Improved Concentration Bounds for Count-Sketch

Gregory T. Minton ${ }^{1} \quad$ Eric Price ${ }^{2}$
${ }^{1}$ MIT \rightarrow MSR New England
${ }^{2}$ MIT \rightarrow IBM Almaden \rightarrow UT Austin

> 2014-01-06

Count-Sketch: a classic streaming algorithm

Charikar, Chen, Farach-Colton 2002

- Solves "heavy hitters" problem
- Estimate a vector $x \in \mathbb{R}^{n}$ from low dimensional sketch $A x \in \mathbb{R}^{m}$.
- Nice algorithm
- Simple
- Used in Google's MapReduce standard library
- [CCF02] bounds the maximum error over all coordinates.
- We show, for the same algorithm,
- Most coordinates have asymptotically better estimation accuracy.
- The average accuracy over many coordinates will be asymptotically better with high probability.
- Experiments show our asymptotics are correct.
- Caveat: we assume fully independent hash functions.

Outline

(1) Robust Estimation of Symmetric Variables

- Lemma
- Relevance to Count-Sketch
(2) Electoral Colleges and Direct Elections
- Lemma
- Relevance to Count-Sketch
(3) Experiments!

Outline

(1) Robust Estimation of Symmetric Variables

- Lemma
- Relevance to Count-Sketch
(2) Electoral Colleges and Direct Elections
- Lemma
- Relevance to Count-Sketch
(3) Experiments!

Estimating a symmetric random variable's mean

\mathcal{X}

- Unknown distribution \mathcal{X} over \mathbb{R}, symmetric about unknown μ.
- Given samples $x_{1}, \ldots, x_{R} \sim X$.
- How to estimate μ ?

Estimating a symmetric random variable's mean

- Unknown distribution \mathcal{X} over \mathbb{R}, symmetric about unknown μ.
- Given samples $x_{1}, \ldots, x_{R} \sim X$.
- How to estimate μ ?
- Mean:
- Converges to μ as σ / \sqrt{R}.

Estimating a symmetric random variable's mean

- Unknown distribution \mathcal{X} over \mathbb{R}, symmetric about unknown μ.
- Given samples $x_{1}, \ldots, x_{R} \sim X$.
- How to estimate μ ?
- Mean:
- Converges to μ as σ / \sqrt{R}.
- No robustness to outliers

Estimating a symmetric random variable's mean

- Unknown distribution \mathcal{X} over \mathbb{R}, symmetric about unknown μ.
- Given samples $x_{1}, \ldots, x_{R} \sim X$.
- How to estimate μ ?
- Mean:
- Converges to μ as σ / \sqrt{R}.
- No robustness to outliers
- Median:
- Extremely robust
- Doesn't necessarily converge to μ.

Estimating a symmetric random variable's mean

- Median doesn’t converge
- Consider: median of pairwise means

$$
\widehat{\mu}=\operatorname{median}_{i \in\{1,3,5, \ldots\}} \frac{x_{i}+x_{i+1}}{2}
$$

- Converges as $O(\sigma / \sqrt{R})$, even with outliers.
- That is: median of $(\mathcal{X}+\mathcal{X})$ converges.
[See also: Hodges-Lehmann estimator.]

Why does median converge for $\mathcal{X}+\mathcal{X}$?

- WLOG $\mu=0$.
- Define the Fourier transform $\mathcal{F}_{\mathcal{X}}$ of \mathcal{X} :

$$
\mathcal{F}_{\mathcal{X}}(t)=\underset{x \sim \mathcal{X}}{\mathbb{E}}[\cos (\underset{\tau}{\tau})] 2 \pi \approx 6.28
$$

(standard Fourier transform of PDF, specialized to symmetric \mathcal{X}.)

- Convolution \Longleftrightarrow multiplication
- $\mathcal{F}_{\mathcal{X}+\mathcal{X}}(t)=\left(F_{\mathcal{X}}(t)\right)^{2} \geq 0$ for all t.

Theorem

Let \mathcal{Y} be symmetric about 0 with $\mathcal{F}_{\mathcal{Y}}(t) \geq 0$ for all t and $\mathbb{E}\left[Y^{2}\right]=\sigma^{2}$.
Then for all $\epsilon \leq 1$,

$$
\operatorname{Pr}[|y| \leq \epsilon \sigma] \gtrsim \epsilon
$$

Standard Chernoff bounds: median y_{1}, \ldots, y_{R} converges as σ / \sqrt{R}.

Proof

Theorem
Let $\mathcal{F}_{\mathcal{Y}}(t) \geq 0$ for all t and $\mathbb{E}\left[Y^{2}\right]=1$. Then for all $\epsilon \leq 1$,

$$
\operatorname{Pr}[|y| \leq \epsilon] \gtrsim \epsilon .
$$

$$
\begin{aligned}
& \mathcal{F}_{\mathcal{Y}}(t)=\mathbb{E}[\cos (\tau y t)] \geq 1-\frac{\tau^{2}}{2} t^{2} \\
& \operatorname{Pr}[|y| \leq \epsilon]=\mathcal{Y} \cdot \prod_{\epsilon}^{\square}>1
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\mathcal{F}_{\mathcal{Y}} \cdot \xrightarrow[1 / \epsilon]{ }\right\rangle \epsilon \\
& \left.\geq \bigcap_{0.2}\right\} 1 \cdot \underbrace{}_{1 / \epsilon}\} \epsilon \gtrsim \epsilon .
\end{aligned}
$$

Outline

(1) Robust Estimation of Symmetric Variables

- Lemma
- Relevance to Count-Sketch
(2) Electoral Colleges and Direct Elections
- Lemma
- Relevance to Count-Sketch
(3) Experiments!

Count-Sketch

- Want to estimate $x \in \mathbb{R}^{n}$ from small "sketch."
- Hash to k buckets and sum up with random signs Choose random $h:[n] \rightarrow[k], s:[n] \rightarrow\{ \pm 1\}$. Store

$$
y_{j}=\sum_{i: h(i)=j} s(i) x_{i}
$$

- Can estimate x_{i} by $\tilde{x}_{i}=y_{h(i)} s(i)$.

Count-Sketch

- Want to estimate $x \in \mathbb{R}^{n}$ from small "sketch."
- Hash to k buckets and sum up with random signs Choose random $h:[n] \rightarrow[k], s:[n] \rightarrow\{ \pm 1\}$. Store

$$
y_{j}=\sum_{i: h(i)=j} s(i) x_{i}
$$

- Can estimate x_{i} by $\tilde{x}_{i}=y_{h(i)} s(i)$.
- Repeat R times, take the median.
- For each row,

$$
\tilde{x}_{i}-x_{i}=\sum_{j \neq i}\left\{\begin{array}{cl}
\pm x_{j} & \text { with probability } 1 / k \\
0 & \text { otherwise }
\end{array}\right.
$$

- Symmetric, non-negative Fourier transform.

Count-Sketch Analysis

Let

$$
\sigma^{2}=\frac{1}{k} \min _{k-\text { sparse } x_{[k]}}\left\|x-x_{[k]}\right\|_{2}^{2}
$$

be the "typical" error for a single row of Count-Sketch with k columns.
Theorem
For the any coordinate i, we have for all $t \leq R$ that

$$
\operatorname{Pr}\left[\left|\widehat{x}_{i}-x_{i}\right|>\sqrt{\frac{t}{R}} \sigma\right] \leq e^{-\Omega(t)}
$$

(CCF02: $t=R=O(\log n)$ case; $\|\widehat{x}-x\|_{\infty} \lesssim \sigma$ w.h.p.)

Corollary

Excluding $e^{-\Omega(R)}$ probability events, we have for each i that

$$
\mathbb{E}\left[\left(\widehat{x}_{i}-x_{i}\right)^{2}\right]=\sigma^{2} / R
$$

Estimation of multiple coordinates?

- What about the average error on a set S of k coordinates?
- Linearity of expectation: $\mathbb{E}\left[\left\|\widehat{x}_{S}-x_{S}\right\|_{2}^{2}\right]=\frac{O(1)}{R} k \sigma^{2}$.
- Does it concentrate?

$$
\operatorname{Pr}\left[\left\|\widehat{x}_{S}-x_{S}\right\|_{2}^{2}>\frac{O(1)}{R} k \sigma^{2}\right]<p=? ? ?
$$

- By expectation: $p=\Theta(1)$.
- If independent: $p=e^{-\Omega(k)}$.
- Sum of many variables, but not independent...
- Chebyshev's inequality, bounding covariance of error:
- Feasible to analyze (though kind of nasty).
- Ideally get: $p=1 / \sqrt{k}$.
- We can get $p=1 / k^{1 / 14}$.
- Can we at least get "high probability," i.e. $1 / k^{c}$ for arbitrary constant c ?

Boosting the error probability

in a black box manner

- We know that $\left\|\widehat{x}_{S}-x_{S}\right\|_{2}$ is "small" with all but $k^{-1 / 14}$ probability.
- Way to get all but k^{-c} probability: repeat $100 c$ times and take the median of results.
- With all but k^{-c} probability, $>75 c$ of the $\widehat{x}_{S}^{(i)}$ will have "small" error.
- Median of results has at most $3 \times$ "small" total error.
- But resulting algorithm is stupid:
- Run count-sketch with $R^{\prime}=O(c R)$.
- Arbitrarily partition into blocks of R rows.
- Estimate is median (over blocks) of median (within block) of individual estimates.
- Can we show that the direct median is as good as the median-of-medians?

Outline

(1) Robust Estimation of Symmetric Variables

- Lemma
- Relevance to Count-Sketch
(2) Electoral Colleges and Direct Elections
- Lemma
- Relevance to Count-Sketch
(3) Experiments!

Electoral Colleges

- Suppose you have a two-party election for k offices.
- Voters come from a distribution \mathcal{X} over $\{0,1\}^{k}$.
- "True" majority slate of candidates $\bar{x} \in\{0,1\}^{k}$.
- Election day, receive ballots $x_{1}, \ldots, x_{n} \sim \mathcal{X}$.
- How to best estimate \bar{x} ? For each office,

- Is $x^{\text {majority }}$ better than $x^{\text {electoral }}$ in every way? Is

$$
\operatorname{Pr}\left[\left\|x^{\text {majority }}-\bar{x}\right\|>\alpha\right] \leq \operatorname{Pr}\left[\left\|x^{\text {electoral }}-\bar{x}\right\|>\alpha\right]
$$

for all $\alpha,\|\cdot\|$?

Electoral Colleges

- Is $x^{\text {majority }}$ better than $x^{\text {electoral }}$ in every way, so

$$
\operatorname{Pr}\left[\left\|x^{\text {majority }}-\bar{x}\right\|>\alpha\right] \leq \operatorname{Pr}\left[\left\|x^{\text {electoral }}-\bar{x}\right\|>\alpha\right]
$$

for all $\alpha,\|\cdot\|$?

- Don't know, but

Theorem

$$
\operatorname{Pr}\left[\left\|x^{\text {majority }}-\bar{x}\right\|>3 \alpha\right] \leq 4 \cdot \operatorname{Pr}\left[\left\|x^{\text {electoral }}-\bar{x}\right\|>\alpha\right]
$$

for all p-norms $\|\cdot\|$.

Proof

Theorem

$$
\operatorname{Pr}\left[\left\|x^{\text {majority }}-\bar{x}\right\|>3 \alpha\right] \leq 4 \cdot \operatorname{Pr}\left[\left\|x^{\text {electoral }}-\bar{x}\right\|>\alpha\right]
$$

for all p-norms $\|\cdot\|$.
Follows easily from:
Lemma (median ${ }^{3}$)
For any $x_{1}, \ldots, x_{n} \in \mathbb{R}^{k}$, we have
median median median $x_{i}=$ median x_{i} partitions into states states within state populace
(With $4 p$ failure probability, 3/4 of partitions have error at most α; then their median has error 3α.)

Outline

(1) Robust Estimation of Symmetric Variables

- Lemma
- Relevance to Count-Sketch
(2) Electoral Colleges and Direct Elections
- Lemma
- Relevance to Count-Sketch
(3) Experiments!

Concentration for sets

- We know that a "median-of-medians" variant of Count-Sketch would give good estimation of sets with high probability.
- Therefore the standard Count-Sketch would as well.

Theorem

For any constant c, we have for any set S of coordinates that

$$
\operatorname{Pr}\left[\left\|\widehat{x}_{S}-x_{S}\right\|_{2}>O\left(\sqrt{\frac{|S|}{R}} \sigma\right)\right] \lesssim|S|^{-c}
$$

Outline

(1) Robust Estimation of Symmetric Variables

- Lemma
- Relevance to Count-Sketch
(2) Electoral Colleges and Direct Elections
- Lemma
- Relevance to Count-Sketch
(3) Experiments!

Experiments

- Claims
(1) Individual coordinates have error that concentrates like a Gaussian with standard deviation σ / \sqrt{R}.
(2) Sets of coordinates have error $O(\sigma \sqrt{k / R})$ with high probability.
- Evaluate on power-law distribution with typical parameters.

Experiments

(1) Individual coordinates have error that concentrates like a Gaussian with standard deviation σ / \sqrt{R}.

- Compare observed error to expected error for various R, C.

Experiments

(2) Sets of coordinates have error $O(\sigma \sqrt{k / R})$ with high probability. (for large enough R, C)

- Compare observed error to expected error for various R, C.

Distribution of E_{k} for various R with $n=10000, k=25, C=100$

Conclusions

- We present an improved analysis of Count-Sketch, a classic algorithm used in practice.
- Experiments show it gives the right asymptotics
- More applications of our lemmas?
- Independence?

Thank You

