
Compressed Sensing with Adversarial Sparse Noise via L1

Regression

Sushrut Karmalkar
sushrutk@cs.utexas.edu

UT Austin

Eric Price
ecprice@cs.utexas.edu

UT Austin

January 6, 2019

Abstract

We present a simple and effective algorithm for the problem of sparse robust linear regression.
In this problem, one would like to estimate a sparse vector w∗ ∈ Rn from linear measurements
corrupted by sparse noise that can arbitrarily change an adversarially chosen η fraction of
measured responses y, as well as introduce bounded norm noise to the responses.

For Gaussian measurements, we show that a simple algorithm based on L1 regression can
successfully estimate w∗ for any η < η0 ≈ 0.239, and that this threshold is tight for the algorithm.
The number of measurements required by the algorithm is O(k log n

k ) for k-sparse estimation,
which is within constant factors of the number needed without any sparse noise.

Of the three properties we show—the ability to estimate sparse, as well as dense, w∗; the
tolerance of a large constant fraction of outliers; and tolerance of adversarial rather than distri-
butional (e.g., Gaussian) dense noise—to the best of our knowledge, no previous result achieved
more than two.

1 Introduction

Linear regression is the problem of estimating a signal vector from noisy linear measurements. It
is a classic problem with applications in almost every field of science. In recent decades, it has
also become popular to impose a sparsity constraint on the signal vector. This is known as “sparse
recovery” or “compressed sensing”, and (when the assumption holds) can lead to significant savings
in the number of measurements required for accurate estimation.

A well-known problem with the most standard approaches to linear regression and compressed
sensing is that they are not robust to outliers in the data. If even a single data point (xi, yi)
is perturbed arbitrarily, the estimates given by the algorithms can also be perturbed arbitrarily
far. Addressing this for linear regression is one of the primary focuses of the field of robust statis-
tics [Hub11]. Unfortunately, while the problem is clear, the solution is not—no fully satisfactory
robust algorithms exist, particularly for high-dimensional data.

In this paper, we consider the model of robustness in which only the responses yi, not the
features xi, are corrupted by outliers. In this model, if the features xi are i.i.d. normal, we show
that the classic algorithm of L1 minimization performs well and has fairly high robustness, for both
dense and sparse linear regression. In particular, we consider the observation model

y = Xw∗ + ζ + d (1)
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where X ∈ Rm×n is the observation matrix, w∗ ∈ Rn is the k-sparse signal, ζ ∈ Rm is an ηm-sparse
noise vector, and d ∈ Rm is a (possibly dense) noise vector. We will focus on the case of X having
i.i.d. N(0, 1) entries, but the core lemmas and techniques can apply somewhat more generally.

Without adversarial corruptions—i.e. if η = 0 so ζ = 0—this would be the compressed sensing
problem. The most standard solution for compressed sensing [CRT06] is L1 minimization: if
m > Θ(k log n

k ) then with high probability

ŵ := arg min
‖y−Xw‖2≤σ

‖w‖1

for any σ > ‖d‖2 will satisfy ‖ŵ − w∗‖2 ≤ O(σ/
√
m). Unfortunately, this algorithm is not robust

to sparse noise of large magnitude: a single faulty measurement yi can make the (‖y −Xw‖2 ≤ σ)
ball infeasible.

To make the algorithm robust to sparse measurement noise, a natural approach is to replace the
(non-robust) `2 norm with the (robust) `1 norm, as well as to swap the objective and the constraint.
This ensures that the constrained parameter does not involve outliers. In this paper we show that
this approach works, i.e., we show that

ŵ := arg min
‖w‖1≤λ

‖y −Xw‖1 (2)

is a robust estimator for w∗. In the following theorem, we show that (2) is robust to any fraction
of corruptions η less than η0 := 2

(
1− Φ(

√
2 log 2)

)
≈ 0.239, where Φ : R → [0, 1] is the standard

normal CDF. If λ = ‖w∗‖1, the reconstruction error is O(‖d‖1/m); for larger λ, it additionally
grows with λ− ‖w∗‖1:

Theorem 1.1 (Sparse Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d. N(0, 1)

entries with m > C α2

ε2
k log( en

α2εk
) for some large enough constant C and parameter α ≥ 2

ε . Then

with probability 1−e−Ω(ε2m) the matrix X will have the following property: for any y = Xw∗+d+ζ
with ‖w∗‖0 ≤ k and ‖ζ‖0 ≤ ηm,

ŵ := arg min
‖w‖1≤λ

‖y −Xw‖1

for λ ≥ ‖w∗‖1 satisfies

‖w∗ − ŵ‖2 ≤ O

(
1

ε− 1
α

(
1

m
‖d‖1

)
+
λ− ‖w∗‖1
α
√
k

)
.

In the case where w∗ is not sparse, the reconstruction error is shown to be O(‖d‖1/m) in O(n)
samples using essentially the same proof.

Theorem 1.2 (Dense Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d. N(0, 1)
entries with m > C n

ε2
for some large enough constant C. Then with probability 1 − e−Ω(ε2m) the

matrix X will have the following property: for any y = Xw∗ + d+ ζ with ‖ζ‖0 ≤ ηm,

ŵ := arg min
w

‖y −Xw‖1

satisfies

‖ŵ − w∗‖2 ≤ O
(
‖d‖1
εm

)
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Robustness threshold η0. We show in Section 6 that the threshold η0 in Theorem 1.1 is tight
for the algorithm: for any η > η0, there exist problem instances where the algorithm given by (2)
is not robust. It remains an open question whether any polynomial time algorithm can be robust
for all η < 0.5.

1.1 Proof outline

Our main result follows from a simple analysis of the fact that for well-behaved matrices X, `1
regression recovers from adversarial corruptions. In this section we consider the illustrative case
where there is no dense noise, in the limit of infinitely many samples. Let (Xg, yg) and (Xb, yb) de-
note the submatrices of (X, y) corresponding to the uncorrupted and corrupted samples respectively
and let ŵ denote the solution of `1 regression. By definition ŵ satisfies

‖Xŵ − y‖1 ≤ ‖Xw∗ − y‖1.

Partitioning these 1-norms into terms corresponding to good and bad samples, we get

0 ≥ ‖Xŵ − y‖1 − ‖Xw∗ − y‖1
= (‖Xgŵ − yg‖1 − ‖Xgw

∗ − yg‖1) + (‖Xbŵ − yb‖1 − ‖Xbw
∗ − yb‖1)

Observe that since we have no dense noise, Xgw
∗ = yg. An application of the triangle inequality

then results in

0 ≥ ‖Xg(ŵ − w∗)‖1 + (‖Xbŵ − yb‖1 − ‖Xbw
∗ − yb‖1)

≥ ‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1
i.e.

0 ≥ ‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1 (3)

We now show that as long as η < η0 − ε for constant ε > 0, the right hand side above is ≥
C(ε)‖ŵ − w∗‖2 for some C(ε) > 0 whenever X is a Gaussian matrix. This will force ŵ = w∗.

Equation (3) is minimized when the adversary corrupts the entries with the largest value for
|〈xi, w∗−ŵ〉|. For any vector v, observe that in the limit of infinitely many samples, the histogram of

the entries of Xv is the same as that of N(0, ‖v‖22). Let t be chosen such that 1√
2π

∫∞
t e−

x2

2 dx = η
2 .

This makes (3) proportional to

‖w∗ − ŵ‖2
(∫ t

0
xe−

x2

2 dx−
∫ ∞
t

xe−
x2

2 dx

)
. (4)

At η = η0 the `1 norms of the largest η and 1 − η fraction of samples drawn from a Gaussian
distribution are equal, and hence (4) is 0. If η < η0− ε for constant ε, this difference is proportional
to the standard deviation, i.e. ‖ŵ − w∗‖2. Our proof proceeds by showing that a minor variant of
this argument works even in the presence of dense noise, and in O(k log n

k ) samples the empirical
`1 norms involved in the proof are close to the `1 norms of the Gaussian distribution.

1.2 Related Work

Classical robust statistics. The classical robust statistics literature on regression (see [Hub11])
has developed a number of estimators with breakdown point 0.5 (i.e., that are robust for any
η < 0.5). However, all such known estimators need time exponential in the data dimension n;
the results also typically do not deal with sparsity in w∗ and have distributional assumptions on
the dense noise d. On the other hand, the results in this literature usually also protect against
corruption in Xi, not just yi; the L1 estimator is not robust to such corruptions.
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Recent progress in robust statistics. There has been a lot of progress in the last year in the
field of robust statistics, leading to polynomial time algorithms with positive breakdown points
that are robust to corruptions in both X and y [DKS18, DKK+18, LSLC18, KKM18]. However,
these results all focus on the performance for small η (often required to be less than a non-explicit
constant), do not consider sparse w∗, and have additional restrictions on the dense noise (typically
that it be i.i.d. Gaussian, although [KKM18] is somewhat more general). In Section 7 we empirically
compare L1 regression to the algorithm of [DKS18] for the dimension 1 case, and find that the
algorithm seems to have the same breakdown point η0 as L1 minimization under corruptions to y.

L1 minimization in statistics. Known as L1 minimization or Least Absolute Deviation, the
idea of minimizing ‖y − Xw‖1 actually predates minimizing ‖y − Xw‖2, originating in the 18th
century with Boscovich and Laplace [BS80]. It is widely known to be more robust to outliers in the
yi. However the extent to which this holds depends on the distribution of X. Surprisingly, we have
not been able to find a rigorous analysis of L1 minimization for Gaussian X that simultaneously
achieves these three features of our analysis: (1) an estimate of the breakdown point η0 under
corruptions to the yi; (2) an extension of the algorithm to sparse w∗; or (3) a tolerance for adversarial
d, rather than with a distributional assumption.

L1 minimization is typically dismissed in the statistics literature as being “inefficient” in the
sense that, if the noise d is i.i.d. Gaussian, L1 minimization requires about 56% more samples
than least squares [YY17] to achieve the same accuracy. However from the typical perspective of
theoretical computer science, in which constant factors are less important than the avoidance of
distributional assumptions, we find that L1 minimization is a very competitive algorithm.

L1 minimization in compressed sensing. Our error bound of ‖d‖1/m is always better than
the traditional ‖d‖2/

√
m bound for compressed sensing. The two bounds match up to constant

factors if the noise has a consistent magnitude, but our bound is significantly better if the noise
is heavy tailed. The fact that our bound can drop the top η fraction of noise elements makes the
distinction even more pronounced.

Robust regression in the presence of label corruptions. The past few years have featured a
number of polynomial time algorithms for the problem considered in this paper, of sparse regression
in the presence of sparse corruptions to the labels. As is typical in compressed sensing, there are
approaches based on convex programming and on iterative methods.

One natural algorithm for the problem is to try to learn both the (sparse) signal and (sparse)
noise, treating this as a single compressed sensing problem with the bigger “measurement matrix”
of X atop a (scaled) identity matrix. With scaling 1/λ, the standard L1 minimization approach
to compressed sensing is equivalent to the following algorithm: minimize ‖w‖1 + λ‖ζ‖1 subject to
‖Xw+ζ−y‖2 ≤ ε. If the adjoined measurement matrix satisfies an RIP-like property, then w (and
ζ) will both be recovered.

Such an approach was first introduced in [LDB09] with λ = 1, giving an algorithm that could
tolerate up to about η ≈ 1/(log n) fraction sparse corruptions. This was then improved by [Li13]
by setting λ = 1√

log(en/m)
, improving the breakdown point η to an unspecified constant; naively

following the proof would give a value below 1%. We suspect that this approach – which recovers
ζ as well as w – does not have a breakdown point close to η0.

The second class of algorithms for the problem are based off iterative hard thresholding, where
in each iteration one ignores the samples that make a large error with the `2 minimizer. In [BJK15]
it was shown that without any dense noise, this yields exact recovery with a breakdown point
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of η < 0.015. [BJKK17] provided an algorithm that can handle dense Gaussian noise, but the
perturbations are required to be oblivious to the matrix X and the breakdown point is 0.0001.

Another line of work, including [NTN11, FM14, NT13], considers non-adversarial corruption.
For example, if the corruptions are in random locations, and the signs of the signal vector are
random, then one can tolerate corruption of nearly 100% of the yi [NT13]. Finally, [WLJ07]
considers the (essentially equivalent) LASSO version of our proposed algorithm (2), and shows that
it is robust to i.i.d. heavy-tailed median-zero noise.

Thus, for sparse regression with both adversarial corruption of the labels and dense noise, no
previous polynomial-time algorithm had a breakdown point above 0.015. We improve that to 0.239
with a simple algorithm.

LP Decoding and Privacy Very closely related to our work is that of [DMT07], which gets
very similar results to our dense-case results (Theorem 1.2) in the service of a privacy application.
This work observes the same threshold η0 as we do for the same L1-regression algorithm, but with
a somewhat weaker error guarantee (requiring a bound on ‖d‖∞ not ‖d‖1). [DMT07] also proves
that if X is i.i.d. ±1 rather than Gaussian, the breakdown point would be positive but strictly
below η0. The subsequent work [WXT10] also observes that `p regression for p < 1 would yield
greater breakdown points than η0 for Gaussian X, similar to our Section 5.

2 Definitions and notation

We start by defining a notion of robustness that we will use later. A matrix X is said to be (η, q)-
robust if for any submatrix consisting of an η fraction of the rows, the `q norm of the submatrix
times a unit vector is upper bounded by a constant times m1/q. Also, for any submatrix consisting
of a 1− η fraction of the rows, the `q norm of the submatrix times a unit vector is lower bounded
by a constant times m1/q.

Definition 2.1. A matrix X ∈ Rm×n is said to be (η, q)-robust with respect to U ⊂ Rn if there
exist constants Smax

U,η and Smin
U,η satisfying the following conditions for all v ∈ U .

max
S⊂[m]
|S|≤ηm

‖(Xv)S‖qq ≤ m · Smax
U,η · ‖v‖2

min
S⊂[m]

|S|≥(1−η)m

‖(Xv)S‖qq ≥ m · Smin
U,η · ‖v‖2.

We now define some notation. S∗k,∗ and S∗η will be used to refer to the robustness constants
with respect to k-sparse vectors and Rn respectively. vT will denote the vector v with all entries
whose indices are outside T set to 0.

We use Φ to denote the CDF of N(0, 1). B(γ) and G(γ) will be used to refer to the `1 norm
of the largest (in absolute value) γ fraction and the smallest 1 − γ fraction with respect to the
Gaussian distribution respectively, i.e.

B(γ) =
2√
2π

∫ ∞
Φ−1(1− γ

2
)
ze−

z2

2 dz =

√
2

π

(
e−(erf−1(1−γ))2

)
and

G(γ) =
2√
2π

∫ Φ−1(1− γ
2

)

0
ze−

z2

2 dz =

√
2

π

(
1− e−(erf−1(1−γ))2

)
.
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Define η0 to be the largest η such that G(η) ≥ B(η). Using the expressions above, one can solve
for η to get η0 = 2(1− Φ(

√
2 log 2)) ≈ 0.239.

Also, we will use f(x) . g(x) to mean there are constants X and C such that ∀x > X.|f(x)| ≤
C|g(x)|.

3 Robustness of Gaussian matrices

In the following lemma, we show that Gaussian matrices are (η, 1)-robust with constants in terms
of B(·), G(·) defined earlier.

Lemma 3.1. Let X be an m × n Gaussian matrix, where m ≥ C
ε2
·
(
k log en

kε + log 1
δ

)
for a large

enough constant C and ε < 1. Then with probability 1− δ, X is (η, 1) robust with constants

Smin
k,η = G(η − ε)− ε

Smax
k,η = B(η + ε) + ε.

Proof. Rearranging terms in the definition we see that we would like to show

1

m
max
S⊂[m]
|S|≤ηm

∥∥∥∥(X · v

‖v‖

)
S

∥∥∥∥
1

≤ B(η + ε) + ε

1

m
min
S⊂[m]

|S|≥(1−η)m

∥∥∥∥(X · v

‖v‖

)
S

∥∥∥∥
1

≥ G(η − ε)− ε.

Without loss of generality it is sufficient to prove the above for all (k-sparse) unit vectors. Let xi
denote the ith row of X and let Sv = {〈xi, v〉 | i ∈ m}. Note that Sv look like samples from N(0, 1)
for any fixed unit vector v. Before we continue, we define some notation. Let Ĝv(η) denote the
smallest possible `1 norm of a subset of Sv of size (1 − η)m and let B̂v(η) be defined similarly to
denote the largest possible `1 norm of any subset of size ηm. What we want to prove is

B̂v(η) < B(η + ε) + ε

and
Ĝv(η) > G(η − ε)− ε

for all k-sparse unit vectors v. To do this, we will first prove that the relationship holds with high
probability for all k-sparse unit vectors in a fine enough net on the sphere, and then say that the
deviation cannot be very large for points outside the net.

We will need the following fact proven in Appendix A. Here Ĝ(η) refers to the `1 norm of the
smallest (1 − η) fraction of S with respect to the uniform distribution and B̂(η) refers to the `1
norm of the largest η fraction of S with respect to the uniform distribution.

Fact 3.2. Let S = {z1, . . . , zm} be i.i.d. samples from N(0, 1).Then with probability 1−O
(
e
mε2

2

)
,

Ĝ(η) > G(η − ε)− ε

and
B̂(η) < B(η + ε) + ε
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For now, let v be a fixed vector and let τ > 0 be a parameter. Define the following bad events

Gv =
{
Ĝv(η) < G(η − ε)− ε

}
Bv =

{
B̂v(1− η) > B(1− η + ε) + ε

}
N =

{
∀i ∈ [m], ‖xi‖2 >

√
n+ τ

}
.

These events correspond to either the `1 norms of the smallest 1−η fraction or the largest η fraction
not being close enough to the expectation, or the 2-norm of the Gaussian vectors not being close
enough to the expectation. Applications of Fact 3.2 for η and 1 − η, and concentration for χ2

random variables then implies

Pr (Gv ∨ Bv) . e
mε2

2

and

Pr (N ) . me−
nτ2

8 .

For a unit `2 ball in a k-dimensional subspace of Rn, there exists a γ-net of size (1 + 2
γ )k < ( 3

γ )k.
Let C be the union of these nets over all subspaces corresponding to k-sparse vectors. A union
bound now gives us

Pr (∃v ∈ C : Gv ∨ Bv) .
(
n

k

)(
3

γ

)k (
e
mε2

2

)
We will now move from the net to the union of all k-sparse unit balls. Let u ∈ Rn be a k-sparse

unit vector. Then for any t, there exist v0, . . . , vt ∈ C having the same support as u and a unit
vector d also having the same support as u, such that

u =
t∑
i=0

γivi + γt+1d.

This follows from choosing v0 to be the closest point in the net to u, choosing v1 to be the closest
point in the net to (u− v0)/γ and so on.

Let U ⊂ [m] be the set of indices of X corresponding to the smallest (in absolute value) (1− η)
fraction of elements of Su. Conditioning on the bad events not happening (i.e. on the event
(∃v ∈ C.Gv ∨ Bv) ∨N ) we see

Ĝu(η) =
1

m

∑
i∈U

∣∣∣∣∣∣
〈
xi,

t∑
j=0

γjvj + γt+1d

〉∣∣∣∣∣∣
≥ 1

m

∑
i∈U
|〈xi, v0〉| −

1

m

∑
i∈U

∣∣∣∣∣∣
〈
xi,

t∑
j=1

γjvj + γt+1d

〉∣∣∣∣∣∣
≥ 1

m

∑
i∈U
|〈xi, v0〉| −

t∑
j=1

(
γj

m

∑
i∈U
|〈xi, vj〉|

)
− γt+1

m

∑
i∈U
|〈xi, d〉|

≥ Ĝv0(η)−
t∑

j=1

B̂vj (1− η)γj − γt+1

m

∑
i∈U
‖xi‖‖d‖

≥ (G(η − ε)− ε)− (B(1− η + ε) + ε)

t∑
j=1

γj − γt+1
√
n+ τ
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≥ G(η − ε)− ε− 2γ(B(1− η + ε) + ε)− γt+1
√
n+ τ

≥ G(η − ε)− ε− 4γ − γt+1
√
n+ τ

≥ G(η − ε)− 2ε

The first few inequalities are a consequence of the definitions of Gv and Bv and the third inequality
follows from an application of Cauchy-Schwartz. The second to last inequality follows by noting
that ε < 1 and B(1− η+ ε) < 1, and the final inequality follows by setting t > log n+τ

ε and γ = ε
10 .

This means

Pr
(

There exists a k-sparse unit v such that G(η − ε)− Ĝv(η) > 2ε
)

.

(
n

k

)(
30

ε

)k (
e−

mε2

2

)
+me−

nτ2

8

. ek log en
k

+k log( 30
ε )−mε

2

2 +me−
nτ2

8

Setting τ = 10mn log 1
δ and m & 1

ε2
·
(
k log en

kε + log 1
δ

)
makes the bound on the probability above

. δ. The result now follows by rescaling ε and δ appropriately.

The previous lemma showed that the Gaussian matrix is robust with respect to truly k-sparse
vectors. However, we will need to show that it is robust with respect to (w∗− ŵ), i.e. the difference
between the true vector and the solution of `1 regression. To do this, we will use a standard shelling
argument to transfer upper and lower bounds for the restricted eigenvalues over (1 + α2)k-sparse
vectors to the restricted eigenvalues over the cone VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1} for some S
satisfying |S| = k, which is the cone in which this difference lies. This is the content of the following
lemma from Appendix B.

Lemma 3.3 (Shelling Argument). Let A ∈ Rm×n satisfy

L‖v‖2 ≤ ‖Av‖1 ≤ U‖v‖2

for all (1 + α2)k-sparse vectors v. If S ⊂ [m] is fixed and of cardinality k, then A satisfies

L

1 + α

(
α− U

L

)
‖v‖2 −

2U∆

α
√
k
≤ ‖Av‖1 ≤ U

(
1 +

1

α

)
‖v‖2 +

U∆

α
√
k

for all
v ∈ VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1}.

We can now prove the main lemma which will be used to say that Gaussian matrices are robust
with respect to the vector w∗ − ŵ.

Lemma 3.4 (Main Lemma). Let η < η0, ε ∈ (0, 1), α > 1 and ∆ > 0 be free parameters, and let
S ⊂ [n] be a fixed subset of size k. Let X ∈ Rm×n be a matrix with entries drawn from N(0, 1) and
suppose m > C

ε2
·
(
kα2 log en

kα2ε
+ log 1

δ

)
for some large enough constant C. Then with probability

1− δ, for all
v ∈ VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1}

and for all T ⊂ [m] such that |T | ≤ ηm,

‖(Xv)T ‖1 − ‖(Xv)T ‖1 & m‖v‖2
(

(G(η − ε)−B(η + ε)− 2ε)− 1

α

)
− m∆

α
√
k
.
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Proof. The matrix X is both (η, 1) and (1 − η, 1) robust for all k(1 + α2)-sparse vectors. An
application of Lemma 3.3 for any submatrix A of X consisting of an η fraction of it’s rows gives us

‖Av‖1 ≤ mSmax
k(1+α2),η

(
1 +

1

α

)
‖v‖2 +

mSmax
k(1+α2),η∆

α
√
k

.

This proves

max
S⊂[m]
|S|≤ηm

‖(Xv)S‖1 ≤ mSmax
k(1+α2),η

(
1 +

1

α

)
‖v‖2 +

mSmax
k(1+α2),η∆

α
√
k

A similar application proves that for any matrix A consisting of a (1 − η) fraction of the rows of
X, we get

‖Av‖1 ≥
mSmin

k(1+α2),η

1 + α

(
α−

Smax
k(1+α2),1−η

Smin
k(1+α2),η

)
‖v‖2 −

2mSmax
k(1+α2),η∆

α
√
k

i.e.

min
S⊂[m]

|S|≥(1−η)m

‖(Xv)S‖1 ≥
mSmin

k(1+α2),η

1 + α

(
α−

Smax
k(1+α2),1−η

Smin
k(1+α2),η

)
‖v‖2 −

2mSmax
k(1+α2),η∆

α
√
k

To complete the proof, we now estimate the parameters involved. If η < η0 and ε < 1 and the
underlying matrix is an m× n Gaussian matrix where m ≥ C

ε2
·
(
kα2 log en

kα2ε
+ log 1

δ

)
, Lemma 3.1

yields
Smax
k(1+α2),1−η < B(1− η + ε) + ε < 1 + 1 = 2.

Similar applications of Lemma 3.1 give us that Smax
k(1+α2),η and

Smax
k(1+α2),1−η
Smin
k(1+α2),η

are also upper bounded

by constants. This results in the following bounds

max
S⊂[m]
|S|≤ηm

‖(Xv)S‖1 ≤ mSmax
k(1+α2),η‖v‖2

(
1 +

1

α

)
+

2m∆

α
√
k
,

min
S⊂[m]

|S|≥(1−η)m

‖(Xv)S‖1 ≥ mSmin
k(1+α2),η‖v‖2

(
α− C
α+ 1

)
− 4m∆

α
√
k
.

By taking the difference of the above inequalities and simplyfing, we get the following for any
T ⊂ [m] such that |T | ≤ ηm

‖(Xv)T ‖1 − ‖(Xv)T ‖1

≥ m‖v‖2
(
Smin
k(1+α2),η

(
α− C
α+ 1

)
− Smax

k(1+α2),η

(
1 +

1

α

))
− 6m∆

α
√
k

≥ m‖v‖2
(
Smin
k(1+α2),η − S

max
k(1+α2),η −

(
Smin
k(1+α2),η + Smax

k(1+α2),η

) C + 1

α

)
− 6m∆

α
√
k

≥ m‖v‖2
(

(G(η − ε)−B(η + ε)− 2ε)− 4(C + 1)

α

)
− 6m∆

α
√
k

≥ m‖v‖2
(

(G(η − ε)−B(η + ε)− 2ε)− 1

α

)
− m∆

α
√
k

9



4 Proof of main theorem

Theorem 1.1 (Sparse Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d. N(0, 1)

entries with m > C α2

ε2
k log( en

α2εk
) for some large enough constant C and parameter α ≥ 2

ε . Then

with probability 1−e−Ω(ε2m) the matrix X will have the following property: for any y = Xw∗+d+ζ
with ‖w∗‖0 ≤ k and ‖ζ‖0 ≤ ηm,

ŵ := arg min
‖w‖1≤λ

‖y −Xw‖1

for λ ≥ ‖w∗‖1 satisfies

‖w∗ − ŵ‖2 ≤ O

(
1

ε− 1
α

(
1

m
‖d‖1

)
+
λ− ‖w∗‖1
α
√
k

)
.

Proof. Let Xg and Xb denote X restricted to the rows that are not corrupted, and to the rows that
are corrupted respectively. Let yg and yb denote the corresponding y terms. By the definition of ŵ
and noting that w∗ is feasible for the program,

0 ≥ ‖Xŵ − y‖1 − ‖Xw∗ − y‖1
= (‖Xgŵ − yg‖1 − ‖Xgw

∗ − yg‖1) + (‖Xbŵ − yb‖1 − ‖Xbw
∗ − yb‖1)

≥ ‖Xg(ŵ − w∗)‖1 − 2‖Xgw
∗ − yg‖1 + (‖Xbŵ − yb‖1 − ‖Xbw

∗ − yb‖1)

≥ ‖Xg(ŵ − w∗)‖1 − 2‖Xgw
∗ − yg‖1 − ‖Xb(ŵ − w∗)‖1

Where the second equality follows from ‖Xv−y‖1 = ‖Xgv−yg‖1 +‖Xbv−yb‖1, and the inequalities
are just applications of the triangle inequality. Rearranging terms now gives us

2‖Xgw
∗ − yg‖1 ≥ ‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1 (5)

Let ŵ = w∗ + h and let S be the support of w∗. Then

λ ≥ ‖ŵ‖1
= ‖h+ w∗‖1
≥ ‖w∗‖1 + ‖hS‖1 − ‖hS‖1

=⇒ (λ− ‖w∗‖1) + ‖hS‖1 ≥ ‖hS‖1

Setting ∆ = (λ − ‖w∗‖1) and T to be the set of corrupted indices in Lemma 3.4 implies that if
m & 1

ε2
·
(
kα2 log en

kα2ε
+ log 1

δ

)
, then with probability 1− δ

‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1
= ‖(Xh)T ‖1 − ‖(Xh)T ‖1

& m‖h‖2
(
G
(
η − ε

2

)
−B

(
η +

ε

2

)
− ε− 1

α

)
− m(λ− ‖w∗‖1)

α
√
k

Combining this with (5), as long as the coefficient of ‖h‖2 is positive, we get

‖ŵ − w∗‖2 .
1(

G
(
η − ε

2

)
−B

(
η + ε

2

)
− ε− 1

α

) (‖d‖1
m

+
(λ− ‖w∗‖1)

α
√
k

)
(6)

It turns out (
G
(
η − ε

2

)
−B

(
η +

ε

2

)
− ε
)
& ε.

10



This follows by a simple lower bound via the Taylor expansion of 1 − 2e−(erf−1((1−η0)+x)) around
x = 0.

G
(
η − ε

2

)
−B

(
η +

ε

2

)
− ε ≥

√
2

π

(
1− 2e−(erf−1(1−η+ ε

2
))2
)
− ε

=

√
2

π

(
1− 2e−(erf−1(1−η0+(ε+ ε

2
)))2
)
− ε

≥ 3
√

2 log 2 · ε− ε
& ε

i.e.

G
(
η − ε

2

)
−B

(
η +

ε

2

)
− ε− 1

α
& ε− 1

α
(7)

Substituting our terms back into (6) gives us,

O

(
1

ε− 1
α

· ‖d‖1
m

+
λ− ‖w∗‖1
α
√
k

)
≥ ‖ŵ − w∗‖2.

We also note that in the case that w∗ is not sparse, one can directly use Lemma 3.1 once we
get to (5) and continue the proof from there. This results in the following theorem.

Theorem 1.2 (Dense Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d. N(0, 1)
entries with m > C n

ε2
for some large enough constant C. Then with probability 1 − e−Ω(ε2m) the

matrix X will have the following property: for any y = Xw∗ + d+ ζ with ‖ζ‖0 ≤ ηm,

ŵ := arg min
w

‖y −Xw‖1

satisfies

‖ŵ − w∗‖2 ≤ O
(
‖d‖1
εm

)
Note that if there is no dense noise (i.e. d = 0), the above theorem immediately gives exact

recovery when the fraction of corruptions is η < η0 − ε.

5 `p regression for 0 < p < 1

Define `p regression to be the problem of recovering a signal by minimizing the pth power of the `p
norm, i.e.

ŵ = arg min
v

m∑
i=1

|〈xi, v〉 − yi|p.

Observe that 0 < p < 1 implies (∑
i

ai

)p
≤
∑
i

api .

This allows a proof similar to that of Theorem 1.1 to go through. We make the following claim.

11



Figure 1: As the norm goes to 0, in the limit of having infinite samples, `p regression can tolerate
almost half the samples being corrupted.

Claim 5.1. Let X be an (η, p)-robust matrix where p ∈ (0, 1]. Then for any η < α the solution of
`p regression, ŵ satisfies

1

(Smin
η − Smax

η )
· ‖d‖p
m

& ‖ŵ − w∗‖p2,

where ‖d‖p =
∑m

i=1 |di|p and α is the threshold below which (Smin
α − Smax

α ) > 0 begins to hold.

If X is a Gaussian matrix, then as p→ 0, in the limit of a large number of samples, the value
of η at which the condition

(Smin
η − Smax

η ) > 0

begins to hold goes from η0 to 0.5. We plot the breakdown point against the norm in Figure 1.
Unfortunately, `p regression in general seems to be NP-hard as well as approximation resistant.

6 Lower bounds

In this section, we show that for the case of adversarial dense noise our results are tight for the `1
regression algorithm. Recall our notation: X is the matrix of xi, y = Xw∗+ζ+d where ‖ζ‖0 ≤ ηm
and d is the dense noise and vT denotes the vector v with all entries with indices outside T set to
0.

Theorem 6.1. Let m & n
ε2

and 0 < ε < 0.2,

1. If η > η0 + ε and d = 0 (i.e. there is no dense noise), then there exists a choice for ζ such
that `1 regression does not exactly recover the original signal vector.

2. Even if ζ = 0 (i.e. there are no sparse corruptions), there exists a choice for d such that the
solution of `1 regression, ŵ, satisfies

‖ŵ − w∗‖2 &
‖d‖1
m

Proof. Let T be the support of the largest ηm entries of (Xw∗). For the first part, let ζ = −(Xw∗)T
and observe that since d = 0, the loss of the 0 vector with respect to y is ‖XTw

∗‖1 and the loss of
w∗ is ‖XTw

∗‖1. Since m & n
ε2

we know that with probability 1− e−Cn for some constant C,

‖XTw
∗‖1 >

(
B
(
η − ε

2

)
− ε

2

)
·m

12



Figure 2: Empirically in the one-dimensional case, the recovery threshold for `1 regression and the
robust mean estimation-based algorithm of [DKS18] match at η0.

and
‖XTw

∗‖1 <
(
G
(
η +

ε

2

)
+
ε

2

)
·m.

Hence,

‖XTw
∗‖1 − ‖XTw

∗‖1 >
(
B
(
η − ε

2

)
−G

(
η +

ε

2

)
− ε
)
·m & mε.

The final inequality follows from a calculation similar to the one used to show (7), by looking at the
Taylor expansion of B(η0 + x

2 )−G(η0 + 3x
2 )− x around x = 0. This implies ‖XTw

∗‖1 > ‖XTw
∗‖1

and so `1 regression cannot return w∗ as the answer.
Let T ′ be the support of the smallest (1 − (η0 + ε

2))m entries of (Xw∗). For the second part,
set d = −(Xw∗)T ′ . Now, more than (1− η0)m entries of y are 0, and so `1 regression will recover
0. The resulting error in 2-norm is ‖ŵ − w∗‖2 = ‖w∗‖2. Since d = −(Xw∗)T ′ , ‖d‖1 is the `1 norm
of Xw∗ over the smallest 1− η0 − ε

2 fraction of the indices. By arguments similar to earlier

‖d‖1 = ‖(Xw∗)T ′‖1 > m
(
G
(
η0 −

ε

2

)
− ε
)
· ‖w∗‖2.

It can be checked whenever ε < 0.2, G
(
η0 − ε

2

)
− ε > 0.4. Hence,

‖ŵ − w∗‖2 = ‖w∗‖2 ≥
1

G
(
η0 − ε

2

)
− ε

(
‖d‖1
m

)
&
‖d‖1
m

.

7 Empirical comparisons to prior work

We compare the tolerance of `1 regression to algorithms from two recent papers [DKS18] and
[BJK15]. We study the fraction of corruptions these algorithms can tolerate in the limit of a large
number of samples. Our experiment is the following - we study the one-dimensional case where
w∗ = 100 and the adversarial noise is selected by setting the largest η fraction of observed y’s to 0.
We run the three algorithms on a dataset of 1000 samples for η ranging from 0 to 0.5 and consider
the point when the algorithm stops providing exact recovery. In Figure 2 we plot the the error of
the recovered ŵ from w∗ against the fraction of corruptions.

While the fraction of corruptions tolerated by the algorithm from [BJK15] for our example is
more than what they prove in general (which is 1

65), the fraction of corruptions it can tolerate is

13



still less than that of `1 regression on this example. For `1 regression we observe what we have
already proven earlier, that this example achieves our upper bound - i.e. it tolerates no more than
an η0 ≈ 0.239 fraction of corruptions.

Curiously, the robust mean estimation based algorithm by [DKS18] on this example tolerates
exactly the same fraction of corruptions as `1 regression.
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Appendix

A Facts about N(0,1)

In this section, let Φ and Φ̂ denote the CDF of N(0, 1) and the CDF of the uniform distribution
over a set of samples drawn from N(0, 1) respectively – the set will be clear from context. B(γ)
and G(γ) refer to the `1 norm of the largest (in absolute value) γ fraction of the entries and the
smallest 1− γ fraction of the entries with respect to the Gaussian distribution, and Ĝ(γ) and B̂(γ)
are defined similarly but for the uniform distribution over samples from N(0, 1).

Fact A.1. Let S = {z1, . . . , zm} be i.i.d. samples from N(0, 1). Then for any τ, γ ∈ [0, 1] the
following holds with probability 1− 4e−2mτ2.

Φ−1(γ − τ) < Φ̂−1(γ) < Φ−1(γ + τ).

Proof. The Dvoretzky-Kiefer-Wolfowitz inequality states

Pr
(

sup
x∈R

(
|Φ̂(x)− Φ(x)|

)
> ε
)
≤ 2e−2mε2 for every ε ≥

√
1

2m ln 2. (8)

If t = Φ−1(η), Equation 8 then tells us that for any ε independent of m (i.e. constant ε),

Pr
(
|Φ̂(t)− η| > ε

)
≤ 2e−2mε2

i.e.
Pr
(

Φ̂(t) ≤ η + ε
)
≤ 2e−2mε2 .
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Setting η = γ − τ and ε = τ we see

Pr
(

Φ̂(t) ≤ γ
)
≤ 2e−2mτ2 .

Monotonicity of Φ̂ then proves the first inequality. The second inequality follows similarly.

Fact A.2. Let S = {z1, . . . , zm} be i.i.d. samples from N(0, 1) and let η < η0. Then with probability

1−O
(
e
mε2

2

)
,

Ĝ(η) > G(η − ε)− ε

and
B̂(η) < B(η + ε) + ε.

Proof. Consider the random variable Y where Y is N(0, 1) conditional from being drawn from
[−t, t] (i.e. Y has the PDF of a truncated Gaussian distribution). If γ < 1

2 , for t = Φ−1(1− γ
2 )

E[|Y |] =
1

1− γ

∫ t

−t
|x|e−x2/2dx =

1

1− γ
G(γ).

Observe that one can sample from Y by sampling from Z which is distributed as N(0, 1) and dis-
carding samples outside [−t, t]. Since the PDF is scaled, we have to scale the empirical distribution
as well

Ê[|Y |] =
1

m(1− γ)

m∑
i=1

|zi| · 1[−t,t](zi)

Let γ be such that E|Y | ≤ 1
2(1−γ) , then |Y | has subgaussian tails with some constant parameter.

To see this, observe that

E
[
eλ(|Y |−E[|Y |])

]
=

2

1− γ

∫ t

0
e−x

2/2+λx−λE[|Y |]dx

. e
λ2

2
−(2·(1−γ))−1λ

. eO(λ2/2−λ)

This implies concentration for the expectation

Pr
(∣∣∣Ê[|Y |]− E[|Y |]

∣∣∣ > ε
)
< O

(
e−

mε2

2

)
.

Multiplying both sides inside the probability by (1−γ) and noting that since γ < 1
2 this is bounded

by 1
2 we see

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

|zi| · 1[−t,t](zi)−G(γ)

∣∣∣∣∣ > ε

2

)
< O

(
e−

mε2

2

)
We now set γ = η − ε. Since η < η0 ≈ 0.239 and ε > 0, γ < 1

2 . Fact A.1 now implies that with

probability 1 − 2e−2mε2 , at most an 1 − η fraction of the samples lie in [−t, t]. These have to be
smaller in absolute value than the remaining samples. Since Ĝ(η) is defined to be the `1 norm of
the 1− η fraction of points smallest in absolute value, we see

Ĝ(η) >
1

m

m∑
i=1

|zi| · 1[−t,t](zi).
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This implies

Pr
(
Ĝ(η) > G(η − ε)− ε

)
< O

(
e−2mε2 + e−

mε2

2

)
.

The other direction is done similarly, however in this case Y is the random variable gotten by
conditioning samples from N(0, 1) to be outside [−t, t].

B Shelling argument

Lemma 3.3 (Shelling Argument). Let A ∈ Rm×n satisfy

L‖v‖2 ≤ ‖Av‖1 ≤ U‖v‖2

for all (1 + α2)k-sparse vectors v. If S ⊂ [m] is fixed and of cardinality k, then A satisfies

L

1 + α

(
α− U

L

)
‖v‖2 −

2U∆

α
√
k
≤ ‖Av‖1 ≤ U

(
1 +

1

α

)
‖v‖2 +

U∆

α
√
k

for all
v ∈ VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1}.

Proof. The goal is to transfer bounds from the eigenvalues of A restricted over the sparse vectors,
to the eigenvalues of A restricted over VS . To this end we will select an element of VS and express
it as a sum of sparse vectors. Applications of standard inequalities will then let us transfer bounds.

For any v ∈ VS partition [n] into S, T1, . . . , Tn−k
α2k

where Ti is the set of indices corresponding to

the ith largest α2k-sized set of elements from vS .
We will now prove the upper and lower bounds on the eigenvalues for vectors restricted to the

set VS . The triangle inequality implies

‖AvS∪T1‖1 −
∑
i>1

‖AvTi‖1 ≤ ‖Av‖1 ≤ ‖AvS∪T1‖1 +
∑
i>1

‖AvTi‖1

Since vS∪T1 and vTi are all at most (1 + α2)k-sparse,

L‖vS∪T1‖2 −
∑
i>1

‖AvTi‖1 ≤ ‖Av‖1 ≤ U‖vS∪T1‖2 +
∑
i>1

‖AvTi‖1

We now prove an upper bound on the quantity
∑

i>1 ‖AvTi‖1. This will give us both the upper
and lower bounds we need. To this end, observe that all coordinates of vTi−1 are greater than or
equal to all coordinates of vTi . This implies

‖vTi‖∞ ≤
‖vTi−1‖1
α2k

which, in turn, implies

‖vTi‖2 ≤
1

α
√
k
‖vTi−1‖1.

Using the bounds on the restricted sparse eigenvalues from the statement, we get∑
i>1

‖AvTi‖1 ≤ U ·
∑
i>1

‖vTi‖2
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≤ U

α
√
k
‖vS‖1

≤ U

α
√
k

(‖vS‖1 + ∆)

≤ U

α
· ‖vS‖2 +

U

α
√
k
·∆

≤ U

α
· ‖vS∪T1‖2 +

U

α
√
k
·∆

Using the inequality above in addition to the bounds on ‖Av‖1, we get after some rearrangement(
L− U

α

)
‖vS∪T1‖2 −

U

α
√
k
·∆ ≤ ‖Av‖1 ≤ U

(
1 +

1

α

)
‖vS∪T1‖2 +

U

α
√
k
·∆

The bounds above are in terms of ‖vS∪T1‖2, however we need bounds in terms of ‖v‖2. For
the upper bound, it is sufficient to note that ‖vS∪T1‖2 < ‖v‖2. For the lower bound, we need the
inequalities below.

The definition of Ti and applications of the Cauchy-Schwartz inequality gives us

‖vS∪T1‖2 ≤
∑
i≥2

‖vTi‖2 ≤
1

α
√
k

∑
i≥1

‖vTi−1‖1 ≤
‖vS‖1
α
√
k
≤ ‖vS‖1 + ∆

α
√
k

≤ ‖vS‖2
α

+
∆

α
√
k
.

This, in turn, results in an upper bound on ‖v‖2 in terms of ‖vS∪T1‖2,

‖v‖2 ≤ ‖vS∪T1‖2 + ‖vS∪T1‖2
≤ ‖vS∪T1‖2 +

∑
i≥2

‖vTi‖2

≤ ‖vS∪T1‖2 +
‖vS‖2
α

+
∆

α
√
k

≤
(

1 +
1

α

)
‖vS∪T1‖2 +

∆

α
√
k

=⇒ ‖vS∪T1‖2 ≥
α

1 + α

(
‖v‖2 −

∆

α
√
k

)
and so

L

1 + α

(
α− U

L

)(
‖v‖2 −

∆

α
√
k

)
− U∆

α
√
k
≤ ‖Av‖1 ≤ U

(
1 +

1

α

)
‖vS∪T1‖2 +

U∆

α
√
k

At this point, we have the upper bound, to complete the proof of the lower bound, observe that
standard manipulations give us

L

1 + α

(
α− U

L

)(
‖v‖2 −

∆

α
√
k

)
=

L

1 + α

(
α− U

L

)
‖v‖2 −

L

1 + α

(
α− U

L

)
∆

α
√
k

=
L

1 + α

(
α− U

L

)
‖v‖2 −

αL− U
1 + α

∆

α
√
k

≥ L

1 + α

(
α− U

L

)
‖v‖2 −

U∆

α
√
k

This gives us the Lemma,
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L

1 + α

(
α− U

L

)
‖v‖2 −

2U∆

α
√
k
≤ ‖Av‖1 ≤ U

(
1 +

1

α

)
‖vS∪T1‖2 +

U∆

α
√
k
.
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