈Z

Ŵ (f + j):

Â(f) =
∑

j∈Z
e2πijfW [j] by A[j] = W (j)

=

∫ +∞

−∞
e2πifjW (j) · Comb1(j)dj

= ̂W · Comb1(f)

= (Ŵ ∗ Ĉomb1)(f)

=
∑

j∈Z
Ŵ (f + j). (37)

Next, we prove that ∀i ∈ [n], B̂[i] = Â(i/n),

B̂[i] =
n∑

j=1

B[j]e
2πi
n
ij by DFT

=

n∑

j=1

(
∑

k∈Z
A[j + kn])e

2πi
n
ij by B[j] =

∑

k∈Z
A[j + kn]

=

n∑

j=1

∑

k∈Z
A[j + kn]e

2πi
n
i(j+kn) by e

2πi
n
·ikn = 1

=
∑

j∈Z
A[j]e2πij i

n = Â(i/n) by DTFT. (38)

Combining Equation (38) and Equation (37), we obtain that B̂[j] = Â(j/n) =
∑

i∈Z Ŵ (j/n+ i) for
all j ∈ [n].

Claim C.13. Let u ∈ CB and V ∈ CBD such that for any j ∈ B, u[j] =
∑
i∈[D]

V [j+ (i− 1)B]. Then

û[j] = V̂ [jD],∀j ∈ [B].

Proof. We prove it through the definition of the Fourier transform:

V̂ [jD] =

BD∑

i=1

V [i] · e 2πi
BD
·i·(jD) by definition of DFT

=

B∑

i=1

D∑

k=1

V [i+ kB]e
2πi
B
·(i+kB)·j by replacing i by i+ kB

=
B∑

i=1

e
2πi
B
·j·i

D∑

k=1

V [i+ (k − 1)B] by e2πijk = 1

=

B∑

i=1

e
2πi
B
·j·iu[i] = û[j] by definition of DFT on u

81

Ĝ
(0)

σ,b
(f)

A−2,0

B−2,0

A−1,0

B−1,0

A0,0

B0,0

A1,0

B1,0

A2,0

B2,0

1/σ1/(Bσ)

Ĝ
(1)

σ,b
(f)

A−2,1

B−2,1

A−1,1

B−1,1

A0,1

B0,1

A1,1

B1,1

A2,1

B2,1

1/σ1/(Bσ)

Figure 9: Ĝ(j)
σ,b(f) where the top one is j = 0 and the bottom one is j = 1, Ai,j = [1

σ (2π(i + j
B) −

2π
2B), 1

σ (2π(i+ j
B) + 2π

2B)], Bi,j = [1
σ (2π(i+ j

B)− 2π(1−α)
2B), 1

σ (2π(i+ j
B) + 2π(1−α)

2B)]

We use Definition 6.1 and Lemma 6.2 to generalize Lemma C.12,

Corollary C.14. If for all j ∈ [n], B[j] =
∑
i∈Z
W
(
(j + in)σ − σa

)
, then ∀j ∈ [n],

B̂[j] =
∑

i∈Z
Ŵ

(
(
j

n
+ i)/σ

)
· 1

σ
e−2πi(j

n
+i)a.

If for all j ∈ [n], B[j] =
∑
i∈Z
W
(
(j + in)σ − σa

)
e−2πiσb(j+in), then ∀j ∈ [n],

B̂[j] =
∑

i∈Z
Ŵ

(
(
j

n
+ i)/σ + b

)
· 1

σ
e−2πi(j

n
+i)a−2πiσab.

Remark C.15 (Samples of HashToBins). Procedure HashToBins in Algorithm 6 takes BD
samples in x(t):

x(σ(1− a)), x(σ(2− a)), · · · , x(σ(BD − a)).

To analyze our algorithm, we use filter function (G(t), Ĝ(f)) and Combs(t) =
∑
j∈Z

δsj(t) to define

the discretization of G.

82

Definition C.16. Define the discretization of G(t) and Ĝ(f),

Gdis(t) = G(t) · Combs(t)

Ĝdis(f) =
1

s
(Ĝ ∗ Comb1/s)(f)

= (Ĝ ∗ Comb1)(f)

=
(

− (1−α)π
B

(1−α)π
B

− π
B

π
B

)
∗

0−1−2 1 2

where | supp(G(t))| = lB
πα , D = l

πα , s = | supp(G(t))|/(BD) = l/(παD) = 1.

Definition 6.8. ∀σ > 0, b and j ∈ [B]. Define,

G
(j)
σ,b(t) =

1

σ
G(t/σ)e2πit(j/B−σb)/σ

Ĝ
(j)
σ,b(f) = Ĝdis(

j

B
− σf − σb) =

∑

i∈Z
Ĝ(i+

j

B
− σf − σb)

Lemma 6.9. Let u ∈ CB be the result of HashToBins under permutation Pσ,a,b, and let j ∈ [B].
Define

ẑ = x̂ ·H · Ĝ(j)
σ,b,

so
z = (x ·H) ∗G(j)

σ,b.

Let vector û ∈ CB denote the B-dimensional DFT of u, then ∀j ∈ [B],

û[j] = zσa.

Proof. Recall B is the number of hash bins. B · D is the number of samples in time signal. Let
W (t) = x ·H(t), define vector y ∈ CBD, then ∀j ∈ [BD], define

y[j] = W (σ(j − a))e2πiσbj

Recall G(t) denote the rect∗lB/α(t) · sinc(t/B), then | supp(G(t))| = lB
α . Let vector G′ ∈ CBD is

the discretization of G(t), where G′[i] = G(i). Then, ∀j ∈ [B],

u[j] =
∑

i∈[D]

V [j + iB]

where V [j] = y[j] ·G′[j] and G′[j] is the value at the jth nonzero point of Gdis(t). Applying Claim
C.13 with the definition of u[j] and V [j + iB], gives û[j] = V̂ [jD], ∀j ∈ [B].

Because of u is the result of HashToBins(x · H,Pσ,a,b, G) and | supp(G(t))| = BD(choosing
D = l/α), then

u[j] =
∑

i∈Z
W (σ(j + iB − a))e−2πiσb(j+iB)G(j + iB)

Then we define G′′(t) = G(t/σ + a)e−2πibσ(t/σ+a) and Y (t) = W (t) · G′′(t), then immediately,
we have

Ĝ′′(f) = σĜ(σ(f − b))e2πiaσf and Ŷ (f) = Ŵ (f) ∗ Ĝ′′(f)

83

Thus, we can rewrite u[j] in the following sense,

u[j]

=
∑

i∈Z
W (σ(j + iB − a))e−2πiσb(j+iB)G(j + iB)

=
∑

i∈Z
W (σ(j + iB − a))G′′(σ(j + iB − a)) by G′′(t) = G(t/σ + a)e−2πibσ(t/σ+a)

=
∑

i∈Z
Y (σ(j + iB − a)) by Y (t) = W (t) ·G′′(t)

Then

û[j]

=
∑

i∈Z
Ŷ ((

j

B
+ i)/σ) · 1

σ
· e−2πi(j

B
+i)a by Corollary C.14

=
∑

i∈Z

∫ +∞

−∞
Ŵ (s) · Ĝ′′(j/B + i

σ
− s) · 1

σ
· e−2πi·(j/B+i)ads by Ŷ (f) = Ŵ (f) ∗ Ĝ′′(f)

=
∑

i∈Z

∫ +∞

−∞
Ŵ (s) · Ĝ(j/B + i− σs− σb) · e−2πi·(−σs)ads by Ĝ′′(f) = σĜ(σ(f − b))e2πiaσf

=

∫ +∞

−∞
Ŵ (s) ·

∑

i∈Z
Ĝ((j/B + i)− σs− σb)e2πiaσsds

=

∫ +∞

−∞
Ŵ (s) · Ĝdis(

j

B
− σs− σb)e−2πiaσsds by Ĝdis(f) =

∑

i∈Z
Ĝ(f + i)

By definition C.16,

Ĝ
(j)
σ,b = Ĝdis(

j

B
− σs− σb) =

∑

i∈Z
Ĝ(i+

j

B
− σs− σb)

By definition of ẑ, we have

ẑ(s) = x̂ ·H(s) · Ĝ(j)(s) = Ŵ (s) · Ĝ(j)(s)

Then û[j] is the (aσ)th inverse Fourier coefficients of ẑ, basically,

û[j] = zaσ = z(aσ)

Thus, we can conclude first computing vector u ∈ CB. Getting vector û ∈ CB by using the Discrete
Fourier transform û = DFT(u). This procedure allows us to sample from time domain to implicitly
access the time signal’s Fourier transform ẑ. If z is one-cluster in frequency domain, then apply
one-cluster recovery algorithm.

D Acknowledgments

The authors would to like thank Aaron Sidford and David Woodruff for useful discussions.

E Algorithm

This section lists the pseudocode of our algorithms.

84

Algorithm 3
1: procedure GetEmpirical1Energy(z, T,∆) — Claim 7.11
2: Rest ← (T∆)2

3: for i = 1→ Rest do
4: Choose αi ∈ [0, T] uniformly at random
5: zemp ← zemp + |z(αi)|2
6: end for
7: zemp ←

√
zemp/Rest

8: return zemp

9: end procedure
10: procedure GetLegal1Sample(z,∆, T, β, zemp) — Lemma 7.2
11: Rrepeat ← (T∆)3, Sheavy ← ∅
12: for i = 1→ Rrepeat do
13: Choose αi ∈ [0, T] uniformly at random
14: if |z(αi)| ≥ 0.5 · zemp then
15: Sheavy ← Sheavy ∪ i
16: end if
17: end for
18: for i ∈ Sheavy do
19: w(i)← |z(αi)|2 + |z(αi + β)|2
20: end for
21: α← αi with probability w(i)/

∑
j∈Sheavy

w(j) for i ∈ Sheavy

22: return α
23: end procedure

85

Algorithm 4
1: procedure Locate1Signal(z, T, F,∆, zemp) — Lemma 7.15
2: Set t h log(FT), t′ = t/4, Dmax h logt′(FT), Rloc h log1/c(tc), L(1) = 2F
3: for i ∈ [Dmax] do
4: l h 2F/(t′)i−1∆, s h c, β̂ = ts

2∆l

5: if β̂ & T/(T∆)3/2 then
6: break
7: else
8: L(i) ← Locate1Inner(z,∆, T, β̂, zemp, L

(i−1))
9: end if

10: end for
11: return L(i)

12: end procedure
13: procedure Locate1Inner(z,∆, T, β̂, zemp, L̃)
14: Let vq ← 0 for q ∈ [t]
15: while r = 1→ Rloc do
16: Choose β ∈ [1

2 β̂, β̂] uniformly at random
17: γ ← GetLegal1Sample(z,∆, T, β, zemp)
18: for i ∈ [m] do
19: si ∈ [β(L̃−∆l/2), β(L̃+ ∆l/2)] ∩ Z+, θi = 1

2πσβ (φ(x(γ)/x(γ + β)) + 2πsi)
20: Let θi belong to region(q)
21: Then add a vote to region(q) and its two neighbors, i.e., region(q−1) and region(q+1)
22: end for
23: end while
24: q∗j ← {q|vq > Rloc

2 }
25: return L← center of region(q∗j)
26: end procedure
27: procedure FrequencyRecovery1Cluster(z, T, F,∆) — Theorem 7.5
28: zemp ← GetEmpirical1Energy(z, T,∆)
29: for r = 1→ O(k) do
30: Lr ← Locate1Signal(z, T, F,∆, zemp)
31: end for
32: return L∗ ← median

r∈[O(k)]
Lr

33: end procedure

86

Algorithm 5 Main algorithm for one-cluster recovery
1: procedure CFT1Culster(x,H, T, F) — Theorem 8.1
2: f̃0 ← FrequencyRecovery1Cluster(x,H, T, F)
3: x̃← SignalRecovery1Cluster(f̃0,poly(k)∆h)
4: return x̃
5: end procedure
6: procedure GenerateIntervals(d)
7: n← y0 ← i← 0, m← Θ(d)
8: while yi ≤ 1− 9

m2 do

9: yi+1 ← yi +

√
1−y2i
m , In+1 ← [yi, yi+1], In+2 ← [−yi+1,−yi]

10: i← i+ 1, n← n+ 2
11: end while
12: In+1 ← [yi, 1], In+2 ← [−yi,−1], n← n+ 2
13: return n, I
14: end procedure
15: procedure RobustPolynomialLearning(x, d, T) — Theorem 1.2
16: (n, I)← GenerateIntervals(d)
17: for j = 1→ n do
18: wj ← |Ij |/2
19: Choose tj from Ij uniformly at random
20: zj ← x(T · tj+1

2)
21: end for
22: Ãj,i ← tij , for each (j, i) ∈ [n]× {0, 1, · · · , d}
23: α← LinearRegressionW(Ã, b̃ = z, w)
24: Q(t)←∑d

i=0 αit
i

25: return Q̃(t) = Q(T · t+1
2)

26: end procedure
27: procedure RobustPolynomialLearning+(x, d, T) — Theorem 4.5 — a.k.a. SignalRe-

covery1Cluster
28: R← Θ(d)
29: (n, I)← GenerateIntervals(d)
30: wj ← |Ij |/2, for each j ∈ [n]
31: for i = 1→ R do
32: Qi ← RobustPolynomialLearning(x, d, T)
33: end for
34: Choose tj from Ij uniformly at random, for each j ∈ [n]
35: for i = 1→ R do
36: Qi(t1), Qi(t2), · · · , Qi(tn)← MultipointEvaluation(Qi, {t1, t2, · · · , tn})
37: end for
38: Q̃j ← median

i∈[R]
Qi(tj), for each j ∈ [n]

39: Ãj,i ← tij , for each (j, i) ∈ [n]× {0, 1, · · · , d}
40: α← LinearRegressionW(Ã, b̃ = Q̃, w)
41: return Q(t)←∑d

i=0 αit
i

42: end procedure

87

Algorithm 6
1: procedure LocateKSignal(x,H,G, T,∆, σ, b, zemp) — Clain 7.27
2: Set t h log(FT), t′ = t/4, Dmax h logt′(FT), Rloc h log1/c(tc), L(1) = 2F
3: for i ∈ [Dmax] do
4: ∆l h 2F/(t′)i−1, s h c, β̂ = ts

2σ∆l

5: if σβ̂ & T/(T∆)3/2 then
6: break
7: else
8: L(i) ← LocateKInner(x,H,G, T,∆, σ, b, zempβ̂, U, L

(i−1))
9: end if

10: end for
11: return L(i)

12: end procedure
13: procedure LocateKInner(x,H,G, T,∆, σ, b, zempβ̂, U, L̃)
14: Let vj,q ← 0 for (j, q) ∈ [B]× [t]
15: for r = 1→ Rloc do
16: Choose β ∈ [1

2 β̂, β̂] uniformly at random
17: û, û′ ← GetLegalKSample(x,H,G, T,∆, σ, β, zemp)
18: for j ∈ [B] do
19: for i ∈ [m] do
20: θj,i = 1

2πσβ (φ(û[j]/û′[j]) + 2πsi), si ∈ [σβ(L̃j −∆l/2), σβ(L̃j + ∆l/2)] ∩ Z+

21: fj,i = θj,i + b (mod F)
22: suppose fj,i belongs to region(j, q),
23: add a vote to both region(j, q) and two neighbors nearby that region, e.g.

region(j, q − 1) and region(j, q + 1)
24: end for
25: end for
26: end for
27: for j ∈ [B] do
28: q∗j ← {q|vj,q > Rloc

2 }
29: Lj ← center of region(j, q∗j)
30: end for
31: return L
32: end procedure
33: procedure HashToBins(x,H,G, Pσ,a,b) — Lemma 6.9
34: Compute u[j] =

∑
i∈D v[j + iB]

35: û← FFT(u)
36: return û
37: end procedure

88

Algorithm 7
1: procedure GetEmpiricalKEnergy(x,H,G, T,∆, σ, b) — Claim 7.26
2: Rest ← (T∆)2

3: for i = 1→ Rest do
4: Choose α ∈ [0, T] uniformly at random
5: û← HashToBins(x,H,G, Pσ,α,b)
6: for j = 1→ B do
7: zjemp ← zjemp + |ûj |2
8: end for
9: end for

10: for j = 1→ B do

11: zjemp ←
√
zjemp/Rest

12: end for
13: return zemp.
14: end procedure
15: procedure GetLegalKSample(x,H,G, T,∆, β, zemp) — Lemma 7.25
16: Rrepeat ← (T∆)3.
17: Sjheavy ← ∅, ∀j ∈ [B]
18: for i = 1→ Rrepeat do
19: Choose α ∈ [0, T] uniformly at random
20: ûi ← HashToBins(x,H,G, Pσ,α,b)
21: û

′i ← HashToBins(x,H,G, Pσ,α+β,b)
22: for j = 1→ B do
23: if |ûij | ≥ 0.5 · zjemp then
24: Sheavy,j ← Sjheavy ∪ i
25: end if
26: end for
27: end for
28: for j = 1→ B do
29: for i ∈ Sjheavy do
30: w(i)← |ûij |2 + |û′ij |2
31: end for
32: (v̂j , v̂

′
j)← (ûij , û

′i
j) with probability w(i)/

∑
i′∈Sjheavy

w(i′) for i ∈ Sjheavy

33: end for
34: return v̂, v̂′ ∈ CB
35: end procedure
36: procedure OneStage(x,H,G, σ, b) — Lemma 7.22
37: zemp ← GetEmpiricalKEnergy(x,H,G, T,∆, σ, b)
38: L← LocateKSignal(x,H,G, T,∆, σ, b, zemp)
39: end procedure

89

Algorithm 8 Main algorithm for k-cluster recovery
1: procedure CFTKCluster(x,H,G, T, F)
2: {f̃1, · · · , f̃l} ← FrequencyRecoveryKCluster(x,H,G, T, F)
3: x̃← SignalRecoveryKCluster+(f̃1, · · · , f̃l,∆ = poly(k, log(1/δ))/T, T)
4: return x̃ as our hypothesis
5: end procedure
6: procedure FrequencyRecoveryKCluster(x,H,G) — Theorem 2.6
7: for r ∈ [R] do
8: Choose σ ∈ [1

B∆h
, 2
B∆h

] uniformly at random

9: Choose b ∈ [0, 2πbF/∆hc]
(σB)] uniformly at random

10: Lr ← OneStage(x,H,G, σ, b)
11: end for
12: L∗ ←MergedStages(L1, L2, · · · , LR)
13: end procedure
14: procedure SignalRecoveryKCluster(f̃1, · · · , f̃l,∆, T)
15: d← 5π((∆T)1.5 + k3 log k + k log 1/δ)
16: m← O((kd)C3 · logC3 d) for a constant C3 = 5
17: for j = 1→ m do
18: Sample tj from [0, T] uniformly at random
19: Ãj,i1·l+i2 ← ti1j · e2πif̃i2 tj for each (i1, i2) ∈ {0, · · · , d} × [l]

20: b̃j ← x(tj)
21: end for
22: α← LinearRegression(Ã, b̃)

23: return x̃(t)←
d∑

i1=0

l∑
i2=1

αi1·l+i2t
i1 · e2πif̃i2 t

24: end procedure
25: procedure SignalRecoveryKCluster+(f̃1, · · · , f̃l,∆, T) — Theorem 9.1
26: R← Θ(k)
27: d← 5π((∆T)1.5 + k3 log k + k log 1/δ)
28: m← O((kd)C3 · logC3 d) for a constant C3 = 5
29: for i = 1→ R do
30: x̃i(t)← SignalRecoveryKCluster(f̃1, · · · , f̃l,∆, T)
31: end for
32: for j = 1→ m do
33: Sample tj from [0, T] uniformly at random
34: Ãj,i1·l+i2 ← ti1j · e2πif̃i2 tj for each (i1, i2) ∈ {0, · · · , d} × [l]

35: b̃j ← median
i∈[R]

x̃i(tj)

36: end for
37: α← LinearRegression(Ã, b̃)

38: return x̃(t)←
d∑

i1=0

l∑
i2=1

αi1·l+i2t
i1 · e2πif̃i2 t

39: end procedure

90

	Introduction
	Related work
	Our techniques
	Organization

	Proof Sketch
	Preliminaries
	Notation
	Facts about the Fourier transform
	Tools and inequalities
	Legendre polynomials
	Gram matrix and its determinant

	Robust Polynomial Interpolation Algorithm
	Constant success probability
	Boosting success probability

	Bounding the Magnitude of a Fourier-sparse Signal in Terms of Its Average Norm
	Bounding the maximum inside the interval
	Bounding growth outside the interval

	Hash Functions and Filter Functions
	Permutation function and hash function
	Filter function
	

	Frequency Recovery
	Overview
	Analysis of and
	A cluster of frequencies, times H, is a one-cluster signal per Definition 7.1
	Frequency recovery of one-cluster signals
	The full signal, after multiplying by H and convolving with G, is one-clustered.
	Frequency recovery of k-clustered signals
	Time and sample complexity of frequency recovery of k-clustered signals

	One-cluster Signal Recovery
	Overview
	Bounding the Gram matrix determinant
	Perturbing the frequencies does not change the subspace much
	Existence of nearby k-Fourier-sparse signal with frequency gap bounded away from zero
	Approximating k-Fourier-sparse signals by polynomials
	Transferring degree-d polynomial to (d+1)-Fourier-sparse signal

	k-cluster Signal Recovery
	Overview
	Heavy clusters separation
	Approximating clusters by polynomials
	Main result, with constant success probability
	Boosting the success probability

	Technical Proofs
	Proof of Theorem 8.3
	Proofs of Lemma 5.3 and Lemma 5.4
	Proof of Lemma 4.3
	Proof of Lemma 6.2
	Proof of Lemma 3.5
	Proof of Lemma 3.10

	Known Facts
	Inequalities
	Linear regression
	Multipoint evaluation of a polynomial

	Analysis of Hash Functions and Filter Functions
	Analysis of filter function
	Analysis of filter function
	Parameters setting for filters
	Analysis of

	Acknowledgments
	Algorithm

