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Abstract8

We consider the problem of locating a signal whose frequencies are clustered in a narrow band. Given9

noisy sample access to a function g(t) with Fourier spectrum in a narrow range [f0 − ∆, f0 + ∆], how10

accurately is it possible to identify f0? We present generic conditions on g that allow for efficient,11

accurate estimates of the frequency. We then show bounds on these conditions for k-Fourier-sparse12

signals that imply recovery of f0 to within ∆ + Õ(k3) from samples on [−1, 1]. This improves upon13

the best previous bound of O
(
∆ + Õ(k5)

)1.5. We also show that no algorithm can do better than14

∆ + Õ(k2).15

In the process we provide a new Õ(k3) bound on the ratio between the maximum and average16

value of continuous k-Fourier-sparse signals, which has independent application.17
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1 Introduction22

A natural question, dating at least to the work of Prony in 1795, is to estimate a signal from23

samples, assuming the signal has a k-sparse Fourier representation, i.e., that the signal is24

a sum of k complex exponentials: g(t) =
∑k
j=1 vje

2πifjt for some set of frequencies fj and25

coefficients vj .26

If the frequencies are located on a discrete grid (giving a sparse discrete Fourier transform),27

then a long line of work has studied efficient algorithms for recovering the signal (e.g.,28

[11, 7, 1, 8, 9, 10]). If the frequencies are not on a grid, then Prony’s method from 1795 [14]29

or matrix pencil [3] can still identify them in the absence of noise. With noise, however, one30

cannot robustly recover frequencies that are too close together: if one listens to a signal31

for the interval [−T, T ] then any two frequencies θ and θ + ε/T will be O(ε)-close to each32

other, and so cannot be distinguished with noise. As shown in [12], this nonrobustness grows33

exponentially in k. On the other hand, [12] also showed that recovery with polynomially34

small noise is possible if all the frequencies have separation 1/2T , and [13] showed that a35

constant fraction of noise is tolerable with separation logO(1)(FT )/T .36

So what is possible for arbitrary Fourier-sparse signals, without any assumption of37

frequency separation? One cannot hope to identify the frequencies exactly, but one can still38

estimate the signal itself. If two frequencies are similar enough to be indistinguishable over39

the sampled interval, we don’t need to distinguish them. In [4], this led to an algorithm for40

an arbitrary k-Fourier-sparse signal that used poly(k, log(FT )) samples to estimate it with41

only a constant factor increase in the noise. However, this polynomial is fairly poor.42

Since prior work could handle the case of well-separated frequencies, a key challenge in [4]43

is the setting with all the frequencies in a narrow cluster. Formally, consider the following44

subproblem: if all the frequencies fi of the signal lie in a narrow band [f0 −∆, f0 + ∆], how45

© Xue Chen and Eric Price;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages and Programming.
Editors: John Q. Open and Joan R. Access; Article No. ; pp. :1–:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xue.chen1@northwestern.edu
mailto:ecprice@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Estimating the frequency of a clustered signal

accurately can we estimate f0? Note that while we would like an efficient algorithm that46

takes a small number of samples, the key question is information theoretic. And we can ask47

this question more generally: if the signal isn’t k-sparse, but still has all its frequencies in a48

narrow band, can we locate that band?49

B Question 1. Let g(t) be a signal with Fourier transform supported on [f0−∆, f0 + ∆], for50

some f0 ∈ [−F, F ]. Suppose that we can sample from y(t) = g(t) + η(t) at points in [−T, T ],51

where52

E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε E

t∈[−T,T ]

[
|g(t)|2

]
53

for a small constant ε. Under what conditions on g can we estimate f0, and how accurately?54

One might expect to be able to estimate f0 to ±(∆ +O( 1
T )) for all functions g; after all,55

g is just a combination of individual frequencies, each of which points to some frequency in56

the right range, and each individual frequency in isolation can be estimated to within ±O( 1
T )57

in the presence of noise. Unfortunately, this intuition is false.58

To see this, consider the family of k-sparse Fourier functions with fj = εj, i.e.,59

span(e2πi(jε)t | j ∈ [k]).60

By sending ε→ 0 and taking a Taylor expansion, this family can get arbitrarily close to any61

degree k − 1 polynomial, on any interval [−T ′, T ′]. Thus, to solve the question, one would62

also need to solve it when g(t) is a polynomial even for arbitrarily small ∆.63

There are two ways in which g(t) being a degree d polynomial can lead to trouble. The first64

is that g(t) could itself be a Taylor expansion of eπift. If d & fT , this Taylor approximation65

will be quite accurate on [−T, T ]; with the noise η, the observed signal can equal eπift. Thus66

the algorithm has to output f , which can be Θ(d/T ) far from the “true” answer f0 = 0.67

The second way in which g(t) can lead to trouble is by removing most of the signal energy.68

If g(t) is the (slightly scaled) Chebyshev polynomial g(t) = Td
(
(1 + O( log2 d

d2 ))t/T
)
, then69

|g(t)| ≤ 1 for t ≤
(
1− O( log2 d

d2 )
)
T , while g(t) ≥ d for t ≥

(
1− O( log2 d

d2 )
)
T . That is to say,70

the majority of the `2 energy of g can lie in the final O( log2 d
d2 ) fraction of the interval. In71

such a case, a small constant noise level η can make samples outside that T · Õ(1/d2) size72

region equal to zero, and hence completely uninformative; and samples in that region still73

have to tolerate noise. This leads to an “effective” interval size of T ′ = T · Õ( 1
d2 ), leading to74

accuracy O(1/T ′) = Õ(d2)/T .75

Our main result is that, in a sense, these two types of difficulties are the only ones that76

arise. We can measure the second type of difficulty by looking at how much larger the77

maximum value of g is than its average:78

R :=
supt∈[−T,T ] |g(t)|2

Et∈[−T,T ] |g(t)|2 .79

We can measure the former by observing that while a polynomial may approximate a complex80

exponential on a bounded region, as t→∞ the polynomial will blow up. In particular, we81

take the S such that82

|g(t)|2 ≤ poly(R) · E
t∈[−T,T ]

[
|g(t)|2

]
· | t
T
|S83

for all |t| ≥ T . We show that if R and S are bounded, one can estimate f0 to within84

∆ + Õ(R + S)/T , which is almost tight from the above discussion of polynomials. Moreover,85

the time and number of samples required are fairly efficient:86
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B Theorem 2. Given any T > 0, F > 0,∆ > 0, R, and S > 0, let g(t) be a signal with the87

following properties:88

1. supp(ĝ) ⊆ [f0 −∆, f0 + ∆] where f0 ∈ [−F, F ].89

2. sup
t∈[−T,T ]

[
|g(t)|2

]
≤ R · E

t∈[−T,T ]

[
|g(t)|2

]
.90

3. |g(t)|2 grows as at most poly(R) · E
t∈[−T,T ]

[
|g(t)|2

]
· | tT |

S for t /∈ [−T, T ].91

Let y(t) = g(t) + η(t) be the observable signal on [−T, T ], where E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε ·92

E
t∈[−T,T ]

[
|g(t)|2

]
for a sufficiently small constant ε. For ∆′ = ∆ + Õ(R+S)

T , there exists93

an efficient algorithm that takes O(R log F
∆′·δ ) samples from y(t) and outputs f̃ satisfying94

|f0 − f̃ | ≤ O(∆′) with probability at least 1− δ.95

Application to sparse Fourier transforms Specializing to k-Fourier-sparse signals, we give96

bounds on R and S for this family. Since (as described above) this family can approximate97

degree-(k−1) polynomials, we know that R & k2 and S & k; we show that R . k3 log2 k and98

S . k2 log k. Thus, whatever R is between k2 and Õ(k3), we can identify k-Fourier-sparse99

signals to within ∆ + Õ(R)/T . This is an improvement over the results in [4] in several ways.100

Formally, for a given sparsity level k, we consider signals in

F :=

g(t) =
k∑
j=1

vje
2πifjt

∣∣∣∣fj ∈ [−F, F ]

 .

B Theorem 3. For any k and T ,101

R := sup
g∈F

sup
x∈[−T,T ]

|g(x)|2

E
x∈[−T,T ]

[|g(x)|2] = O(k3 log2 k).102

It was previously known that R . k4 log3 k [4], and this fact was used in [2]. (Thus,103

our improved bound on R immediately implies an improvement in Theorem 8 of [2], from104

s5
µ,ε log3 sµ,ε to s4

µ,ε log2 sµ,ε.)105

Next we bound the growth S = Õ(k2) for any |t| ≥ T .106

B Theorem 4. There exists S = O(k2 log k) such that for any |t| > T and g(t) =
∑k
j=1 vj ·107

e2πifjt, |g(t)|2 ≤ poly(k) · E
x∈[−T,T ]

[|g(x)|2] · | tT |
S .108

This is analogous to Theorem 5.5 of [4], which proves a bound of (kt)k rather than tÕ(k2).109

These bounds are incomparable, but the tÕ(k2) bound is actually more useful for this problem:110

what really matters is showing that g(t) isn’t too large just outside the interval. Theorem 4111

gives the “correct” polynomial dependence at t = T + 1/k2.112

We can now apply Theorem 2 to get an efficient algorithm to recover the center of a113

cluster of k frequencies within accuracy Õ(R).114

B Theorem 5. Given T and ∆, let g(t) be a k-Fourier-sparse signal centered around f0:115

g(t) =
∑
i∈[k] vi · e2πifit where fi ∈ [f0 −∆, f0 + ∆] and y(t) = g(t) + η(t) be the observable116

signal on [−T, T ], where E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε · E

t∈[−T,T ]

[
|g(t)|2

]
for a sufficiently small constant117

ε.118

There exist ∆′ = ∆ + Õ(R)
T and an efficient algorithm that takes O(k log2 k log F

∆′·δ )119

samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with probability at least 1− δ.120
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XX:4 Estimating the frequency of a clustered signal

Note that the sample complexity here is Õ(k) not Õ(R). This is because, based on the121

structure of the problem, we can use a nonuniform sampling procedure that performs better.122

Otherwise this theorem is just Theorem 2 applied to the R and S from Theorems 3 and 4.123

Theorem 5 is a direct improvement on Theorem 7.5 of [4], which for T = 1 could estimate124

to within O
(

∆ + Õ(k5)
)1.5

accuracy and used poly(k) samples. In particular, in addition125

to improving the additive poly(k) term, our result avoids a multiplicative increase in the126

bandwidth ∆ of g.127

The main technical lemma in proving Theorem 2 is a filter function H with a compact128

support Ĥ that simulates a box function on [−1, 1] for any g satisfying the conditions in129

Theorem 2.130

B Lemma 6. Given any T , S, and R, there exists a filter functionH with
∣∣supp(Ĥ)

∣∣ ≤ Õ(R+S)
T131

such that for any g(t) satisfying the second and third conditions in Theorem 2,132

1. H is close to a box function on [−T, T ]:
∫ T
−T |g(t) ·H(t)|2dt ≥ 0.9

∫ T
−T |g(t)|2dt.133

2. The tail of H(t) · g(t) is small:
∫ T
−T |g(t) ·H(t)|2dt ≥ 0.95

∫∞
−∞ |g(t) ·H(t)|2dt.134

Organization We introduce some notation and tools in Section ??. Then we provide135

a technical overview in Section ??. We show our filter function and prove Lemma 6 in136

Section 4. Next we present the algorithm about frequency estimation of Theorem 2 in137

Section 5. Finally we prove the results about sparse Fourier transform — Theorem 3 and138

Theorem 4 in Section 6.139

2 Preliminaries140

In the rest of this work, we fix the observation interval to be [−1, 1] and define ‖g‖2 =141 (
E

x∼[−1,1]
|g(x)|2

)1/2, because we could rescale [−T, T ] to [−1, 1] and [−F, F ] to [−FT, FT ].142

We first review several facts about the Fourier transform. The Fourier transform ĝ(f) of
an integrable function g : R→ C is

ĝ(f) =
∫ +∞

−∞
g(t)e−2πiftdt for any real f.

We use g · h to denote the pointwise dot product g(t) · h(t) and gk to denote g(t) · · · g(t)︸ ︷︷ ︸
k

.143

Similarly, we use g∗h to denote the convolution of g and h:
∫ +∞
−∞ g(x)·h(t−x)dx. In this work,144

we always set g∗k as the convolution g(t) ∗ · · · ∗ g(t)︸ ︷︷ ︸
k

. Notice that supp(g·h) = supp(g)∩supp(h)145

and supp(g ∗ h) = supp(g) + supp(h).146

We define the box function and its Fourier transform sinc function as follows. Given147

a width s > 0, the box function rects(t) = 1/s iff |t| ≤ s/2; and its Fourier transform is148

sinc(sf) = sin(πfs)
πfs for any f .149

We state the Chernoff bound for random sampling [6].150

I Lemma 7. Let X1, X2, · · · , Xn be independent random variables in [0, R] with expectation151

1. For any ε < 1/2 and n & R
ε2 , X =

∑n

i=1
Xi

n with expectation 1 satisfies152

Pr[|X − 1| ≥ ε] ≤ 2 exp(−ε
2

3 ·
n

R
).153
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3 Proof Overview154

We first outline the proofs of Lemma 6 and Theorem 2 here. Then we show the proof sketch155

of R = Õ(k3) and S = Õ(k2) of k-Fourier-sparse signals.156

The filter functions (H, Ĥ) in Lemma 6. Ideally, to satisfy the two claims in Lemma 6,157

we could set H(t) to be the box function 2 rect2(t) on [−1, 1]. However, by the uncertainty158

principle, it is impossible to make its Fourier transform Ĥ compact using such an H(t).159

Hence our construction of (H, Ĥ) is in the inverse direction: we build Ĥ(f) by box functions160

and H(t) by the Fourier transform of box functions — the sinc function. In the rest of this161

discussion, we focus on using the sinc function to prove Lemma 6 given the properties of g in162

Theorem 2.163

We first notice that any H with the following two properties is effective in Lemma 6 for164

g satisfying ‖g(t)|2 ≤ R · ‖g‖22 for any |t| ≤ 1 and |g(t)|2 ≤ poly(R)‖g‖22 · |t|S for |t| > 1:165

1. H(t) = 1± 0.01 for any t ∈ [−1 + 1
C·R , 1−

1
C·R ] of a large constant C. This shows∫ 1

−1
|H(t) · g(t)|2dt ≥ 0.992

∫ 1− 1
C·R

−1+ 1
C·R

|g(t)|2dt.

Because |g(t)|2 ≤ R · ‖g‖22 for any t ∈ [−1, 1] \ [−1 + 1
C·R , 1−

1
C·R ], the constant on the166

R.H.S. is at least 0.992 · (1− 1
C ) ≥ 0.9, which implies the first claim of Lemma 6.167

2. H(t) declines to 1
poly(R)·t2S for any |t| > 1. This shows∫ ∞

1
|H(t) · g(t)|2dt ≤ 0.01

∫ 1

−1
|g(t)|2dt,

which implies the second claim.168

For ease of exposition, we start with S = 0. We plan to design a filter H0(t) with compact
Ĥ0 dropping from 0.99 at t = 1− 1

C·R to 1
poly(R) at t = 1 in a small range 1

CR using the sinc
function. To apply the sinc function, we notice that

sinc(CR · t)O(logR) =
(

sin(πCR · t)
πCR · t

)O(logR)

decays from 1 at t = 0 to 1/poly(R) at t = 1
C·R , which matches the dropping of H0(t) from169

t = 1− 1
C·R to t = 1.170

Then, to make H(t) ≈ 1 for any |t| ≤ 1− 1
C·R , let us consider a convolution of rect1(t) and171

sinc(CR · t)O(logR). Because most of the mass of the latter is in [− 1
CR ,

1
CR ], this convolution172

keeps almost the same value in [− 1
2 + 1

CR ,
1
2−

1
CR ] and drops down to 1/poly(R) at t = 1

2 + 1
CR .173

At the same time, it will not break the compact of Ĥ0 since it becomes the dot product on174

the Fourier domain. By normalizing and scaling, this gives the desired (H0, Ĥ0) for S = 0.175

Next we describe the construction of S > 0. The high level idea is to consider the decays
of H(t) in log2 S +O(1) segments rather than one segment of S = 0:

(1− 1
CR

, 1], (1, 1 + 1
S

], (1 + 1
S
, 1 + 2

S
], . . . , (1 + 2j

S
, 1 + 2j+1

S
], . . . , (1 + S/2

S
, 2], (2,+∞).

For each segment, we build a power of sinc functions matching its decay in H(t) like the176

construction of H0 on (1− 1
CR , 1]. The final construction is the convolution of the dot product177

of all sinc powers and a box function, which appears in Section 4.178

ICALP 2019



XX:6 Estimating the frequency of a clustered signal

Algorithm of Theorem 2. Now we show how to estimate f0 given observation of y = g + η179

where supp(ĝ) ⊆ [f0 −∆, f0 + ∆] and ‖η‖22 ≤ ε‖g‖22 (with `2 norm taken over [−T, T ]). We180

instead consider yH(t) = y(t) ·H(t) with the filter function (H, Ĥ) from Lemma 6 and the181

corresponding dot products gH = g ·H and ηH = η ·H. The starting point is that for a182

sufficiently small β, we expect183

yH(t+ β) ≈ e2πif0β · yH(t)184

because yh has Fourier spectrum concentrated around f0. This does not hold for all t, but it185

does hold on average:186 ∫ 1

−1
|yH(t+ β)− e2πif0β · yH(t)|2dt ≤

∫ 1

−1
|yH(t)|2dt. (1)187

188

This is because we can use Parseval’s identity to replace these integrals by an integral over189

Fourier domain—Parseval’s identity would apply if the integrals were from −∞ to ∞, but190

because of the filter function H, relatively little mass in yH lies outside [−1, 1]. Then, the191

Fourier transform of the term inside the left square is e2πifβ ·ŷH(f)−e2πif0β ·ŷH(f). Note that192

ŷH = ĝH + η̂H has most of its `2 mass in supp(gH) ⊆ [f0−∆′, f0 +∆′] for ∆′ = ∆+ |supp(Ĥ)|,193

and every such frequency shrinks in the left by a factor e2πi(f−f0)β = O(β∆′). Thus, for194

β � 1/∆′, (1) holds.195

Then we design a sampling procedure to output α satisfying

|yH(α+ β)− e2πif0βyH(α)| ≤ 0.3 · yH(α) with probability more than half .

Even though the above discussion shows the left hand side is smaller than the R.H.S.196

on average, a uniformly random α ∼ [−1, 1] may not satisfy it with good probability:197

|yH(α)| ≥ ‖yH‖2 may be only true for a 1/R fraction of α ∈ [−1, 1], while the corruption198

by adversarial noise η have have ‖η‖22 & ε‖yH‖22 for a constant ε� 1/R. At the same time,199

even for many points α1, . . . , αm where some of them satisfies the above inequality, it is200

infeasible to verify such an αi given f0 is unknown. We provide a solution by adopting the201

importance sampling: for m = O(R) random samples α1, . . . , αm [−1, 1], we output α with202

probability proportional to the weight |yH(αi)|2.203

We prove the correctness of this sampling procedure in Lemma 11 in Section 5.204

Finally, learning e2πif0β is not enough to learn f0: because of the noise, we only learn205

e2πif0β to within a constant ε, which gives f0 to within ±O(ε/β); and because of the different206

branches, this is only up to integer multiples of 1/β. Therefore to fully learn f0, we repeat207

the sampling procedure at logarithmically many different scales of β, from β = 1/2F to208

β = Θ(1)
∆′ .209

k-sparse signals. Finally, we show R = Õ(k3) and S = Õ(k2) such that for any g(t) =∑k
j=1 vj · e2πifjt — not necessarily one with the fj not clustered together—

sup
t∈[−1,1]

|g(t)|2

‖g‖22
≤ R and |g(t)|2 ≤ poly(R) · ‖g‖22 · |t|S .

We first review the previous argument of R = Õ(k4) [4]. The key point is to show for210

some d = Õ(k2) that g(1) is a linear combination of g(1− θ), . . . , g(1− d · θ) using bounded211

integer coefficients c1, . . . , cd = O(1) for any θ ≤ 2
d . Then212

g(1) =
∑
j∈[d]

cj · g(1− j · θ) implies |g(1)|2 ≤ (
∑
j∈[d]

|cj |2) · (
∑
j∈[d]

|g(1− j · θ)|2). (2)213
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If we think g(1) as the supremum and the average g(1−j ·θ) as the average ‖g‖2—which we can214

formally do up to logarithmic factors by averaging over θ—this shows |g(1)|2 ≤ Õ(d2)‖g‖22.215

One natural idea to improve it is to use smaller d and shorter linear combination [5].216

However, d = Ω̃(k2) for such an combination when g is approximately the degree k − 1217

Chebyshev polynomial. In this work, we use a geometric sequence to control cj such that218 ∑
j |cj |2 = O(d/k) instead of O(d), which provides a improvement of a factor k on R.219

Then we bound S = Õ(k2) for g(t) at |t| > 1. The intuition is that given (2) holds for any220

g(t) in terms of g(t−θ), . . . , g(t−d·θ) with θ = 2
d , it implies |g(t)|2 ≤ poly(k)·‖g‖22 ·e(t−1)·O(d)

221

for t > 1. Combining this with an alternate bound |g(t)|2 ≤ poly(k) · ‖g‖22 · (k · t)O(k) for222

t > 1 + 1/k, it completes the proof of Theorem 4 about S.223

Finally we notice that we could improve the sample complexity in Theorem 5 to Õ(k) log F
∆′224

using a biased distribution [5] to generate α. These results about k-Fourier-sparse signals225

appear in Section 6.226

4 Filter Function227

The main result is an explicit filter function H with compact support Ĥ that is close to the228

box function on [−1, 1] for any g satisfying the conditions in Theorem 2.229

We show our filter function as follows.230

I Definition 8. Given R, the growth rate S and a constant C, we define the filter function
as

H(t) = s0·
(

sinc(CR · t)C logR · sinc
(
C · S · t

)C · sinc
(C · S

2 · t
)2C · · · sinc

(
C · t

)C·S)∗rect2(t)

where s0 ∈ R+ is a parameter to normalize H(0) = 1. On the other hand, its Fourier
transform is

Ĥ(f) = s0 ·
(

rectCR(f)∗C logR ∗ rectC·S(f)∗C ∗ rectC·S
2

(f)∗2C ∗ · · · ∗ rectC(f)∗CS
)
· sinc(2t),

whose support size is O(CR · C logR+ CS · C + · · ·+ C · C · S) = O(R logR+ S logS).231

We prove Lemma 6 using H(αx) with a large constant C and a scale parameter α =232

1
2 + 1.2

πCR . For convenience, we restate Lemma 6 for T = 1 as follows.233

I Theorem 9. Let C be a large constant and α = ( 1
2 + 1.2

πCR ). For any R and S, the filter234

function H
(
αx
)
guarantees that for any g with235

1. sup
t∈[−1,1]

|g(t)|2 ≤ R · ‖g‖22236

2. and |g(t)|2 ≤ poly(R) · ‖g‖22 · |t|S for t /∈ [−1, 1],237

H
(
αx
)
· g(x) satisfies238

1.
∫ 1
−1 |g(x) ·H

(
αx
)
|2dx ≥ 0.9

∫ 1
−1 |g(x)|2dx.239

2.
∫ 1
−1 |g(x) ·H

(
αx
)
|2dx ≥ 0.95

∫∞
−∞ |g(x) ·H

(
αx
)
|2dx.240

For completeness, we show a few properties of H and finish the proof of Theorem 9 in241

Appendix A.242

5 Frequency Estimation243

We show the algorithm for frequency estimation and prove Theorem 2 in this section. We fix244

T = 1 and ‖h‖22 = E
x∼[−1,1]

[|h(x)|2] to restate the theorem.245
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I Theorem 10. Given any F > 0,∆ > 0, R, and S > 0, let g(t) be a signal with the following246

properties:247

1. supp(ĝ) ⊆ [f0 −∆, f0 + ∆] where f0 ∈ [−F, F ].248

2. sup
t∈[−1,1]

[
|g(t)|2

]
≤ R · ‖g‖22.249

3. |g(t)|2 grows as at most poly(R) · ‖g‖22 · |t|S for t /∈ [−1, 1].250

Let y(t) = g(t)+η(t) be the observable signal on [−1, 1], where ‖η‖22 ≤ ε·‖g‖22 for a sufficiently251

small constant ε. For ∆′ = ∆ + Õ(R + S), there exists an efficient algorithm that takes252

O(R log F
∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with probability253

at least 1− δ.254

For convenience, we set hH(t) = h(t) ·H(αt) for any signal h(t) with the filter function255

H defined in Theorem 9 such that yH(t) = y(t) ·H(αt).256

Given the observation y(t) with most Fourier mass concentrated around f0, the main257

technical result in this section is an estimation of e2πiβf0 through yH(α)e2πif0β ≈ yH(α+ β).258

I Lemma 11. Given parameters F,R, S, and ∆, let g be a signal satisfying the three259

conditions in Theorem 2 for some f0 ∈ [−F, F ] and ∆′ = ∆ +O(R log k + S logS).260

Let y(t) = g(t) + η(t) be the observable signal on [−1, 1] where the noise ‖η‖22 ≤ ε‖g‖22 for261

a sufficiently small constant ε. There exist a constant γ and an algorithm such that for any262

β ≤ γ
∆′ , it takes O(R) samples to output α satisfying |yH(α)e2πif0β−yH(α+β)| ≤ 0.3|yH(α)|263

with probability at least 0.6.264

We show our algorithm in Algorithm 1. We finish the proof of Theorem 5 here and defer265

the proof of Lemma 11 to Section 5.1.266

Algorithm 1 Obtain one good α
1: procedure ObtainOneGoodSample(k, y(t))
2: Let m = C ·R for a large constant C.
3: Take m random samples x1, · · · , xm uniform in [−1, 1].
4: Set a distribution Dm proportional to |yH(xi)|2, i.e., Dm(xi) = |yH(xi)|2∑m

j=1
|yH(xj)|2

.

5: Output α ∼ Dm.
6: end procedure

Proof of Theorem 10. From Lemma 11, y(α+β)
y(α) gives a good estimation of e2πif0β with267

probability 0.6 for any β ≤ γ
∆′ . We use the frequency search algorithm of Lemma 7.3 in [4]268

with the sampling procedure in Lemma 11. Because the algorithm in [4] uses the sampling269

procedure O(log F
∆′·δ ) times to return a frequency f̃ satisfying |f̃ − f0| ≤ ∆′ with prob. at270

least 1− δ, the sample complexity is O(R · log F
∆′·δ ). J271

5.1 Proof of Lemma 11272

For yH(x) = gH(x)+ηH(x), we have the following concentration lemma for estimation gH(x).273

B Claim 12. Given any g satisfying the three conditions in Theorem 2 and any ε and δ,
there exists m = O(R log 1

δ /ε
2) such that for m random samples x1, . . . , xm ∼ [−1, 1], with

probability 1− δ, ∑m
i=1 |gH(xi)|2

m
∈ [1− ε, 1 + ε] · E

x∼[−1,1]
[|gH(x)|2].
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Proof. Notice that
sup

x∼[−1,1]
[|gH(x)|2]

E
x∼[−1,1]

[|gH(x)|2] ≤ 2R. From the Chernoff bound Lemma 7, m =274

O(R log 1
δ /ε

2) suffice to estimate ‖gH‖22. J275

Next we consider the effect of noise ηH(xi) and yH(xi).276

B Claim 13. With probability 0.9 over m samples from D,
∑m
i=1 |yH(xi)|2/m ≥ 0.8‖g‖22.277

Proof. From Theorem 9, ‖gH‖22 ≥ 0.95‖g‖22. Thus Claim 12 implies
∑m
i=1 |gH(xi)|2/m ≥278

0.95 · 0.98‖g‖22 for m = O(R) with probability 0.99.279

At the same time, because E[
∑m
i=1 |ηH(xi)|/m] = ‖ηH‖22,

∑m
i=1 |ηH(xi)|2/m ≤ 14‖ηH‖22280

with probability at least 1 − 1
14 from the Markov inequality. This is also less than 14 ·281

1.022‖η‖22 ≤ 15ε‖g‖22.282

We have

1
m

m∑
i=1
|yH(xi)|2 ≥

1
m

m∑
i=1

(|gH(xi)|2 − 2|gH(xi)| · |ηH(xi)|+ |ηH(xi)|2).

By the Cauchy-Schwartz inequality, the cross term
∑m
i=1 |gH(xi)|·|ηH(xi)| ≤ (

∑m
i=1 |gH(xi)|2)1/2·283

(
∑m
i=1 |ηH(xi)|2)1/2. From all discussion above, we have

∑m
i=1 |yH(xi)|2/m ≥

(
0.93 −284

2
√

0.93 · 15ε
)
‖g‖22 when ε is a small constant. J285

We set z(t) = yH(t) · e2πif0β − yH(t+ β) for convenience and bound it as follows.286

B Claim 14. Given any small constant γ, ∆′ = ∆ + supp(H), and z(t) = yH(t) · e2πif0β −287

yH(t+ β) for β ≤ γ
∆′ , ‖z‖

2
2 . (γ2 + ε)‖g‖22.288

Proof. Notice that yH = gH + ηH where supp(ĝH) ∈ [f0 −∆, f0 + ∆] such that∫
f /∈[f0−∆′,f0+∆′]

|ŷ(f)|2df ≤
∫ ∞
−∞
|η̂H(f)|2df =

∫ ∞
−∞
|ηH(t)|2dt ≤ 1.022ε

∫ 1

−1
|g(t)|2dt.

We bound ‖z‖22 through∫ 1

−1
|z(t)|2dt ≤

∫ ∞
−∞
|z(t)|2dt =

∫ ∞
−∞
|ẑ(f)|2df =

∫ f0+∆′

f0−∆′
|ẑ(f)|2df+

∫
f /∈[f0−∆′,f0+∆′]

|ẑ(f)|2df.

Therefore we write∫ f0+∆′

f0−∆′
|ẑ(f)|2df =

∫ f0+∆′

f0−∆′
|ŷH(f)·e2πif0β−ŷH(f)·e2πifβ |2df ≤

∫ f0+∆′

f0−∆′
|ŷH(f)|2·|e2πif0β−e2πifβ |2df.

Because f ∈ [f0 −∆′, f0 + ∆′] and β ≤ γ
∆′ , |e

2πif0β − e2πifβ | ≤ 4πγ. So∫ f0+∆′

f0−∆′
|ẑ(f)|2df . γ2

∫ +∞

−∞
|ŷH(f)|2df = γ2

∫ +∞

−∞
|yH(t)|2dt . γ2(1 + 2ε)

∫ 1

−1
|g(t)|2dt.

On the other hand,289 ∫
f /∈[f0−∆′,f0+∆′]

|ẑ(f)|2df =
∫
f /∈[f0−∆′,f0+∆′]

|ŷH(f) · e2πif0β − ŷH(f) · e2πifβ |2df290

≤ 4
∫
f /∈[f0−∆′,f0+∆′]

|ŷH(f)|2df291

≤ 4
∫ +∞

−∞
|η̂H(f)|2df = 4

∫ +∞

−∞
|η̂H(t)|2dt292

293
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which is less than 5ε
∫ 1
−1 |g(t)|2dt.294

From all discussion above,
∫ 1
−1 |z(t)|

2dt . (γ2 + ε)
∫ 1
−1 |g(t)|2dt. J295

I Corollary 15. For sufficiently small constants γ and ε, with probability 0.9 over m samples296

from D,
∑m
i=1 wi · |z(xi)|2 ≤ 0.01‖g‖22.297

Finally we finish the proof of Theorem 5.298

Proof of Theorem 5. We assume Claim 13 and Corollary 15 hold in this proof, i.e.,

m∑
i=1
|yH(xi)|2/m ≥ 0.9‖g‖22 and

m∑
i=1
|z(xi)|2/m ≤ 0.01‖g‖22.

For a random sample α ∼ Dm, we bound299

E
α∼Dm

[
|yH(α)e2πif0β − yH(α+ β)|2

|yH(α)|2

]
= E
α∼Dm

[
|z(α)|2

|yH(α)|2

]
=

m∑
i=1

|z(xi)|2

|yH(xi)|2
· |yH(xi)|2∑m

j=1 |yH(xj)|2
.300

This is
∑m

i=1
|z(xi)|2∑m

j=1
|yH(xj)|2

≤ 0.01
0.8 . Thus with probability 0.8, |yH(α)e2πif0β−yH(α+β)|2

|yH(α)|2 is less than301

0.05/0.8 ≤ 0.09. From all discussion above, |yH(α)e2πif0β−yH(α+β)|
|yH(α)| ≤ 0.3 with probability302

0.6. J303

6 Sparse Fourier transform304

We consider g(t) =
∑k
j=1 vje

2πifjt where each fj ∈ [f0 −∆, f0 + ∆] in this section. The305

main result is to prove R = Õ(k3) and S = Õ(k2). We restate Theorem 5 after fixing T = 1306

and finish its proof in Appendix B.1.307

I Theorem 16. Given ∆ and k, let g(t) be a k-Fourier-sparse signal centered around f0:308

g(t) =
∑
i∈[k] vi · e2πifit where fi ∈ [f0 −∆, f0 + ∆] and y(t) = g(t) + η(t) be the observable309

signal on [−1, 1], where ‖η‖22 ≤ ε · ‖g‖22 for a sufficiently small constant ε.310

There exist ∆′ = ∆ + Õ(R) and an efficient algorithm that takes O(k log2 k log F
∆′·δ )311

samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with probability at least 1− δ.312

The main improvement is a biased distribution that saves the sample complexity from313

O(R) · log F
∆′·δ to Õ(k) · log F

∆′·δ .314

We provide the main technical lemma here and defer the proofs of Theorem 3 and 4 to315

Appendix B.316

I Theorem 17. Given z1, · · · , zk with |z1| = |z2| = · · · = |zk| = 1, there exists a degree317

d = O(k2 log k) polynomial P (z) =
∑d
j=0 c(j) · zj satisfying318

1. P (zi) = 0 for each i ∈ [k].319

2. Coefficients c(0) = Ω(1), c(j) = O(1) and |c(0)|2 = O(k) ·
(∑d

j=1 |c(j)|2
)
.320

I Corollary 18. Given any g(t) =
∑k
j=1 vje

2πifjt and θ > 0, there exist d = O(k2 log k) and321

a sequence of coefficients (α1, · · · , αd) such that322

1. αj = O(1) for any j = 1, · · · , d.323

2. for any x (not necessarily in [−1, 1]), g(x) =
∑d
j=1 αj · g(x− jθ).324
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Proof. Given θ, we set zi = e−2πifjθ and apply Theorem 17 to obtain coefficients c(0), . . . , c(d).
Then we set αj = −c(j)/c(0). It is straightforward to verify the second property because of

e2πifjx −
∑
j

αj · e2πifj(x−jθ) = 0.

J325

We use the following bound on the coefficients of residual polynomials, which is stated as326

Lemma 5.3 in [4].327

I Lemma 19. Given z1, · · · , zk, for any integer n, let rn,k(z) =
∑k−1
i=0 r

(i)
n,k · zi denote the328

residual polynomial of rn,k ≡ zn mod
∏k
j=1(z−zj). Then each coefficient in rn,k is bounded:329

|r(i)
n,k| ≤

(
k−1
i

)
·
(
n
k−1
)
for n ≥ k and |r(i)

n,k| ≤
(
k−1
i

)
·
(|n|+k−1

k−1
)
for n < 0.330

We finish the proof of Theorem 17 here.331

Proof. Let C0 be a large constant and d = 5 · k2 log k. We use P to denote the following
subset of polynomials with bounded coefficients:

d∑
j=0

αj · 2−j/k · zj
∣∣∣∣α0, . . . , αd ∈ [−C0, C0] ∩ Z

 .

For each polynomial P (z) ∈ P, we rewrite P (z) mod
∏k
j=1(z − zj) as

d∑
j=0

αj · 2−j/k ·

zj mod
k∏
j=1

(z − zj)

 =
k−1∑
i=0

 d∑
j=0

αj · 2−j/k · r(i)
n,k

 zi.

The coefficient
∑d
j=0 αj · 2−j/k · r

(i)
n,k is bounded by332

d∑
j=0

C0 · 2−j/k · 2kjk−1 ≤ d · C0 · 2k · dk ≤ d2k.333

Then we apply the pigeon hole theorem on the (2C0 + 1)d polynomials in P after module334 ∏d
j=1(z−zj): there existsm > (2C0+1)0.9d polynomials P1, · · · , Pm such that each coefficient335

of (Pi − Pj) mod
∏k
j=1(z − zj) is d−2k small from the counting336

(2C0 + 1)d

(d2k/d−2k)2k > (2C0 + 1)0.9d.337

Because m > (2C0 + 1)0.9d, there exists j1 ∈ [m] and j2 ∈ [m] \ {j1} such that the lowest
monomial zl with different coefficients in Pj1 and Pj2 satisfies l ≤ 0.1d. Eventually we set

P (z) = z−l ·
(
Pj1(z)−Pj2(z)

)
−
(
z−l mod

k∏
j=1

(z−zj)
)
·
(
Pj1(z)−Pj2(z) mod

k∏
j=1

(z−zj)
)

to satisfy the first property P (z1) = P (z2) = · · · = P (zk) = 0. We prove the second property338

in the rest of this proof.339

We bound every coefficient in
(
z−l mod

∏k
j=1(z−zj)

)
·
(
Pj1(z)−Pj2(z) mod

∏k
j=1(z−340

zj)
)
by k · 2l(l + k)k−1 · d−2k ≤ d · 2ddk−1 · d−2k ≤ d−0.5k. On the other hand, the constant341
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coefficient in z−l ·
(
Pj1(z) − Pj2(z)

)
is at least 2−l/k ≥ 2−0.1d/k = k−0.5k because zl is the342

smallest monomial with different coefficients in Pj1 and Pj2 from P. Thus the constant343

coefficient |C(0)|2 of P (z) is at least 0.5 · 2−2l/k.344

Next we upper bound the sum of the rest coefficients
∑d
j=1 |C(j)|2 by

d∑
j=1

(2C0 · 2−(l+j)/k + d−0.5k)2 ≤ 2 · 4C2
0

d∑
j=1

2−2(l+j)/k + 2 ·
d∑
j=1

d−0.5k·2 . k · 2−2l/k,

which demonstrates the second property. J345
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A.1 Properties of H385

We use two bounds on the sinc function:386

1. For any |x| ≥ 1.2
π , sinc(x) ≤ 1

π|x| .387

2. For any |x| ≤ 1.2
π , sinc(x) ∈ [1− π2|x|2

6 , 1− π2|x|2
10 ].388

Without loss of generality, we assume C is an even positive integer and R ≥ S (otherwise389

set R = S) that both are powers of 2. We use g(t) to denote the product of sinc functions in390

H(t) for convenience:391

g(t) =
(

sinc(CR · t)C logR · sinc
(
C · S · t

)C · sinc
(C · S

2 · t
)2C · · · sinc

(
C · t

)C·S)
We fix l = log2(S) in this section and rewrite g(t) as

sinc(CR · t)C logR ·
l∏

j=0
sinc

(
2−j · C · S · t

)2j ·C
.

Before we show the properties of H, we consider the tail of g(t).392

B Claim 20. 1. g(t) = Θ(1) for |t| ≤ 1.2
πCR·
√
C logR

.393

2. g(t) = e−Θ(|CR·t|2 logR) for |t| ∈ [ 1.2
πCR·
√
C logR

, 1.2
πCR ].394

3. g(t) ≤ ( 1
π·CR·|t| )

C logR for |t| ∈ [ 1.2
πCR ,

1.2
πC·S ].395

4. For any i ∈ [l], g(t) ≤ ( 1
π·CR·|t| )

C logR · 1.2−(2i+1−1)C for any |t| ∈ [ 1.2·2i−1

πC·S , 1.2·2i
πC·S ].396

5. g(t) ≤ ( 1
πCR·t )

C logR ·
∏l
j=0( 1

π2−j ·C·S·t )
2j ·C for |t| ≥ 1.2·2l

πC·S = 1.2
Cπ .397

Proof. We first bound sinc(CR · t)C logR then bound
∏l
j=0 sinc

(
2−j · C · S · t

)2j ·C .398

1. For |t| ≤ 1.2
πCR , from the second property of sinc functions,

sinc(CR·t) ∈
[
1− π2|CRt|2

6 , 1− π2|CRt|2

10

]
⇒ sinc(CR·t)C logR = Θ(1) for |t| ≤ 1.2

πCR ·
√
C logR

and
sinc(CR · t)C logR = e−Θ(|CR·t|2 logR) for t ∈ [ 1.2

πCR ·
√
C logR

,
1.2
πCR

].

2. For |t| ≥ 1.2
πCR , from the first property of sinc functions,399

sinc(CR · t)C logR ≤ ( 1
π · CR · |t|

)C logR.

Then we bound the tail of the product of sinc functions.400

1. For |t| ≤ 1.2
πC·S ,

sinc
(
2−j ·C ·S · t

)2j ·C ∈ [(1− π2 · |2−j · C · S · t|2

6
)2j ·C

,
(
1− π2 · |2−j · C · S · t|2

10
)2j ·C]

.

Notice that π2 · |2−j · C · S · t|2 is less than 1.22 · 2−2j . Thus sinc
(
2−j · C · S · t

)2j ·C =(
1−Θ(2−j)

)C and their products over j is

l∏
j=0

sinc
(
2−j · C · S · t

)2j ·C =

1−Θ

 l∑
j=0

2−j
C

= Θ(1)C = Θ(1).
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2. Let us fix i ≤ l and consider sinc
(
2−j · C · S · t

)2j ·C for |t| ∈ [ 1.2·2i−1

πC·S , 1.2·2i
πC·S ]. By the first

property of sinc function, for j ≤ i,

sinc
(
2−j · C · S · t

)2j ·C ≤ ( 1
π · 2−j · C · S · |t| )

2j ·C ≤ ( 1
1.2 · 2−j+i )

2j ·C ≤ 1.2−2j ·C .

For j > i, we use the same analysis with the second property of the sinc function:

sinc
(
2−j ·C · S · t

)2j ·C ∈ [(1− π2 · |2−j · C · S · t|2

6
)2j ·C

,
(
1− π2 · |2−j · C · S · t|2

10
)2j ·C]

where π2 · |2−j · C · S · t|2 is at least 1.22 · 2−2(j−i). Hence the product is

l∏
j=0

sinc
(
2−j ·C·S·t

)2j ·C ≤ 1.2−
∑i

j=0
2j ·C ·

l∏
j=i+1

(
1− 1.22 · 2−2(j−i)

6

)2j ·C

≤ 1.2−(2i+1−1)C .

We get the tail bounds by combining the above discussion of sinc(CR·t)C logR and
∏l
j=0 sinc

(
2−j ·401

C · S · t
)2j ·C together. J402

Since H(t) = s0 · g(t) ∗ rect2(t) = s0 ·
∫ t+1/2
t−1/2 g(x)dx, we have the following bounds on403

H(t) based on Claim 20.404

I Lemma 21. For any constant C ≥ 4,405

1. s0 = Θ(πCR ·
√
C logR).406

2. H(t) = 1± 0.01 for |t| ≤ 1
2 −

1.2
πCR .407

3. H(t) . s0
S ·R

−C/4 for |t| ∈ [ 1
2 + 1.2

πCR ,
1
2 + 1.2

πC·S ].408

4. H(t) . s0 ·R−C/4 · 1.2−2iC for |t| ∈ [ 1
2 + 1.2·2i−1

πC·S , 1
2 + 1.2·2i

πC·S ] of a positive integer i ≤ [l].409

5. H(t) ≤ s0 · ( 1
1.2πCR·(|t|− 1

2 ) )C logR ·
( 1
Cπ·(|t|− 1

2 )
)CS for t ≥ 1

2 + 1.2
Cπ .410

Proof. We bound the integration of different intervals of g(t) as follows:411

1.
∫ 1.2
πCR
−1.2
πCR

g(x)dx =
∫ 1.2
πCR·

√
C logR

−1.2
πCR·

√
C logR

g(x)dx+2
∫ 1.2
πCR

1.2
πCR·

√
C logR

e−Θ(|CR·x|2 logR)dx = Θ( 1
πCR·
√
C logR

).412

2.
∫ 1.2
πC·S
1.2
πCR

g(x)dx ≤
∫ 1.2
πC·S
1.2
πCR

( 1
π·CR·x )C logRdx ≤ 1.2

πC·S · 1.2
−C logR.413

3. For a positive integer i ≤ l = log2(S),414

∫ 1.2·2i
πC·S

1.2·2i−1
πC·S

g(x)dx ≤
∫ 1.2·2i

πC·S

1.2·2i−1
πC·S

( 1
π · CR · x

)C logR · 1.2−(2i+1−1)Cdx415

≤ 1.2 · 2i

πC · S
· ( S

1.2 · 2i−1R
)C logR · 1.2−(2i+1−1)C

416

≤ 1.2 · 2i

πC · S
·R−C/4 · 1.2−2iC .417

418

4. For |t| ≥ 1.2
Cπ ,419

∫ t+1

t

g(x)dx ≤
∫ t+1

t

( 1
πCR · x

)C logR ·
l∏

j=0
( 1
π2−j · C · S · x )2j ·Cdx420

≤ ( 1
πCR · t

)C logR · ( 1
πC · t

)2l·C
421

≤ ( 1
πCR · t

)C logR · ( 1
πC · t

)CS .422
423
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Next we prove all claims in this lemma.424

1. For s0, notice that∫ 1/2

−1/2
g(x)dx ≤

∫ 1.2
πCR

−1.2
πCR

g(x)dx+
∫
|x|∈( 1.2

πCR ,1/2]
g(x)dx = Θ( 1

πCR ·
√
C log k

)+O( 1.2
πC · S

·1.2−C logR),

which also indicates s0 ∈ [1, 1 + 10−3] · 1/
(∫ 1.2

πCR
−1.2
πCR

g(x)dx
)
.425

2. When |t| < 1
2 −

1.2
πCR , H(t) = s0 ·

(∫ 1.2
πCR
−1.2
πCR

g(x)dx+
∫

[t−1/2,t+1/2]\[−1.2
πCR ,

1.2
πCR ] g(x)dx

)
, which426

is in s0 · [1, 1 + 10−3] ·
∫ 1.2
πCR
−1.2
πCR

g(x)dx ⊆ [1− 0.01, 1 + 0.01].427

3. When |t| ∈ [ 1
2 −

1.2
πCR ,

1
2 + 1.2

πCR ], H(t) ∈ [0, 1].428

4. When |t| ∈ [ 1
2 + 1.2

πCR ,
1
2 + 1.2

πC·S ],

H(t) ≤ s0·

∫ 1.2
πC·S

1.2
πCR

g(x)dx+
l∑

j=1

∫ 1.2·2j
πC·S

1.2·2j−1
πC·S

g(x)dx+
∫ 1.2

π +1

1.2
π

g(x)dx

 ≤ 2s0·
∫ 1.2

πC·S

1.2
πCR

g(x)dx.

5. When |t| ∈ [ 1
2 + 1.2·2i−1

πC·S , 1
2 + 1.2·2i

πC·S ] of a positive integer i < l,

H(t) ≤ s0 ·

 l∑
j=i

∫ 1.2·2j
πC·S

1.2·2j−1
πC·S

g(x)dx+
∫ 1.2

π +1

1.2
π

g(x)dx

 ≤ 2s0 ·
1.2
Cπ
·R−C/4 · 1.2−2iC .

6. When t > 1
2 + 1.2

Cπ , we use the bound in the last item of the above discussion.429

J430

A.2 Proof of Theorem 9431

We finish the proof of Theorem 9 using Lemma 21 for α = 1
2 + 1.2

πCR . Without loss of432

generality, we assume R ≥ S in this proof (otherwise set R = S).433

We first show ∫ 1

−1
|g(x) ·H

(
αx
)
|2dx ≥ 0.9

∫ 1

−1
|g(x)|2dx.

From the second property of H in Lemma 21, H
(
αx
)
≥ 1 − 0.01 for any |x| ≤

1
2−

1.2
πCR

α =
1− 2.4

πCR+2.4 such that

∫ 1− 2.4
πCR/2+1.2

−1+ 2.4
πCR/2+1.2

|g(x) ·H(αx)|2dx ≥ 0.992
∫ 1− 2.4

πCR/2+1.2

−1+ 2.4
πCR/2+1.2

|g(x)|2dx.

At the same time, |g(t)|2 ≤ R · E
x∼[−1,1]

[|g(x)|2] = R/2 ·
∫ 1
−1 |g(x)|2dx for any t ∈ [−1, 1].

This indicates ∫ 1− 2.4
πCR+2.4

−1+ 2.4
πCR+2.4

|g(x)|2dx ≥ (1− R/2 · 2.4
πCR+ 2.4)

∫ 1

−1
|g(x)|2dx.

The first property follows from these two inequalities.434

In the rest of this proof, we apply Lemma 21 to prove:∫ −1

−∞
|g(x) ·H

(
αx
)
|2dx+

∫ ∞
1
|g(x) ·H

(
αx
)
|2dx ≤ 0.04

∫ 1

−1
|g(x)|2dx.
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We split
∫∞

1 |g(x) ·H
(
αx
)
|2dx into several intervals:∫ ( 1

2 + 1.2
πC·S )/α

1
|g(x)·H

(
αx
)
|2dx+

log2 S∑
i=1

∫ ( 1
2 + 1.2·2i

πC·S )/α

( 1
2 + 1.2·2i−1

πC·S )/α
|g(x)·H

(
αx
)
|2dx+

∫ ∞
( 1

2 + 1.2
πC )/α

|g(x)·H
(
αx
)
|2dx.

In the first two terms, we rewrite |g(t)| ≤ poly(R) · ‖g‖2 · tS as poly(R) · ‖g‖2 · e(t−1)S . By
the third and fourth properties of H(t) in Lemma 21, their summations is less than 0.01‖g‖22.
For the last term, given the last property of H(t) in Lemma 21 and a large constant C, we
have

H(αt) ≤ s0 · (
1

1.2R )C logR · ( 1
2t )

S when t ≥ (1
2 + 1.2

πC
)/α.

It is straightforward to verify that
∫∞

1 |g(x) ·H
(
αx
)
|2dx ≤ 0.02 · ‖g‖22.435

B Omitted Proofs in Section 6436

We first prove Theorem 5 then finish the proof of Theorem 3 and 4 in Appendix B.2 and B.3437

separately.438

B.1 Proof of Theorem 5439

We finish the proof of Theorem 5 in this section. The only difference compared to Theorem 2440

is to use a biased distribution D such that we could improve the sample complexity to441

Õ(k log F
∆′ε ).442

How to Generate Samples. We will use a distribution D not uniform on [−1, 1] to generate
the random samples. For m samples x1, · · · , xm ∼ D, we assign a weight wi = 1

2m·D(xi) for
each sample xi such that for any function h,

E
x1,··· ,xm∼D

[ m∑
i=1

wi|h(xi)|2
]

=
m∑
i=1

E
xi∼D

[
1

2m ·D(xi)
|h(xi)|2

]
=

m∑
i=1

E
x∼[−1,1]

[
1
m
|h(xi)|2

]
= ‖h‖22.

[5] presented an explicit distributionD such that Õ(k) samples could guarantee
∑m
i=1 wi|g(xi)|2443

is close to ‖g‖22 with high probability. For completenss, we show it with our improved bound444

R.445

I Lemma 22. Given the sparsity k, there exist a constant c such that a distribution446

DF (x) =
{

c
(1−|x|) log k , for |x| ≤ 1− 1

k2 log2 k

c · k2 log k, for |x| > 1− 1
k2 log2 k

447

448

guarantees for any k-Fourier-sparse signal g, sup
x∈[−1,1]

1
2D(x) ·

|g(x)|2
‖g‖2

2
= O(k log2 k).449

Moreover, m = O(k log2 k log 1
δ

ε2 ) samples x1, · · · , xm from D with weights wi = 1
2m·D(xi)

for i ∈ [m] guarantee that, with probability at least 1− δ,
m∑
i=1

wi · |g(xi)|2 ∈ [1± ε] · ‖g‖22.

Proof. Given D and the k-Fourier-sparse signal g, let z(x) denote |g(x)|2
2D(x) for x ∈ [−1, 1].450

We have Ex∼D[z(x)] = ‖g‖22 and sup
x∈supp(D)

z(x)
Ex∼D[z(x)] = O(k log2 k). We apply the Chernoff451

bound Lemma 7 on the random variables z(x1), · · · , z(xm) to obtain the statement. J452
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Similar to Lemma 11, we state the following version for Fourier-sparse signals.453

I Lemma 23. Given the sparsity k, f0 and ∆, let g be a k-Fourier-sparse signal g(t) =454 ∑
i∈[k] vi · e2πifit with fi ⊆ [f0 −∆, f0 + ∆] and ∆′ = ∆ +O(R log k+k2 log2 k

T ).455

Let y(t) = g(t) + η(t) be the observable signal on [−1, 1] where the noise ‖η‖22 ≤ ε‖g‖22 for456

a sufficiently small constant ε. There exist a constant γ and an algorithm such that for any457

β ≤ γ
∆′ , it takes O(k log2 k) samples to output α satisfying |yH(α)e2πif0β − yH(α + β)| ≤458

0.3|yH(α)| with probability at least 0.6.459

We show our algorithm in Algorithm 2. We finish the proof of Theorem 5.460

Algorithm 2 Obtain one good α
1: procedure ObtainOneGoodSample(k, y(t))
2: Let m = C · k log2 k for a large constant C.
3: Take m samples x1, · · · , xm from the distribution D in Lemma 22.
4: Assign a weight wi = 1

2m·D(xi) for each sample xi.
5: Set a distribution Dm proportional to wi · |yH(xi)|2, i.e., Dm(xi) = wi·|yH(xi)|2∑m

j=1
wj ·|yH(xj)|2

.

6: Output α ∼ Dm.
7: end procedure

Proof of Theorem 16. From Lemma 23, y(α+β)
y(α) gives a good estimation of e2πif0β with461

probability 0.6 for any β ≤ γ
∆′ . We use the frequency search algorithm of Lemma 7.3 in [4]462

with the sampling procedure in Lemma 23. Because the algorithm in [4] uses the sampling463

procedure O(log F
∆′·δ ) times to return a frequency f̃ satisfying |f̃ − f0| ≤ ∆′ with prob. at464

least 1− δ, the sample complexity is O(k log2 k · log F
∆′·δ ). J465

B.2 Proof of Theorem 3466

We bound R of k-sparse-Fourier signals in this section. We first state the technical result to467

prove the upper bound R.468

I Theorem 24. Given any k > 0, there exists d = O(k2 log k) such that for any g(x) =∑k
j=1 vj · e2πifj ·x, any t ∈ R, and any θ > 0,

|g(t)|2 ≤ O(k) · (
d∑
j=1
|g(t+ j · θ|2)

Proof of Theorem 24. Given k frequencies f1, · · · , fk and θ, we set z1 = e2πif1·θ, · · · , zk =469

e2πifk·θ. Let C(0), · · · , C(d) be the coefficients of the degree d polynomial P (z) in Theorem 17.470

We have471

d∑
j=0

C(j) · g(t+ j · θ) =
d∑
j=0

C(j)
∑
j′∈[k]

vj′ · e2πifj′ (t+jθ)472

=
d∑
j=0

C(j)
∑
j′∈[k]

vj′ · e2πifj′ t · zjj′ =
∑
j′∈[k]

vj′ · e2πifj′ t
d∑
j=0

C(j) · zjj′ = 0.473

474
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Hence for every i ∈ [k],475

−C(0) · g(t) =
d∑
j=1

C(j) · g(t+ j · θ). (3)476

By Cauchy-Schwartz inequality, we have477

|C(0)|2 · |g(t)|2 ≤

 d∑
j=1
|C(j)|2

 ·
 d∑
j=1
|g(t+ j · θ)|2

 . (4)478

From the second property of C(0), · · · , C(d) in Theorem 17, |g(t)|2 ≤ O(k) · (
∑d
j=1 |g(t+ j ·479

θ|2). J480

We finish the proof of Theorem 3 bounding R by the above relation. For convenience, we481

restate it for T = 1.482

I Theorem 25. For any g(t) =
∑k
j=1 vje

2πifjt,483

sup
x∈[−1,1]

|g(x)|2

E
x∈[−1,1]

[|g(x)|2] = O(k3 log2 k).484

Proof. Given any f ∈ F , we prove that485

|g(t)|2 = O(k3 log2 k)
∫ 1

t

|g(x)|2dx for any t ≤ 0,486

which indicates |g(t)|2 = O(k3 log2 k) · E
x∼[−1,1]

[
|g(x)|2

]
. By symmetry, it also implies that487

|g(t)|2 = O(k3 log2 k) · E
x∼[−1,1]

[
|g(x)|2

]
for any t ≥ 0.488

We use Theorem 24 on g(t):489

1− t
d
· |g(t)|2 ≤ O(k) ·

∫ 1−t
d

θ=0

∑
j∈[d]

|g(t+ jθ)|2dθ490

. k
∑
j∈[d]

∫ 1−t
d

θ=0
|g(t+ jθ)|2dθ491

. k
∑
j∈[d]

1
j
·
∫ (1−t)j

d

θ′=0
|g(t+ θ′)|2dθ′492

. k
∑
j∈[d]

1
j
·
∫ 1

x=−1
|g(x)|2dx493

. k log k ·
∫ 1

x=−1
|g(x)|2dx.494

495

From all discussion above, we have |g(t)|2 . dk log k · E
x∈[−1,1]

[|g(x)|2]. J496

B.3 Growth outside of the observation497

We prove Theorem 4 which bounds S = Õ(k2) in this section. We divide the proof into two498

parts for |x| ≤ 1 + 1/k and |x| > 1 + 1/k separately after fixing T = 1.499
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I Lemma 26. For any g(t) =
∑k
j=1 vj · e2πifjt, there exists a constant C1 such that for any500

x ≥ 1, |g(x)| . poly(k) · ‖g‖2 · C(x−1)·k2 log k
1 .501

I Remark 27. The growth of Chebyshev polynomial at x > 1 is ek
√
x−1.502

Proof. Let d = O(k2 log k) denote the length of the linear combination in Corollary 18503

and θ = 2
d . Given g(t) and θ, we use α1, · · · , αd to denote the coefficients of the linear504

combination of g(t) and θ in Corollary 18. For convenience, we use C0 to denote the upper505

bound on the coefficients αj .506

We use induction to prove that for some C = O(1), for any l,507

for any x ∈ (1, 1 + 2l
d

], |g(x)| ≤ C · dk1.5 log k · ‖g‖2 · (2C0)l. (5)508

For base case l = 1, from Corollary 18, g(x) =
∑d
j=1 αj · g(x− jθ) where x− jθ ∈ [−1, 1].

Because each
∣∣g(x− jθ)

∣∣ ≤ C · k1.5 log k · ‖g‖2 from Theorem 3, we have

∣∣g(x)
∣∣ ≤ d∑

j=1
|αj | ·

∣∣g(x− jθ)
∣∣ ≤ C · C0 · d · k1.5 log k · ‖g‖2.

Suppose (5) is true for any x ∈ (1, 1 + 2l
d ]. Let us consider x ∈ (1 + 2l

d , 1 + 2(l+1)
d ]. We still509

have g(x) =
∑d
j=1 αj · g(x− jθ) where each x− jθ ∈ (1 + 2(l−j)

d , 1 + 2(l+1−j)
d ]. This indicates510

∣∣g(x)
∣∣ ≤ d∑

j=1
|αj | ·

∣∣g(x− jθ)
∣∣511

≤ C0

d∑
j=1

∣∣g(x− jθ)
∣∣512

≤ C0

l∑
j=1

∣∣g(x− jθ)
∣∣+ C0

d∑
j=l+1

∣∣g(x− jθ)
∣∣513

≤ C0

l∑
j=1

C · dk1.5 log k · ‖g‖2 · (2C0)l+1−j + C0(d− j) · C · k1.5 log k · ‖g‖2.514

≤ Cl+1
0 · C · dk1.5 log k · ‖g‖2 ·

l∑
j=1

2l+1−j + C0d · C · k1.5 log2 k · ‖g‖2.515

≤ Cl+1
0 · C · dk1.5 log k · ‖g‖2(2l+1 − 2) + C0d · C · k1.5 log k · ‖g‖2 ≤ Cl+1

0 · C · dk1.5 log k · ‖g‖2 · 2l+1.516517

J518

For completeness, we bound the growth rate of |t| > 1+1/k here, which is a reformulation519

of Lemma 5.5 in [4].520

I Lemma 28. For any g(t) =
∑k
j=1 vje

2πifjt and any |t| > 1,521

|g(t)|2 . k3 · (3k · t)k · ‖g‖22.522

Proof. We fix t > 1 in this proof. Let θ = 1/k and n =
[
(t + 1/2)/θ

]
such that t − nθ ∈523

[−1/2,−1/2 +θ] and t− (n−k)θ ∈ [1/2, 1/2 +θ]. We first show the coefficients C0, · · · , Ck−1524

in525

k−1∑
j=0

Cj · zj = zn mod
k∏
j=1

(z − e2πifjθ)526
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satisfying g(t) =
∑k−1
l=0 Cj · f

(
t − (n − l)θ

)
. Let zj = e2πifjθ such that znj =

∑k−1
j=0 Cj · zj .527

For g(t) =
∑k
j=1 vje

2πifjt, we rewrite it as528

k∑
j=1

vje
2πifj(t−nθ) · e2πifjnθ =

k∑
j=1

vje
2πifj(t−nθ) · znj529

=
k∑
j=1

vje
2πifj(t−nθ) ·

k−1∑
l=0

Cl · zlj530

=
k−1∑
l=0

Cl ·
k∑
j=1

vje
2πifj(t−nθ)zlj531

=
k−1∑
l=0

Cl · g(t− nθ + lθ).532

533

Thus |g(t)|2 ≤ (
∑k−1
j=0 |Cj |2) · (

∑k−1
l=0 |g(t− nθ + lθ)|2).534

Since g(t− nθ + lθ) ∈ [−2/3, 2/3], |g(t− nθ + lθ)|2 . k E
x∈[−1,1]

[|g(x)|2] [5]. On the other535

hand, |Cj | ≤
(
k−1
j

)(
n
k−1
)
≤ (2n)k−1 from Lemma 19.536

From all discussion above,537

|g(t)|2 . k · (2n)k−1 · k2 E
x∈[−1,1]

[|g(x)|2] . k3(3kt)k · E
x∈[−1,1]

[|g(x)|2].538

J539

Proof of Theorem 4. We combine Lemma 26 and 28: For x ≤ 1 + 1/k, C(x−1)k2 log k
1 =540

e(x−1)k2 log k logC1 = xO(k2 log k). For x > 1 + 1/k, (3kx)k is still less than xO(k2 log k). J541
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