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Abstract

The goal of adaptive sparse recovery is to estimate an approximately sparse vector x from
a series of linear measurements A1x,A2x, . . . , ARx, where each matrix Ai may depend on the
previous observations. With an unlimited number of rounds R, it is known that O(k log log n)
measurements suffice for O(1)-approximate k-sparse recovery in Rn, and that Ω(k + log log n)
measurements are necessary. We initiate the study of what happens with a constant number
of rounds of adaptivity. Previous techniques could not give nontrivial bounds using less than 5
rounds of adaptivity, and were inefficient for any constant R.

We give nearly matching upper and lower bounds for any constant number of rounds R.

Our lower bound shows that Ω(k(log n
k )1/R) measurements are necessary for any k < 2(log

n
k )1/R ;

significantly, this is the first lower bound that combines k and n in an adaptive setting.
Our upper bound shows that O(k(log n

k )1/R · log∗ k) measurements suffice. The O(log∗ k)
gap between the two bounds comes from a similar gap for nonadaptive sparse recovery in the
high-SNR regime, and would be reduced to constant factors with improvements to nonadaptive
high-SNR sparse recovery.

1 Introduction

Sparse recovery is the problem of estimating an approximately sparse vector x from a low-dimensional
linear sketch Ax. Also known as compressed sensing, sparse recovery is a simple mathematical
problem with a diverse collection of applications, including image aquisition [DDT+08], genetic
testing [ECG+09], medical imaging [LDSP08], and streaming algorithms [CM06].

We say that an algorithm performs (k,C)-sparse recovery if it recovers a vector x∗ such that

‖x− x∗‖22 ≤ C min
k-sparse x′

∥∥x− x′∥∥2

2
. (1)

One could also consider recovery in other norms such as `1 [CM04, CRT06], but `2 is the strongest
`p-norm for which efficient sparse recovery is possible [CCF02, BJKS04].

The most common goal in sparse recovery is to achieve (1) for C = O(1) with 90% probability
over the choice of matrix A ∈ Rm×n, with as few “measurements” m as possible. If A is chosen
independently of x, it is known that m = Θ(k log n) is necessary [DIPW10] and sufficient [CRT06,
GLPS10]1. However, this sample complexity can be improved if A is chosen adaptively.

∗This work was done in part while the author was visiting the Simons Institute for the Theory of Computing.
1More precisely, m = Θ(k log n

k
). For simplicity of exposition in the introduction, we assume k < n0.9 so these are

equivalent.
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Paper Measurements Rounds Comment

Upper

[IPW11] k
ε r log1/r n O(r log∗ k)

[NSWZ18]
1
εkr log1/r 1

ε + kr log1/r n O(r log∗ k)
k
ε r log1/r n r + 3

Corollary 3.10 k log1/r n · 5r log∗ k r ε = O(1)

Lower

[PW13] r log1/r n r

[ACD13] k/ε r

Corollary 2.6 1
r · k log1/r n r log k < log1/r n

Theorem 2.5 ω(k) r k = no(1), r = O(1)

Table 1: Results for adaptive (k, 1 + ε)-sparse recovery. The measurements column drops constant
factors. The upper bounds above are not explicit in previous papers, which only state the bounds
for r = O(log log n). However, all previous algorithms reduce to 1-sparse recovery as a black box,
and plugging in r-round O(r log1/r n)-sample 1-sparse recovery gives the above.

In adaptive sparse recovery, the algorithm picks A1 ∈ Rm1×n, observes A1x, then picks A2 ∈
Rm2×n and observes A2x, and continues until ARx for some number of rounds R. The goal is still
to minimize the total number of measurements m =

∑
imi. With O(log log n) rounds of adaptivity,

it is possible to achieve (1) with m = O(k log logn) [IPW11, NSWZ18]. On the other hand, we
know that Ω(k+ log log n) measurements are necessary with unlimited adaptivity [ACD13, PW13].

In this work, we consider sparse recovery with a small constant number of rounds of adaptivity.
For example, what is possible with R = 2? This is an important question for applications, where
adaptivity is typically costly. The number of rounds of adaptivity corresponds to the number of
passes of a streaming algorithm, or the number of rounds of mapreduce; thus the overall com-
munication (which is usually the speed bottleneck in such applications) is proportional to R. In
other applications such as imaging or genetic testing, parallelism and latency in setting up the
measurements can make it difficult to perform many rounds of adaptivity.

For k = 1 and R = O(1), it is known that m = Θ(log1/R n) is necessary and sufficient [IPW11,
PW13]. Thus one expects that the answer for k � 1 should probably be k log1/R n. However,
the best prior algorithm (a variant of [NSWZ18] described in the next section) uses three “extra”
rounds, giving only O(k log1/(R−3) n). This does not benefit from anything less than five rounds of
adaptivity. On the lower bound side, existing work shows that m = Ω(k+log1/R n) [ACD13, PW13],
but cannot connect k and n. For C = 1 + ε, one can get an algorithm separating the dependence
on n and ε [NSWZ18]; perhaps the same could hold for n and k?

We show upper and lower bounds that almost entirely address the problem. First, we show that

Ω(k log1/R n) samples are necessary, for any k with k < 2log1/R n. This settles the sample complexity
for smallish k; for larger k, up to no(1), we can still show that ω(k) samples are necessary.

Second, we give an algorithm that uses O(k log1/R n · log∗ k) samples. The extra log∗ k factor
comes from black-box calls to nonadaptive (k,C)-sparse recovery for C � 1, for which the best
current algorithm uses O(k logC

n
k · log∗ k) samples [PW12]. If that result is improved to match the

Ω(k logC
n
k ) lower bound [PW11], the extra log∗ k factor in our algorithm will also be removed.
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1.1 Related Work

The adaptive measurement model has been explored in many papers, starting with empirical re-
sults [MSW08, JXC08, CHNR08] and theoretical results for k = 1 [CHNR08]. Results from the
compressed sensing side of the literature have focused on signal approximation accuracy, which cor-
responds to the behavior for C = 1+ε as ε→ 0. With Gaussian noise, nonadaptive algorithms take
m = O(1

εk log n), while [HCN11, HBCN12] improve this to O
(
k log n+ 1

εk(log k + log log log n)
)
; a

corresponding Ω(k/ε) lower bound appeared in [ACD13]. On the sparse recovery side of the litera-
ture, [IPW11] gave a fully adaptive algorithm using O(1

εk log logn) measurements performed in R =
O(log log n log∗ k) rounds. This was improved by [NSWZ18] in two incomparable ways: either R can

be improved to O(log log n) or the sample complexity can be improved to O(
log log 1

ε
ε k+ k log logn),

splitting n and ε in the sample complexity.
The algorithms in [IPW11] and [NSWZ18] can easily be adapted to use fewer rounds of adaptiv-

ity. Each algorithm’s round complexity is dominated by black-box applications of the O(log log n)-
round O(log log n)-sample O(1)-approximate 1-sparse recovery algorithm of [IPW11]. By changing
this to an r-round O(log1/r n)-sample version, the algorithms can be performed with fewer rounds;
see Figure 1. Most relevantly, one of the algorithms in [NSWZ18] would use O(k log1/r n) samples
in r + 3 rounds. It seems likely that a more careful analysis could reduce this to r + 2 rounds, but
no further: the approach requires an initial round to find the important subproblem instances, and
a final round to clean up missing elements.

1.2 Overview of Lower Bound

Prior Work (k = 1). We begin by giving an overview of the lower bound for k = 1 from [PW13].
The lower bound instance consists of the signal eX + w, where X ∈ [n] is a uniform random index
and w ∼ N (0, In/n) is Gaussian. This signal is such that successful 1.1-approximate 1-sparse
recovery must return a vector that is close to eX , and in particular reveals the identity of X. Hence

I(X;Y1, . . . , YR) = Ω(logn).

On the other hand, [PW13] shows that after learning b bits about X, each measurement in the
next round reveals only O(b+ 1) bits. That is, for any set of observations y1, . . . , yr−1 seen so far,
if we define

b = H(X)−H(X | Y1 = y1, . . . , Yr−1 = yr−1) (2)

to be the information revealed so far about X, then it can be shown that the next round has

I(X;Yr | Y1 = y1, . . . , Yr−1 = yr−1) = mr ·O(b+ 1) (3)

wheremr is the number of measurements in round r. It follows that I(X;Y1, . . . , YR) ≤ CR
∏R
i=1mr.

Then, an application of AM-GM shows (O(m/R))R = Ω(log n), or m = Ω(R log1/R n). Thus the
key step is to show (3).

The intuition for why (3) should hold is as follows. For any single measurement vector v of unit
norm, the corresponding observation is

y = 〈v, eX + w〉 = vX + w′

where w′ ∼ N(0, 1/n). This is an additive white gaussian noise channel, so the Shannon-Hartley
Theorem bounds the information capacity in terms of the signal-to-noise ratio:

I(X; y) ≤ 1

2
log(1 + nE[v2

X ]).
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This holds even conditioned on Y1 = y1, . . . , Yr−1 = yr−1, so we want to bound E[v2
X | Y1 =

y1, . . . , Yr−1 = yr−1]. Let p : [n]→ R denote the probability distribution of (X | Y1 = y1, . . . , Yr−1 =
yr−1), so b = log n −H(p). If p happens to be uniform over its support, then its value is 2b/n at
n/2b locations; then any unit norm v has

n E
X∼p

[v2
X ] ≤ n ·

n∑
i=1

2b

n
v2
i = 2b

or I(X; y | Y1 = y1, . . . , Yr−1 = yr−1) ≤ 1
2 log(1 + 2b) . (b+ 1).

However, p is not necessarily uniform over its support, which necessitates care. For example,
consider if p(1) = 1/ log n and p is uniform otherwise. Then b = O(1), yet by setting v = e1 we
have

n E
X∼p

[v2
X ] = n/ log n

so Shannon-Hartley would only show O(log n) bits per measurement. The problem is that Shannon-
Hartley is only a good bound if the signal – in this case vX – is at a consistent scale. The fix is to
partition the indices of X by the scale of p(X); we define Tj = {i | np(i) ∈ [2j , 2j+1)} for j > 0,
and T0 to have the rest. Let J be the random variable denoting the j such that X ∈ Tj . We can
decompose (with implicit conditioning on y1, . . . , yr−1)

I(X; y) ≤ I(X; (y, J)) = I(X; y | J) + I(X; J). (4)

Then I(X; J) ≤ H(J) . b + 1 by simple algebra, and since (X | J) is roughly uniform over its
support the Shannon-Hartley bound can give I(X; y | J) . b + 1. This bounds the information
content in any single measurement; summing over all mr measurements in Yr yields (3).

We now describe how to adapt these techniques to prove a result for k > 1.

Problem instance for general k. We use the natural extension of the problem instance, which
is to concatenate k copies of the hard instance; that is, for N = nk, we draw X1, . . . , Xk ∈ [n], and
set the vector to

x =

(
k∑
i=1

e(i−1)n+Xi

)
+ w

where w = N(0, kN IN ). Then successful 1.1-approximate sparse recovery must recover most coor-
dinates Xi, so

I(X1, . . . , Xk;Y1, . . . , YR) = Ω(k log n).

Defining the per-round goal. The first difficulty is how best to define the goal (3). While (3)
is true as stated, this is not enough: it would give a lower bound of (k log n)1/R not k log1/R n.
Yet (3) is also tight; given b bits of information about the first coordinate, a single measurement
can learn Ω(b) bits about that coordinate.

However, with b bits of information overall, most coordinates will only have O(b/k) of informa-
tion “about them.” Each such coordinate can only be observed with signal-to-noise ratio 2O(b/k).
Thus we can hope to say that there exists a large set of coordinates, W ⊂ [k] of size |W | > 0.99k,
such that

I({Xi}i∈W ;Yr | Y1 = y1, . . . , Yr−1 = yr−1) = mr ·O(
b

k
+ 1).

Unfortunately, this is false. Suppose we have learned the parity of Xi ⊕ X1 for all i; this is only
b = k − 1 bits of information. Then the measurement vector v which matches all the parities will
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have signal-to-noise-ratio k; with a variation on this example2, the information learned in a single
measurement can be Ω(log k) bits for every large W even though b = k. Thus, the replacement
for (3) that we can show is

I({Xi}i∈W ;Yr | Y1 = y1, . . . , Yr−1 = yr−1) = mr ·O(
b

k
+ log k) +O(b+ k). (5)

The extra O(b+ k) term comes from a term analogous to I(X; J) in (4).

Implications for sample complexity. In the first round we can replace (5) by the straightfor-
ward nonadaptive bound

I({Xi}i∈[k];Y1) ≤ O(m1).

Now, for simplicity of exposition suppose each mi = m/R = Θ(m). If m > k log k, then after the
first round the dominant term in (5) will be O(b · mk ). Hence chaining (5) gives a set WR such that

k log n . I({Xi}i∈WR
;Y1, . . . , YR) ≤ m ·

(
O(
m

k
)
)R−1

= k
(
O(
m

k
)
)R

.

Thus m = Ω(k log1/R n), as long as this is more than k log k.

Analog of J for general k. The proof of (5) is analogous to that of (3), where we partition
the X by “scale”, and bound the mutual information conditioned on the scale by Shannon-Hartley.
However, the new partition is subtle so we describe it here.

The first coordinate X1 is partitioned the same way as its marginal would be in the k = 1 case:
the set Tj1 has {i ∈ [n] | np(X1 = i) ∈ [2j1 , 2j1+1)} for j1 > 0, T0 has everything else, and J1

denotes the j1 ≥ 0 with X1 ∈ Tj1 . The second coordinate is partitioned as its marginal conditioned
on J1. That is, we have sets

Tj1,j2 = {i ∈ [n] | np(X2 = i | X1 ∈ Tj1) ∈ [2j2 , 2j2+1)}

and the random variable J2 is such that x2 ∈ TJ1,J2 . This naturally extends to xi ∈ TJ1,...,Ji .
We show that this partitions J = (J1, . . . , Jk) of the coordinates X1, . . . , Xk has the following

properties. First,H(J) = O(b) so conditioning on J does not reveal too much information. Second,
the “signal power” Zi,J that any measurement has about Xi conditioned on J obeys

E
i∈[k]

E
J

log(1 + Zi,J) .
b

k
. (6)

Since the Shannon-Hartley theorem implies

I(X1, . . . , Xk;Yr | J, Y1 = y1, . . . , Yr−1 = yr−1) . mr · E
J

log(1 +

k∑
i=1

Zi,J)

one would get—if (6) held for all i not just on average—that

I(X1, . . . , Xk;Yr | J, Y1 = y1, . . . , Yr−1 = yr−1) . mr · log(1 + k2b/k) ≈ mr(
b

k
+ log k)

as desired. Using Markov’s inequality to choose for each J a large set W of i where (6) is not too
far off, we can get (5) and complete the proof.

2Partition [k] into log k pieces, and the prior information reveals the relative parities within each partition.
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1.3 Overview of Upper Bound

Prior work for k = 1. The high-level intuition for our algorithm is based on the intuition for
k = 1 from the upper bound in [IPW11] and corresponding lower bound in [PW13]. Suppose
the vector x has one large coordinate i∗, of value 1. For O(1)-approximate sparse recovery to

be nontrivial, the amount of “noise” in other coordinates, i.e.
∥∥x[n]\{i}

∥∥2

2
, will be at most a small

constant.
At any given round, if we have learned b bits of information in the previous round, we can

expect to have located i∗ to within a set S of size n/2b. Then our measurement matrix in this
round can place zero mass on any coordinate outside S. Effectively, in this round we are trying to
find i∗ within xS . This vector still has “signal” 1, but the “noise”

∥∥xS\{i}∥∥2

2
is likely to be much

smaller: if S is random, the noise will be O(1/2b) on average. With such a high signal-to-noise ratio
(SNR), we can hope to learn Θ(log SNR) = Θ(b) bits per measurement. This will quickly reduce
the size of our candidate set S, further enriching the SNR of XS and increasing the information
per measurement.

Given r rounds with t measurements each, we expect to learn t bits in the first round; Θ(t2)
bits in the second round; Θ(t3) bits in the third round; and so on till Θ(tR) bits in the Rth
round. Setting t = log1/R n, we can learn the desired log n bits of information in O(R log1/R n)
measurements.

Algorithm for general k. Previous adaptive algorithms with m = o(k log n) use the k = 1
algorithm as a black box [IPW11, NSWZ18]. Unfortunately, such efforts seem to require additional
rounds of adaptivity to set up the subproblem instances and/or to clean up coordinates missed in
the first pass. Our algorithm avoids this by opening up the k = 1 algorithm and extending its
techniques to general k.

Our goal is to maintain a candidate set S ⊆ [n] of locations that include the largest k elements
of x, known as the “heavy hitters”. In each round except for the last, we would like to take a
number of measurements that are insufficient to identify the heavy hitters of xS exactly, but that
are sufficient to find a small subset S′ of S that contains (almost) all of the heavy hitters. If S′ is
also fairly random, then xS′ will have almost all the signal while only a small fraction of the noise,
so it has much higher SNR.

A first attempt for finding such a subset S′ could be as follows. Suppose that the SNR is C—
that is, the largest k elements of xS have C times more `22 mass than the other elements. For some
parameter D � k, we construct a vector y ∈ RD by hashing xS as per Count-Sketch [CCF02]—
so each coordinate i ∈ S is assigned a random coordinate h(i) ∈ [D] and sign si ∈ {±1}, and
yj =

∑
i:h(i)=j xisi. The SNR of y will also be about C, so we can learn a lot about y by performing

nonadaptive C0.1-approximate sparse recovery of it. This takes O(k logC(D/k) · log∗ k) measure-

ments [PW12], so we can set D = kC log1/R n and fit within our sample complexity budget. The top
O(k) elements of y will contain most of the heavy hitters of x, so we can set S′ to the preimage of

those elements; this has size about k(|S| /D) = |S| /C log1/R n. Hence the C used in the next round

will be roughly a C log1/R n factor larger; after R rounds of this, C will grow from constant to n10, at
which point the problem is easy. In fact, the Rth round can estimate xU directly to avoid needing
an extra cleanup round.

This approach mostly works, but suffers from one major flaw: in every stage, the set S′ can
miss a small fraction of the heavy hitters. Even with zero noise, heavy hitters that collide in
[D] can cancel out when combining into y, causing them to disappear from S′ and from the final
reconstruction. Previous algorithms based on the Count-Sketch hashing often run into this issue,
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and address it by cleaning up the residual afterward [GLPS10, IPW11, LNW18, NSWZ18]. In our
context, such a solution would require more rounds of adaptivity.

Triple gaussian hashing. We introduce a new approach to hashing for sparse recovery that lets
us avoid any major false negatives, based on replacing the signs si with gaussians gi ∼ N(0, 1) in
the computation of y, so yj =

∑
i:h(i)=j xigi. This hash avoids the issue described above with zero

noise, since if xi 6= 0 then yh(i) 6= 0 with probability 1.
To understand how this hash behaves with noise, consider the following example: x = v + w

where v ∈ {0, 1}n is k-sparse and w is gaussian with norm 1. Successful O(1)-approximate recovery
of x must find all but O(1) elements in supp(v). In the gaussian hash y of x, the image of w is still
very spread out with norm about 1, but the image of v is no longer binary: each entry

∣∣yh(i)

∣∣ has

a Θ(ε) chance of being less than ε. This means about k2/3 positions in h(supp(v)) will be smaller
than 1/k1/3. Since these collectively have norm 1, successful O(1)-approximate recovery of y could
miss all k2/3 of these positions, which would be a problem.

We avoid such false negatives by repeating the hash three times, with the same h and different
g, and applying sparse recovery separately to the three different y. In the above example, where
coordinates are missing from sparse recovery with probability 1/k1/3, the expected number of
coordinates that are missed three times in a row is O(1). In general, the chance qi that h(i) is
recovered by the sparse recovery algorithm may depend on i and xi in a complicated fashion that we
can’t control, since the sparse recovery algorithm is a black box. Still, we can show that the (k,C)-
approximate recovery guarantee implies that the expected mass lost all three times—

∑
i q

3
i x

2
i—is

bounded in terms of the noise level.
Our triple Gaussian hash thus gives a set of locations without any significant false negatives,

so we do not need to clean up the missing coordinates. We believe that this technique is likely to
have applications in other, nonadaptive, sparse recovery settings.

Decreasing the noise. So far, we have outlined how the algorithm gets a small set S′ that
does not lose much signal mass. Another key part of the argument is that xS′ should have much
less noise than xS . Since S′ is much smaller than S, this would be immediate if S′ were random.
However, since S′ is the preimage of the largest coordinates of y, it is biased towards the elements
of x containing more noise.

We show that this effect is limited: after dropping O(k) noise coordinates, the rest of the noise
shrinks by a factor of

√
D/k. We tolerate the O(k) large noise coordinates by increasing the

sparsity k by a constant factor in each round; and the
√
D/k factor, although not as good as the

D/k factor decrease in |S|, is still CΘ(log1/R k).
By choosing the parameters carefully, we can ensure the total error and total failure probability

remain small over all rounds. The sample complexity for constant R is O(k log1/R(n/k) · log∗ k),
which comes from black-box calls to the C-approximate nonadaptive sparse recovery algorithm.
If the extra log∗ k factor is removed from that, our sample complexity will become the optimal
O(k log1/R(n/k)).

2 Lower Bound

In this section we present a lower bound on the total number of linear measurements for adaptive
R-round (k,O(1))-sparse recovery.

The instance for which we show a lower bound is as follows: Alice divides the domain [N ] into
k contiguous “bins” of size n each (indexed by [k]) and for every bin i chooses xi ∈ [n] uniformly

7



at random. Alice then chooses i.i.d. Gaussian noise w ∈ RN with E[‖w‖22] = σ2 = Θ(k), then sets

x = w +
∑k

i=1 e(i−1)n+xi . Bob performs R adaptive rounds of linear measurements on x, getting
yr = Arx = (yr1, . . . , y

r
mr) in each round r. Let Xi and Y r denote the random variables from which

xi and yr are drawn, respectively. In order for sparse recovery to succeed under an appropriate
setting of constant for σ2, at least k/2 of the variables X1, . . . , Xk must be recovered.

For ease of notation, we use jr1 to denote the tuple (j1, . . . , jr). Similarly, ji−1
1 , Ji denotes the

tuple (j1, . . . , ji−1, Ji) where the distinction in the context of this proof is that j1, . . . , ji−1 are
fixed and Ji is a random variable. We use (X)W for W = {i1, . . . , i|W |} ⊆ [k] to denote the tuple
(Xi1 , . . . , XiW ).

Definition 2.1. Given random variables X1, . . . , Xk ∈ [n] with joint probability distribution p(l1, . . . lk) =
Pr[X1 = l1, . . . , Xk = lk], we define the sequentially conditioned partition of the domain of Xi

as follows

1. Tji1
= {l ∈ [n] | 2ji < npi(l | X1 ∈ Tj11 , . . . , Xi−1 ∈ Tji−1

1
) ≤ 2ji+1} for ji > 0

2. Tji1
= {l ∈ [n] | npi(l | X1 ∈ Tj11 , . . . , Xi−1 ∈ Tji−1

1
) ≤ 2} for ji = 0.

where pi denotes the marginal distribution of Xi. Additionally, we define the probability mass within
each partition as qji1

=
∑

l∈T
ji1

pi(l | X1 ∈ Tj11 , . . . , Xi−1 ∈ Tji−1
1

). So, if we fix j1, . . . , ji−1, we have∑∞
ji=0 qji1

= 1.

Denote the event X1 ∈ Tj11 , . . . , Xi ∈ Tji1 by Eji1
. These partitions are defined in such a way that

(Xi | Eji1) is close to uniform over its support. This allows us to bound the maximum conditional
probability within a sequentially conditioned partition of the domain of Xi. So,

Mji1

def
= n ·max

l∈T
ji1

(
pi(l | Eji1)

)
≤ 2ji+1

qji1
(7)

Additionally, for the random variable (Xi | Eji−1
1

) over [n], we define the number of bits that the

distribution knows about the location of Xi as:

bi(j1, . . . , ji−1) = H(U([n]))−H(Xi | Eji−1
1

) = log(n)−H(Xi | Eji−1
1

).

We show for every i and ji−1
1 that Mji−1

1 ,Ji
is small on average over Ji:

Lemma 2.2. Consider random variables X1, . . . , Xk ∈ [n] with joint probability distribution p(l1, . . . lk) =
Pr[X1 = l1, . . . , Xk = lk] and suppose we know that X1 ∈ Tj1 , . . . Xi−1 ∈ Tji−1

1
. Suppose that Ji is the

discrete random variable that denotes the ji such that Xi ∈ Tji1 conditioned on X1 ∈ Tj11 , . . . Xi−1 ∈
Tji−1

1
. Then,

E
Ji

[log
(
1 +Mji−1

1 ,Ji

)
] ≤ O(bi(j1, . . . , ji−1) + 1)
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Proof. Using (7) we get the bound:

E
Ji

[log
(
1 +Mji−1

1 ,Ji

)
] ≤ E

Ji

[
log
(
1 +

2Ji+1

qji−1
1 ,Ji

)]

=
∞∑
ji=0

qji1
log
(
1 +

2ji+1

qji1

)
≤
∞∑
ji=0

qji1
log(1 + 2ji+1) +

∞∑
j=0

qji1
log
(
1 +

1

qji1

)
≤
∞∑
ji=0

jiqji1
+

∞∑
ji=0

2qji1
+

∞∑
j=0

qji1
log
(
1 +

1

qji1

)
.

Since
∑∞

ji=0 qji1
= 1, Lemma A.2 implies:

E
Ji

[log
(
1 +Mi,ji−1

1 ,Ji

)
] ≤ O(bi(j1, . . . , ji−1) + 1)

For every i and collection of measurement vectors v1, . . . , vm, we now show that the amount of
“signal energy” for Xi is bounded even conditioned on the partition Jk1 .

Lemma 2.3. Let X1, . . . , Xk be random variables over [n] with joint probability distribution p(l1, . . . lk) =
Pr[X1 = l1, . . . , Xk = lk]. For all i ∈ [k], define bi = log(n) − H(Xi | X1, . . . , Xi−1). Let

v1, . . . , vm ∈ Rnk be a fixed set of vectors. Define random variable Zi,jk1
def
= EXi|Ejk1

[
∑m

s=1(vs)
2
n·(i−1)+Xi

]

and random variable Mi,jk1

def
= n ·maxl∈T

ji1

(pi(l | Ejk1 )) . Then, for any i ∈ [k],

1. log(1 + Zi,Jk1
) ≤ log

(
1 + (

∑m
s=1‖vs|i‖

2

2
n )

)
+ log(1 +Mi,Jk1

)

2. EJ1,...,Jk
[

log(1 +Mi,Jk1
)
]
≤ O(bi + 1)

where vs|i denotes the restriction of vs to the the index set [n(i− 1) + 1, ni].

Proof. Using the definition of Zi,jk1
and Mi,jk1

, we can write:

Zji1
=

m∑
s=1

∑
t∈[n]

(vs)
2
n·(i−1)+t · Pr[Xi = t | Eji1 ] ≤

(∑m
s=1

∥∥vs|i∥∥2

2

n

)
Mji1

Let Ji be the discrete random variable that denotes the ji such that Xi ∈ Tji1 conditioned on Eji−1
1

.

Then, using Lemma 2.2,

E
Ji

[log(1 +Mji−1
1 ,Ji

)] ≤ O(bi(j1, . . . , ji−1) + 1)

We wish to bound EJ1...,Jk [log(1 +Mi,Jk1
)]. Using the concavity of log,

E
J1...,Jk

[log(1 + Zi,Jk1
)] ≤ E

J1...,Ji
[log

(
1 + E

Ji+1,...,Jk
[Mi,Jk1

]
)
]

9



From the definitions of Mi,Jk1
and MJi1

, we know that:

E
Ji+1,...,Jk

[Mi,Jk1
] = E

Ji+1,...,Jk

[
E

Xi|EJk1

[
n ·max

l∈T
ji1

(pi(l | Ejk1 )
]]

= E
Xi|EJi1

[
n · max

l∈T
Ji1

(pi(l | EJi1)
]

= MJi1

So,

E
J1...,Jk

[log(1 +Mi,Jk1
)] ≤ E

J1...,Ji
[log(1 +MJi1

)]

≤ O( E
J1...,Ji−1

[bi(J1, . . . , Ji−1) + 1])

Since conditioning decreases entropy, we also know: EJ1,...,Ji−1 [bi(J1, . . . , Ji−1)] = H(U([n])) −
H(Xi | EJi−1

1
) ≤ H(U([n]))−H(Xi | X1 . . . Xi−1) = bi and hence,

E
J1...,Jk

[log(1 +Mi,Jk1
)] ≤ O(bi + 1)

We can now show the key lemma, that if b bits of information are known from the previous
rounds, the next round will only reveal roughly m( bk + log k) more bits of information.

Lemma 2.4. Let X1, . . . , Xk be random variables over [n] and W = {l1, l2, . . . , l|W |} ⊆ [k] be a
subset such that |W | = ck where c ≤ 1 is a constant. We define the number of bits of information
revealed about the subset W , conditioned on the variables {X}[n]\W as

b = |W | log(n)−H((X)W | (X)[n]\W )

Define X̃ =
∑k

i=1 e(i−1)·n+Xi + N(0, INσ
2/N) where σ2 = Θ(k). Consider a fixed set of measure-

ment vectors v1, . . . , vm ∈ RN independent of X1, . . . , Xk with ‖vj‖22 = N for all j ∈ [m], and define

Yj = 〈vj , X̃〉. Then, for all 0 < α < γ < 1 , with probability 1 − γ, there exists a subset W ′ ⊆ W ,
|W ′| ≥ (1− α

γ ) |W | such that

I((X)W ′ ;Y
m

1 | (X)[n]\W ′ ,W
′) ≤ c3

m

α

b

k
+m log(k) +

c4m

α
+ c2(b+ k)

for some constants c2, c3, c4.

Proof. Since we wish to condition out the indices not in W , we may perform the analysis on a fixed
set of values for (X)[n]\W and then use the fact that I(A;B|C) = Ec[I(A;B | C = c)] to arrive at
the theorem statement.

Suppose that for all i ∈ [n]\W , Xi = xi. Then, the number of bits of information known about
(X)W may be denoted b̃ = b((x)[n]\W ) = |W | log(n)−H((X)W | (x)[n]\W ). Now, we may construct
sequentially conditioned partitions only on the domains of (X)W and in the order l1, l2, . . . , l|W |.
We will denote by JW the conditioning over the partitions of the (X)W in the chosen order.

10



Let W ′ ⊆ W be a set of indices which we shall choose later. Consider the mutual information
between a set of random variables (X)W ′ and the measurements conditioned on the variables not
in W ′. Using the chain rule of mutual information:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ I((X)W ′ ;Y
m

1 | EJW , (X)W\W ′ , (x)[n]\W ,W
′) +H(JW | (x[n]\W ))

Using Lemma A.2, there exists a constant c2 such that for all i ∈ [|W |], H(Jli | J
li−1

l1
, (x)[n]\W ) ≤

c2(log(n) − H(Xl1 | J
li−1

l1
, (x)[n]\W ) + 1). Since conditioning only reduces entropy, we know that

H(Jli | J
li−1

l1
, (x)[n]\W ) ≤ c2(log(n)−H(Xl1 | Xl1 , . . . , Xli−1

, (x)[n]\W ) + 1). So, H(JW | (x[n]\W )) =∑
i∈[|W |]H(Jli | J

li−1

l1
, (x)[n]\W ) ≤ c2(b̃+k). Using the definition of conditional mutual information,

and the fact that measurements are chosen independently,

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
(x)W\W ′

( m∑
s=1

I((X)W ′ ;Ys | EJW , (x)[n]\W ′ ,W
′)
)

+ c2(b̃+ k)

Applying the Data Processing Inequality to the first term, we get:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
(x)W\W ′

( m∑
s=1

I
( ∑
i∈W ′

(vs)(i−1)n+Xi ;Ys | EJW , (x)[n]\W ′ ,W
′))+ c2(b̃+ k)

Observe that Ys =
∑

i∈W ′(vs)(i−1)n+Xi +
∑

i∈[n]\W ′(vs)(i−1)n+xi + N(0, σ2). Since (x)[n]\W ′ are
conditioned out, we may subtract their contribution and we get:

I
( ∑
i∈W ′

(vs)(i−1)n+Xi ;Ys | EJW , (x)[n]\W ′ ,W
′)

= I
( ∑
i∈W ′

(vs)(i−1)n+Xi ;
∑
i∈W ′

(vs)(i−1)n+Xi + η | EJW , (x)[n]\W ′ ,W
′)

where η ∼ N(0, σ2) is additive white gaussian noise. We may now use the Shannon-Hartley
Theorem (Theorem A.1) on this quantity to bound the mutual information in terms of a variance
term:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
(x)W\W ′

m∑
s=1

E
jW

[
log
(
1 +

E(X)W ′ |EjW ,(x)[n]\W ′
(
∑

i∈W ′ [(vs)(i−1)n+Xi ])
2

σ2

)]
+ c2(b̃+ k)

Using Cauchy-Schwartz, then applying Jensen’s inequality, and then using the convexity of log and
the definition of Zi,JW :

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
jW

( m∑
s=1

log
(
1 +

∣∣W ′∣∣ ∑i∈W ′ EXi|EjW [(vs)
2
(i−1)n+Xi

]

σ2

))
+ c2(b̃+ k)

≤ m E
jW

(
log
(
1 +
|W ′|

∑
i∈W ′ EXi|EjW [

∑m
s=1(vs)

2
(i−1)n+Xi

]

σ2 ·m
))

+ c2(b̃+ k)

= m E
jW

(
log
(
1 +
|W ′|

∑
i∈W ′ Zi,jW

σ2 ·m
))

+ c2(b̃+ k) (8)
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So, we need to set W ′ to be the set that contains indices in W with low values of Zi,jW . More
precisely, for a fixed partition sequence jw, we set W ′ = {i ∈ W | log(1 + Zi,jW ) < log(1 +

(
∑m

s=1

∥∥vs|i∥∥2

2
/n)) + (c3/α) · ((b̃/k) + 1)} where c3 is a constant which will be set later. Suppose

Mil,jW = n ·maxl∈T
ji1

(Pr[Xil = xil | EjW ]). We may use Lemma 2.3 on the indices in W since the

indices in [n] \W has been fixed. So, there is a constant c1 such that for all il ∈W ,

E
Ji1 ,...,Ji|W |

[
log
(
1 +Mil,JW

)]
≤ c1(b̃il + 1)

where b̃il = log(n)−H(Xil | Xi1 , . . . , Xil−1
, (x)[n]\W ). Observe that

∑
b̃il = |W | log(n)−

∑
H(Xil |

Xi1 , . . . , Xil−1
, (x)[n]\W ) = |W | log(n) −H(Xi1 , . . . , Xi|W | | (x)[n]\W ) = b̃. Suppose I is distributed

uniformly over W . Then using Jensen’s inequality,

E
I

[
E
JW

[
log
(
1 +MI,JW

)]]
≤ c1 E

I
[b̃I + 1]

≤ c1(b̃+ k)

|W |

≤ c3(b̃+ k)

k

where the third inequality follows because we are only considering W such that |W | = ck for a
constant fraction c and c3 = (c1/c).

Now, since each MI,JW ≥ 0, we may use Markov’s inequality to show that:

Pr
(I,JW )

[
log(1 +MI,JW ) ≥ c3(b̃+ k)

αk

]
≤ α

Define U = {(i, jW ) | i ∈W, log(1 +Mi,jW ) < c3(b̃+ k)/αk} and for all i ∈W , we may define pUi =
PrJW [(i, JW ) /∈ U ]. Note that E[|W \W ′|] ≤

∑
i∈W pUi ≤ α |W | and using Markov’s inequality, we

may say that Pr[|W \W ′| ≥ α |W | /γ] ≤ γ. Plugging the definition of W ′ and σ2 = Θ(k) = c′k,
into (8) gives

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ m log
(

1 +
|W ′| ·

∑
i∈W ′ 2

log(1+ 1
n

∑m
s=1‖vs|i‖

2

2
)+ 1

α

(
c3(b̃/k)+1

)
c′mk

)
+ c2(b̃+ k)

≤ m log
(

1 +
|W ′| · 2

1
α

(
c3(b̃/k)+1

)∑
i∈W ′

(
1 + 1

n

∑m
s=1

∥∥vs|i∥∥2

2

)
c′mk

)
+ c2(b̃+ k) (9)

Since
∑

i∈[n]

∥∥vs|i∥∥2

2
= N , we know that

∑
i∈W ′

(
1 + 1

n

∑m
s=1

∥∥vs|i∥∥2

2

)
≤ |W ′| + Nm

n = |W ′| + km.
Plugging this into (9), we get:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ m log
(

1 +
|W ′| · 2

c3
α

(b̃/k+1) · (W ′ + km)

c′mk

)
+ c2(b̃+ k)

≤ m log(1 +
∣∣W ′∣∣ /c′) +m log(1 + 2

c3
α

(b̃/k+1)) + c2(b̃+ k)

≤ m log(1 + k) +m log(1 + c/c′) +m log(1 + 2
c3
α

(b̃/k+1)) + c2(b̃+ k)

≤ 2m+m log(k) +m log(1 + c/c′) + 2m+m log(2
c3
α

(b̃/k+1)) + c2(b̃+ k)

≤ m log(k) +
c3mb̃

αk
+
c4m

α
+ c2(b̃+ k)
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where c4 = 4 + log(1 + c/c′) is a constant. So, with probability 1 − γ there exists a set W ′ ⊆ W
such that |W ′| ≥ (1− α/γ) |W | and

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′) ≤ c3

mb̃

αk
+m log(k) +

c4m

α
+ c2(b̃+ k)

Now, taking the expectation of this term over (x)[n]\W , with probability 1 − γ there exists a set
W ′ ⊆W such that |W ′| ≥ (1− α/γ) |W | and

I((X)W ′ ;Y
m

1 | (X)[n]\W ′ ,W
′) ≤ c3

mb

αk
+m log(k) +

c4m

α
+ c2(b+ k)

By applying Lemma 2.4 every round, we get the desired lower bound on m.

Theorem 2.5. Any scheme using R adaptive rounds with m1, . . . ,mR measurements in each round
and m total measurements has a set W ⊆ [k], |W | ≥ Ω(k) such that with probability ≥ 3/4

I((Xi)i∈W ;Y1, . . . , Ym | (Xi)i/∈W ,W ) ≤
( R∏
j=2

(
2c5 +

32c6R
2mj

k

))
max{k log(k),m1}

where c5 and c6 are constants. Consequently, for (k,C)-sparse recovery with C = O(1), it must
hold that

m ≥ k

C ′R
min

{(
log(N/k)

)1/R

,

(
log(N/k)

log(k)

)1/(R−1)}
for some constant C ′.

Proof. Let Ar be the measurement matrix in round r (which we may assume is deterministically
chosen as a function of all the previous rounds). Since the first round is non-adaptive, we may use
the Shannon-Hartley Theorem (as per [PW12]) to show that for W2 = [k],

I((Xi)i∈W2 ;Y1,1, . . . , Y1,m1 | (Xi)i/∈W2
,W2) ≤ m1

For each round r, by pr we denote Bob’s prior distribution at the beginning of that round. We also
denote by b(r) = |Wr| log(n) − H(XWr | X[n]\Wr

) the number of bits of information in the prior
(Xi)i∈Wr conditioned on (Xi)i/∈Wr

.
Since the rows of Ar are deterministic given the observations in previous rounds, we may apply

Lemma 2.4 with α = 1/(16R2), γ = 1/4R, and with probability (1−(1/4R)) obtain a setWr+1 ⊆Wr

such that |Wr+1| ≥ (1− α
γ ) |Wr| and:

I((Xi)i∈Wr+1 ;Y r+1 | y1, . . . , yr, (Xi)i/∈Wr+1
,Wr+1) ≤ c3

mr+1br
αk

+mr+1 log(k) +
c4mr+1

α
+ c2(br +k)

Let us define Br+1 = I((Xi)i∈Wr+1 ;Y r+1, . . . , Y 1 | (Xi)i/∈Wr+1
,Wr+1). Using the chain rule of

mutual information for r > 1

Br+1 = I((Xi)i∈Wr+1 ;Y r, . . . , Y 1 | (Xi)i/∈Wr+1
)

+ I((Xi)i∈Wr+1 ;Y r+1 | Y r, . . . , Y 1, (Xi)i/∈Wr+1
,Wr+1)

≤ Br + E
y1,...,yr

[I((Xi)i∈Wr+1 ;Y r+1 | y1, . . . , yr, (Xi)i/∈Wr+1
,Wr+1)]
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So,

Br+1 ≤ Br + c3
mr+1Br
αk

+mr+1 log(k) +
c4mr+1

α
+ c2(Br + k)

≤
(
c5 +

c3mr+1

αk

)
Br +mr+1 log(k) +

c4mr+1

α
+ c2k (10)

where c5 = c2 + 1. We know using the Shannon-Hartley Theorem that B1 ≤ m1. Further, we
assume that B1 ≥ k log(k). While this weakens our lower bound, it allows us to make a cleaner
inductive argument into Claim A.3. Plugging α = 1/16R2 in Claim A.3, we get:

BR ≤
( R∏
j=2

(
2c5 +

32c6R
2mj

k

))
max{k log(k),m1}

It follows using the AM-GM inequality that:

BR ≤ max
{
k ·
(

2c5 +
32c6R ·m

k

)R
, k log(k) ·

(
2c5 +

32c6R ·m
k

)(R−1)}
So, after R rounds with probability ≥ 3/4, we have a set WR such that |WR| ≥ (1− α

γ )Rk ≥ e−4k

with I((Xi)i∈WR
;Y R, . . . , Y 1 | (Xi)i/∈WR

,WR) bounded as above. We may scale the variance of
w (gaussian noise) by appropriate constants, so that for sparse recovery to succeed k(1 − 1

2e4
)

indices must be fully recovered with probability ≥ 3/4. So, for the set WR it must hold that
I((Xi)i∈WR

;Y R, . . . , Y 1 | (Xi)i/∈WR
,WR) ≥ k

2e4
log(N/k) and as a consequence, it must hold that:

max
{(

2c5 +
32c6R ·m

k

)R
,
(

2c5 +
32c6R ·m

k

)(R−1)
k log(k)

}
≥ k

2e4
log(N/k)

If we simplify this and set C ′ = 32c6, we get

m ≥ min

{
k

C ′R

(
log(N/k)

)1/R

,
k

C ′R

(
log(N/k)

log(k)

)1/(R−1)}

If we restrict our sparsity parameter k to be O(2(log(N))1/R) we observe that this lower bound
is tight.

Corollary 2.6. Let C > 1. Any (k,C)-sparse recovery scheme for vectors in RN that uses R

adaptive rounds and m total measurements with k = O(2log1/RN ) must satisfy

m ≥ k

C ′R

(
log(N/k)

)1/R

for some constant C ′.

3 Upper Bound

In this section we present our algorithm for (k,C)-sparse recovery in R rounds. The main goal
is to prove Theorem 3.9 which shows that Algorithm 3.2 achieves (k,C) sparse recovery using
O(k logC(n/k)1/R log∗(k) · 2R) measurements. Lemma 3.6 shows that in each round we lose a small
amount of mass from the vector. Lemma 3.7 and Lemma 3.8 show that with a constant increase
in the sparsity parameter from one round to the next, we can ensure that the “noise” carried over
to the next round decreases by a factor.
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3.1 Preliminaries

We start with a few definitions. Let x be an n-dimensional vector.

Definition 3.1. Define
Hk(x) = arg max

S∈[n]
|S|=k

‖xS‖2

to be the largest k coefficients in x.

Definition 3.2. Define the “noise” or “error”

Err2(x, k) =
∥∥∥xHk(x)

∥∥∥2

2

Definition 3.3. Given a vector x, a recovered vector x∗ satisfies (k,C)-sparse recovery under the
`2/`2 guarantee if:

‖x− x∗‖22 ≤ C Err2(x, k)

Definition 3.4. Given a hash function h : [n] → [D], a (D,h)-gaussian hash projection of a
vector x ∈ Rn into RD is given by y ∈ RD such that yj =

∑
i:h(i)=j xi · gi where gi ∼ N (0, 1) is i.i.d

normal with variance 1 and mean 0.

We denote by HighSNR-Recover(x, k, C, δ) a black-box algorithm which makes linear mea-
surements on the input x and whose output achieves (k,C) sparse recovery with probability 1− δ.
The best known algorithm for achieving (k,C)-sparse recovery when C ≥ 1 is the algorithm from
[PW12]:

Theorem 3.5. There exists an algorithm that takes O
(
k log∗(k) logC(n/k) log(1/δ)

)
linear mea-

surements and outputs a k-sparse vector that achieves (k,C)-sparse recovery under the `2/`2 guar-
antee with success probability 1− δ.

3.2 Algorithm

procedure 1-RoundSNRBoost(x, n, D, C, k, δ) . Recover most of the mass of heavy hitters
while reducing noise by factor D/k

For i ∈ [n], h(i)← [D]

For i ∈ [n], t ∈ {1, 2, 3} g
(t)
i ← N (0, 1)

For j ∈ [D], t ∈ {1, 2, 3} define y
(t)
j =

∑
i∈h−1(j) g

(t)
i xi

For t ∈ {1, 2, 3} , U (t) ← supp(HighSNR-Recover(y(t), k, C, δ/3))
return ∪j∈U(1)∪U(2)∪U(3)h−1(j)

end procedure

Algorithm 3.1: 1 round SNR-Boost

Lemma 3.6. Let x ∈ Rn, D ≥ k, C ≥ 1. Suppose h : [n]→ [D] is drawn from a fully independent
family of hash functions and y(1), y(2) and y(3) are independent (D,h)-gaussian hash projections
of x. Then, if A is an algorithm that achieves (k,C) sparse recovery with probability ≥ 8/9, and
U (t) = supp(A(y(t))) for t ∈ {1, 2, 3},

E
[ ∑

j∈[D]

j /∈U(1)∪U(2)∪U(3)

∥∥xh−1(j)

∥∥2

2

∣∣∣∣∣ E1, E2, E3

]
≤ 9C Err2(x, k)
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procedure R-Round-K-SparseRec(x, k, C, R )
S0 = [n]
C0 = C/8
for r ← 1, . . . , R− 1 do

kr ← k5r−1

Dr ← krC
5(logC0

(n))r/R

0

Cr ← C
(logC0

(n))(r−1)/R

0

δr ← 2−(r+3)

Sr ← 1-RoundSNRBoost(xSr−1 , |Sr−1| , Dr, Cr, kr, δr)
end for

return x̂← HighSNR-Recover(xSR−1
, 5kR−1, C

(logC0
(n))(R−1)/R

0 , 2−(R+3))
end procedure

Algorithm 3.2: R-Round-k-Sparse Recovery

where E(t) represents the event that A(y(t)) successfully performs (k,C)-sparse recovery.

Proof. Let y be a (D,h)-gaussian hash projection of x. From the definition of Hk(y), we know that
for all S such that |S| ≤ k, Err2(y, k) =

∑
j∈Hk(y)

y2
j ≤

∑
j∈S y

2
j . If we choose S = h(Hk(x)), we

get Err2(y, k) ≤
∑

j∈h(Hk(x))
y2
j . Furthermore,

E
g
[Err2(y, k)] ≤ E

g
[
∑

j∈h(Hk(x))

y2
j ]

= E
g
[
∑

j∈h(Hk(x))

( ∑
i∈h−1(j)

xi · gi
)2

]

=
∑

j∈h(Hk(x))

∑
i∈h−1(j)

x2
i

≤
∑

i∈Hk(x)

x2
i = Err2(x, k)

where the second equality follows because gi ∼ N (0, 1) for all i ∈ [n].
Let Ej be the indicator random variable for the event that j /∈ U where U = supp(A(y)). For

a successful run of A, the `2 mass of the unrecovered indices is bounded by:∑
j∈[D]

Ejy
2
j ≤ C Err2(y, k)

Let E be the event that A(y) satisfies the (k,C)-sparse recovery guarantee for y. Then, if I(E) is
the indicator random variable for the event E ,

E
g,A

[
∑
j∈[D]

Ejy
2
j | E ] ≤ E

g,A
[(
∑
j∈[D]

Ejy
2
j )I(E)]/ Pr

g,A
[E ]

≤ 9C

8
E
g
[Err2(y, k)]

≤ 9C

8
Err2(x, k) (11)
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Let qj = Eg,A
[
Ej

∣∣ E] denote the probability
(
over (D,h) projections and A

)
that j /∈

supp(A(y)). Then for j ∈ [D] and any θ > 0,

E
g,A

[Ejy
2
j |E ] ≥ Pr

[(
j /∈ U

)
∧
(
|yj | ≥ (qj/2)θ

) ∣∣∣ E] · θ2

Observe that:

Pr
[(
j /∈ U

)
∧
(
|yj | ≥ θ

) ∣∣∣ E] ≥ 1− Pr
[
j ∈ U

∣∣∣ E]− Pr
[
|yj | < θ

∣∣∣ E]
Since yj ∼ N (0, θ2) we may use the gaussian anti-concentration inequality i.e. Pr[|X| ≤ δθ] ≤ δ to
get:

Pr
[(
j /∈ U

)
∧
(
|yj | ≥ θ

) ∣∣∣ E] ≥ 1− (1− qj)−
θ∥∥xh−1(j)

∥∥
2

Setting θ =
qj
2

∥∥xh−1(j)

∥∥
2
:

Pr
[(
j /∈ U

)
∧
(
|yj | ≥

qj
2

∥∥xh−1(j)

∥∥
2

) ∣∣∣ E] ≥ qj/2
and for all j ∈ [D],

E
g,A

[Ejy
2
j | E ] ≥

q3
j

8

∥∥∥xh(−1)(j)

∥∥∥2

2
. (12)

Now, consider the U (t) = supp(A(y(t), k, C)) for t = 1, 2, 3 where y(1), y(2), y(3) are independent
(D,h) gaussian projections of x. Then,

E
[ ∑

j∈[D]:

j /∈U(1)∪U(2)∪U(3)

∥∥xh−1(j)

∥∥2

2

∣∣∣∣ E1, E2, E3

]
=
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· E[E

(1)
j · E

(2)
j · E

(3)
j | E1, E2, E3]

=
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· E[E

(1)
j | E1] · E[E

(2)
j | E2] · E[E

(3)
j | E3]

=
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· q3
j

where the expectation is taken over g(1), g(2), g(3),A(y(1)),A(y(2)),A(y(3)). The second equality
follows from the independence of y(1), y(2), y(3). So, using (11) and (12),

E
[ ∑

j∈[D]:

j /∈U(1)∪U(2)∪U(3)

∥∥xh−1(j)

∥∥2

2

∣∣ E1, E2, E3

]
≤
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· q3
j

≤ 8
∑
j∈[D]

E
g,A

[Ejy
2
j I(E)]

≤ 9C Err2(x, k).
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Lemma 3.7. Let z ∈ Rn and h : [n]→ [D] be randomly chosen from a fully independent family of
hash functions where D ≤ n. Then, with probability 1− 2δ,

max
l∈[D]

[ ∑
i∈h−1(l)

z2
i

]
≤ 4

(
‖z‖22
D

+ 5 ‖z‖2∞ log
(D · log(n/δ)

δ

))

Proof. Let βj = ‖z‖2∞ · 2−j for all j ∈ Z and let t = O(log(n/δ)). Partition [n] into t + 2 sets:
Rj = {i ∈ [n] | βj+1 ≤ z2

i ≤ βj} for all 0 ≤ j ≤ t and Rt+1 = {i ∈ [n] | z2
i ≤ βt+1}. Then, for a

fixed Rj and l ∈ [D] we may apply the Bernstein bounds(Theorem B.1) to get:

Pr
[ ∣∣Rj ∩ h−1(l)

∣∣ ≥ |Rj |
D

+ 4 log(1/δ) + 4

√
log(1/δ) |Rj |

D

]
≤ δ

Taking a union bound over all R0, . . . , Rt and all l ∈ [D]:

Pr
[
∃j ∈ [t], l ∈ [D]

∣∣∣ ∣∣Rj ∩ h−1(l)
∣∣ ≥ |Rj |

D
+ 4 log(

D · t
δ

) + 4

√
log(D·tδ ) |Rj |

D

]
≤ δ

The `2 mass from R0, . . . , Rt falling into any j ∈ [D] is bounded by:

t∑
j=0

βj

( |Rj |
D

+ 4 log(
D · t
δ

) + 4

√
log(D·tδ ) |Rj |

D

)
≤ 2

t∑
j=0

βj
( |Rj |
D

+ 4 log(
D · t
δ

)
)

≤ 4
(‖z‖22
D

+ 4 log(
D · t
δ

)β0

)
= 4
(‖z‖22
D

+ 4 log(
D · t
δ

) ‖z‖2∞
)

where the second inequality follows because
∑t

j=0 |Rj |βj ≤ 2
∑

i∈[n] z
2
i ≤ 2 ‖z‖22.

Next, we bound contribution of Rt+1 to the `2 mass hashed to each location. The total `2 mass

in Rt+1 is
∥∥zRt+1

∥∥2

2
≤ βt+1 · n. So, the expected amount of `2 mass in a given location l ∈ [D]

is ≤ nβt+1/D. Using Markov’s inequality, with probability 1 − δ, we know that the `2 mass from
Rt+1 hashed to each location in [D] is ≤ n · ‖z‖2∞ · 2−(t+1)/δ ≤ ‖z‖2∞. So,

max
l∈[D]

[ ∑
i∈h−1(l)

z2
i

]
≤ 4

(
‖z‖22
D

+ 5 ‖z‖2∞ log
(D · log(n/δ)

δ

))

Lemma 3.8. Let z ∈ Rn, k ≤ D ≤ n and h : [n]→ [D] be randomly chosen from a fully independent
family of hash functions. Then, with probability 1− δ, for all U ⊆ [D] :

Err2(zh−1(U), |U |+ k) ≤ ‖z‖22
|U |O(log(n/δ))√

kDδ

Proof. Consider all indices in the set J = {i ∈ [n] | z2
i ≥ ‖z‖

2
2 /L} where L =

√
kDδ. Observe that

the expected number of collisions among these elements under the hash function h is ≤
(
L
2

)
/D ≤

kδ/2. By Markov’s inequality, the number of collisions is at most k with probability 1− (δ/2). So,
with probability 1− δ/2:

∀U ⊂ [D],
∣∣J ∩ h−1(U)

∣∣ ≤ |U |+ k (13)
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Suppose, we restricted ourselves only to the indices in the set J . Observe that
∥∥zJ∥∥2

≤ ‖z‖2
and

∥∥zJ∥∥2

∞ ≤ ‖z‖
2
2 /L. Applying Lemma 3.7, with probability 1− δ/2:

max
l∈[D]

[ ∑
i∈J :h(i)=l

z2
i

]
≤ 4

(
‖z‖22
D

+
5 ‖z‖22
L

log
(4D log(4n/δ)

δ

))
= O

(
‖z‖22

O(log(n/δ))

L

)
(14)

So, with probability 1− δ, both (13) and (14) hold. Hence,

Err2(zh−1(U), |U |+ k) ≤ |U | ·
(
‖z‖22

O(log(n/δ))

L

)
≤ ‖z‖22

|U |O(log(n/δ))√
kDδ

Theorem 3.9. Suppose there exists an algorithm that takes O(k logC(n/k) log(1/δ) · g(k)) linear
measurements of its input where g(k) is a non-decreasing function in k and outputs a k sparse vector
that achieves (k,C) sparse recovery with probability (1−δ). Then, for R ≤ log log(n/k)/2 log log log(n)
and C > 16, Algorithm 3.2 takes O(k5R(logC(n/k))1/R·g(5Rk)) linear measurements of x ∈ Rn over
R adaptive rounds and outputs a vector that achieves (k,C) sparse recovery of x with probability
≥ 3

4 .

Proof. In this proof, we will achieve (k, 16C) sparse recovery for all C > 1. We may rescale C to
get the theorem statement. We define

δr = 2−(r+3)

kr = k5r−1

Dr = krC
5(logC(n/k))r/R

Cr = C(logC(n/k))(r−1)/R

for r > 0 and S0 = [n]
In each round r ∈ {1, . . . , R − 1}, we use Algorithm 3.1 with these parameters to get a subset

Sr ⊆ Sr−1. We sample a random hash function h : Sr−1 → [Dr] and generate 3 independent
(Dr, h)-gaussian hash projections y(1), y(2), y(3) of xSr−1 and perform HighSNR-Recover on each

of them with parameters (kr, Cr, δr/3). Let U (1), U (2), U (3) be supports of the recovered vectors.
Since HighSNR-Recover generates kr sparse output,

∣∣U (1)
∣∣ , ∣∣U (2)

∣∣ , ∣∣U (3)
∣∣ ≤ kr. Let Ur = U (1) ∪

U (2) ∪ U (3) , and set Sr = h−1(Ur) ⊆ Sr−1 to be the set of indices carried into the next round. So,
if we set z = x

Sr−1∩Hkr−1
(xSr−1

)
and let U = Ur in Lemma 3.8:

Err2(zh−1(Ur), |Ur|+ kr−1) ≤
‖z‖22√

Drδr/krO(log(n/δr))

≤
‖z‖22

22(log(n))r/R

where the second inequality follows because log(n) = o(C2(logC(n))1/R) when 2r ≤ C2(logC(n))r/R

and R ≤ log log(n)
2 log log log(n) . Since z = x

Sr−1∩Hkr−1
(xSr−1

)
, we have both ‖z‖22 =

∥∥∥xSr−1∩Hkr−1
(xSr−1

)

∥∥∥2

2
=
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Err2(xSr−1,kr−1) and Err2(zh−1(U), |U | + kr) ≥ Err2(xh−1(U), |U | + kr−1 + kr−1). Since |U | ≤ 3kr−1

and 5kr−1 = kr, we conclude:

Err2(xSr , kr) ≤
Err2(xSr−1 , kr−1)

C2(logC(n))r/R

If we successively apply Theorem 3.6 under the above parameters for rounds 1, . . . , R− 1, then for
any r ∈ {1, . . . , R− 1}

E[
∥∥xSr − xSr+1

∥∥2

2
] ≤ Cr Err2(xSr , kr)

≤ Cr

C2(logC(n))r/R
Err2(xSr−1 , kr−1)

Since Err2(xSr−1 , kr−1) ≤ Err2(x, k) and we have set Cr = C(logC(n/k))(r−1)/R
,

E[
∥∥xSr − xSr+1

∥∥2

2
] ≤ 1

C(logC(n))r/R
Err2(x, k)

In the final round, we run HighSNR-Recover(xSR−1
, kR, CR) and find x̂ such that

∥∥xSR−1
− x̂
∥∥2

2
≤

CR Err2(xSR−1
, kR). So,

E
[
‖x− x̂‖22

]
≤

R−1∑
r=1

E
[ ∥∥xSr−1 − xSr

∥∥2

2

]
+ E

[ ∥∥xSR−1
− x̂
∥∥2

2

]
≤

R∑
r=1

Cr Err2(xSr , kr)

≤ C Err2(xS1 , k1) +
R∑
r=2

1

C(logC(n))(r−1)/R
Err2(x, k)

≤ 2C Err2(x, k)

So, with probability ≥ 7/8, after R rounds ‖x− x̂‖22 ≤ 16C Err2(x, k). In each round, we
use independently call HighSNR-Recover(xSr−1 , kr, Cr) thrice with failure probability δr/3 =

2−(r+3)/3 and condition on them being successful. So, overR rounds all calls to HighSNR-Recover
are successful with probability ≥ 1−

∑R
r=1 δr = 1−

∑R
r=1 2−(r+3) = 7/8.

The total number of measurements over R rounds is bounded by:

R∑
r=1

3kr log(3/δr) · g(5rk) · (logCr−1
(Dr/k)) =

R∑
r=1

3kr log(3/δr) · g(5rk) · (logC(n/k))1/R

≤
R∑
r=1

3k · 5r · 2r · g(5rk)(logC(n/k))1/R

= O(5Rk(logC(n/k))1/R · g(5Rk))

So, the output of Algorithm 3.2 achieves (k, 16C) sparse recovery in R rounds with probability
≥ 3/4 and uses O(5Rk(logC(n/k))1/R · g(5Rk)) measurements. If we rescale C by a factor of 16, we
get the desired guarantee.

As a consequence of Theorem 3.9 and Theorem 3.5, we get the following guarantee on our
algorithm:
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Corollary 3.10. For R ≤ log log(n/k)
log log log(n) and C > 16, Algorithm 3.2 takes O(k5R(logC(n/k))1/R ·

log∗(5Rk)) linear measurements of x ∈ Rn over R adaptive rounds and outputs a vector that achieves
(k,C) sparse recovery of x with probability ≥ 3

4 .
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A Appendix for Lower Bound

Theorem A.1 (Shannon-Hartley). Let S be a random variable such that E[S2] = τ2. Consider
the random variable S + T , where T ∼ N (0, σ2). Then

I(S;S + T ) ≤ 1

2
lg
(
1 +

τ2

σ2

)
.

Lemma A.2. Consider a random variable X ∈ [n] with probability distribution p(l) = Pr[X = l].
Suppose b = lg(n) − H(X). Let Ti = {j | 2i ≤ np(j) ≤ 2i+1} and T0 = {j | np(j) ≤ 2} and let
qi =

∑
j∈Ti p(j). Then,

22



(a)
∑∞

i=0 iqi ≤ b+ 1

(b)
∑∞

i=0 qi lg(1 + 1
qi

) ≤ O(b+ 1)

(c) if J is the random variable that denotes the index of the partition containing X, then H(J) <
O(b+ 1).

Proof.

∞∑
i=0

iqi =
∑
i>0

∑
j∈Ti

Pr[X = j] · i

≤
∑
i>0

∑
j∈Ti

Pr[X = j] lg(nPr[X = j])

= b−
∑
j∈T0

Pr[X = j] lg(nPr[X = j])

= b− q0 lg(nq0/ |T0|)
≤ b+ |T0| /ne

using convexity and minimizing x lg(ax) at x = 1/ae. Hence,

∞∑
i=0

iqi ≤ b+ 1 (15)

Next, consider
∑∞

i=0 qi lg(1 + 1
qi

). When qi ≤ 1/2, we have lg(1 + 1
qi

) ≤ 2 lg( 1
qi

). So,

∞∑
i=0

qi lg(1 +
1

qi
) ≤ 2

( ∑
i|qi≤1/2

ti lg(1/ti) +
∑

i|qi>1/2

1
)
≤ 2
(
H(J) + 1

)
(16)

Now, in order to bound the entropy term, consider the partition T+ = {i | qi > 1/2i} and T− =
{i | qi ≤ 1/2i}. Then

H(J) =
∑
i

qi lg(
1

qi
)

≤
∑
i∈T+

iqi +
∑
i∈T−

qi lg(
1

qi
)

≤ b+ 1 +
∑
i∈T−

qi lg(
1

qi
)

Observe that x log(1/x) increases on [0, 1/e], so∑
i∈T−

qi lg(
1

qi
) ≤ q0 log(

1

q0
) + q1 lg(

1

q1
) +

∑
i≥2

1

2i
lg(1/2i) ≤ 2/e+ 3/2 < 3

Hence H(J) < b+ 4. So, in (16),

∞∑
i=0

qi lg(1 +
1

qi
) ≤ 2(b+ 5) (17)
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Claim A.3. Let the sequence B1 ≤ B2 ≤ B3 . . . ,, satisfy B1 ≥ k log(k) ,B1 ≤ maxm1, k log(k) and
for all r ≥ 1,

Br+1 ≤
(
c5 +

c3mr+1

αk

)
Br +mr+1 log(k) +

c4mr+1

α
+ c2k

for constants c2, c3, c4, c5 > 1. Then, for all r ≥ 1,

Br ≤
( r+1∏
j=2

(
2c5 +

2c6mj

kα

))
max{k log(k),m1}

where c6 is a constant.

Proof. The base case holds because :

B1 = maxm1, k log(k)

Now, assume that the claim holds for r, then:

Br+1 ≤ Br
(
c5 +

c3mr+1

αk

)
+mr+1 log(k) +

c4mr+1

α
+ c2k

= Br

(
c5 +

c3 ·mr+1

αk

)
+
mr+1

k
(k log(k)) +

c4mr+1

α
+ c2k

≤ 2Br

(
c5 +

c6 ·mr+1

αk

)
≤
( r+1∏
j=2

(
2c5 +

2c6mj

kα

))
max{k log(k),m1}

where the third line follows because Br ≥ B1 ≥ k log(k) and Br ≥ B1 ≥ m1 and c6 = max(c3, c4+1)
is a constant.

B Appendix for Upper Bound

The following form of Bernstein’s inequality is well known:

Theorem B.1 (Bernstein). Let X1, . . . , Xn be i.i.d Bernoulli random variables with parameter p
and X =

∑n
i=1Xi. Then,

Pr[X ≥ np+ 4 log(1/δ) + 4
√
np log(1/δ)] ≤ δ.

24


	Introduction
	Related Work
	Overview of Lower Bound
	Overview of Upper Bound

	Lower Bound
	Upper Bound
	Preliminaries
	Algorithm

	Appendix for Lower Bound
	Appendix for Upper Bound

