Fast RIP matrices with fewer rows

2013-04-05 1 / 52

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Compressive sensing

- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

3 Proof

- Overview
- Covering Number

Compressive sensing

- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

B Proof

- Overview
- Covering Number

Conclusion

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

Compressive Sensing

Given: A few linear measurements of an (approximately) *k*-sparse vector $x \in \mathbb{R}^n$.

Goal: Recover *x* (approximately).

Eric Price (MIT)

Fast RIP matrices with fewer rows

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch) Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^{T} (e.g. L1 minimization)

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch) Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^{T} (e.g. L1 minimization)

Faster Often: Sparse matrices

Less robust

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Faster

Often: Sparse matrices Less robust Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^T (e.g. L1 minimization)

Slower Dense matrices More robust

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Faster Often: Sparse matrices Less robust ↑ Yesterday: Fourier → sparse Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^{T} (e.g. L1 minimization)

Slower Dense matrices More robust

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Faster Often: Sparse matrices Less robust ↑ Yesterday: Fourier → sparse Structure-oblivious

Recovery algorithms just multiply by Φ, Φ^{T} (e.g. L1 minimization)

Slower Dense matrices More robust

> | Today

• Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.

2013-04-05 6 / 52

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min ||x||_1$
s.t. $\Phi x = y$

A (1) > A (2) > A

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min \|x\|_1$
s.t. $\Phi x = y$

• Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min ||x||_1$
s.t. $\Phi x = y$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
 - the time it takes to multiply by Φ or Φ^T is the bottleneck.

- Goal: recover approximately *k*-sparse *x* from $y = \Phi x$.
- A lot of people use convex optimization:

 $\min ||x||_1$
s.t. $\Phi x = y$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
 - the time it takes to multiply by Φ or Φ^T is the bottleneck.
 - the *Restricted Isometry Property* is a sufficient condition.

4 3 5 4 3

Restricted Isometry Property (RIP)

Eric Price (MIT)

Fast RIP matrices with fewer rows

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2013-04-05 7 / 52

Restricted Isometry Property (RIP)

$$(1-\epsilon)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\epsilon)\|x\|_2^2$$

for all *k*-sparse $x \in \mathbb{R}^n$.

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 7 / 52

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

What properties should an RIP matrix have?

Fast RIP matrices with fewer rows

▲ ■ ▶ ■ つへで 2013-04-05 8/52

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log (n/k))$ rows.

A (10) A (10)

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.

* Talk will assume $n^{0.1} < k < n^{0.9}$, so $\log k \simeq \log n \simeq \log(n/k)$.

A (10) > A (10) > A (10)

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
 - Reconstruction dominated by log *n* multiplications by Φ, Φ^T .

* Talk will assume $n^{0.1} < k < n^{0.9}$, so $\log k \simeq \log n \simeq \log(n/k)$.

A (10) A (10) A (10)

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
 - Reconstruction dominated by log *n* multiplications by Φ, Φ^T .
 - ▶ Random Gaussian matrix: $\Theta(nk \log n)$ time.

* Talk will assume
$$n^{0.1} < k < n^{0.9}$$
, so $\log k \simeq \log n \simeq \log(n/k)$.

2013-04-05 8 / 52

< 回 > < 三 > < 三 >

What properties should an RIP matrix have?

- Good compression: *m* small
 - ▶ Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
 - Reconstruction dominated by log *n* multiplications by Φ, Φ^T .
 - Random Gaussian matrix: $\Theta(nk \log n)$ time.
- Goal: an RIP matrix with $O(n \log n)$ multiplication and small m.

* Talk will assume
$$n^{0.1} < k < n^{0.9}$$
, so $\log k \simeq \log n \simeq \log(n/k)$.

★ ∃ > < ∃ >

Let A contain random rows from a Fourier matrix.

Fast RIP matrices with fewer rows

2013-04-05 9 / 52

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 9 / 52

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

Fast RIP matrices with fewer rows

2013-04-05 9 / 52

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

•
$$m = O(k \log^4 n)$$
 [CT06,RV08,CGV13].

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

•
$$m = O(k \log^4 n)$$
 [CT06,RV08,CGV13].

Ideal:

•
$$m = O(k \log n)$$
.

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

How many rows do you need to ensure that A has the RIP?

•
$$m = O(k \log^4 n)$$
 [CT06,RV08,CGV13].

Ideal:

•
$$m = O(k \log n)$$
.

(Related: how about partial circulant matrices?)

• $m = O(k \log^4 n)$ [RRT12,KMR12].

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

Another motivation: Johnson Lindenstrauss (JL) Transforms

э.

Another motivation: Johnson Lindenstrauss (JL) Transforms

Low dimensional sketch $\Phi(S) \in \mathbb{R}^m$

2013-04-05 11 / 52

Another motivation: Johnson Lindenstrauss (JL) Transforms

 Φ preserves the geometry of S

Low dimensional sketch $\Phi(S) \in \mathbb{R}^m$

2013-04-05 11 / 52

Another motivation: Johnson Lindenstrauss (JL) Transforms

 Φ preserves the geometry of *S*

 $(1-\epsilon)\|x\|_2 \le \|\Phi x\|_2 \le (1+\epsilon)\|x\|_2$

Low dimensional sketch $\Phi(S) \in \mathbb{R}^m$

2013-04-05 11 / 52

Another motivation: Johnson Lindenstrauss (JL) Transforms

 Φ preserves the geometry of *S*

$$(1-\epsilon)\|x\|_{2} \leq \|\Phi x\|_{2} \leq (1+\epsilon)\|x\|_{2}$$
$$\langle \Phi x, \Phi y \rangle = \langle x, y \rangle \pm \epsilon \|x\|_{2} \|y\|_{2}$$

Low dimensional sketch $\Phi(S) \in \mathbb{R}^m$

Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss '84) Let $x \in \mathbb{R}^n$. A random Gaussian matrix Φ will have $(1 - \epsilon) \|x\|_2 \le \|\Phi x\|_2 \le (1 + \epsilon) \|x\|_2$ with probability $1 - \delta$, so long as $m \gtrsim \frac{1}{\epsilon^2} \log(1/\delta)$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 12/52

Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss '84) Let $x \in \mathbb{R}^n$. A random Gaussian matrix Φ will have $(1 - \epsilon) \|x\|_2 \le \|\Phi x\|_2 \le (1 + \epsilon) \|x\|_2$ with probability $1 - \delta$, so long as $m \gtrsim \frac{1}{\epsilon^2} \log(1/\delta)$

Set $\delta = 1/2^k$: embed 2^k points into O(k) dimensions.

What do we want in a JL matrix?

Eric Price (MIT)

Fast RIP matrices with fewer rows

What do we want in a JL matrix?

• Target dimension should be small (close to $\frac{1}{e^2}k$ for 2^k points).

< 6 b

2013-04-05 13 / 52

What do we want in a JL matrix?

- Target dimension should be small (close to $\frac{1}{e^2}k$ for 2^k points).
- Fast multiplication.
 - Approximate numerical algebra problems (e.g., linear regression, low-rank approximation)
 - k-means clustering

A (10) A (10)

Eric Price (MIT)

Fast RIP matrices with fewer rows

> ব ≣ > ≣
> 2013-04-05 14/52

イロト イヨト イヨト イヨト

- Gaussians
 - Dimension $O(\frac{1}{\epsilon^2}k)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2013-04-05 14/52

- Gaussians
 - Dimension $O(\frac{1}{\epsilon^2}k)$.
 - $\frac{1}{\epsilon^2}$ nk multiplication time.

A > + = + + =

- Gaussians
 - Dimension $O(\frac{1}{\epsilon^2}k)$.
 - $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.

- Gaussians
 - Dimension $O(\frac{1}{\epsilon^2}k)$.
 - $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.
 - Existing results: dimension $O(\frac{1}{\epsilon^2} k \log^4 n)$.

Gaussians

- Dimension $O(\frac{1}{\epsilon^2}k)$.
- $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.
 - Existing results: dimension $O(\frac{1}{\epsilon^2}k\log^4 n)$.
 - n log n multiplication time.

A B b 4 B b

Gaussians

- Dimension $O(\frac{1}{\epsilon^2}k)$.
- $\frac{1}{\epsilon^2}nk$ multiplication time.
- Best way known for *fast JL*: by [Krahmer-Ward '11], RIP \Rightarrow JL.
 - Existing results: dimension $O(\frac{1}{\epsilon^2}k \log^4 n)$.
 - n log n multiplication time.
- And by [BDDW '08], $JL \Rightarrow RIP$; so *equivalent*.¹

¹Round trip loses log *n* factor in dimension

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 14 / 52

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

Our result: a fast RIP matrix with fewer rows

- New construction of fast RIP matrices: sparse times Fourier.
- $k \log^3 n$ rows and $n \log n$ multiplication time.

Theorem

If $m \simeq k \log^3 n$, $B \simeq \log^c n$, and A is a random partial Fourier matrix, then Φ has the RIP with probability at least 2/3.

2013-04-05 16 / 52

Our approach is actually works for more general A:

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 17 / 52

Our approach is actually works for more general A:

If A is a "decent" RIP matrix:

• A has RIP (whp), but too many (*mB*) rows.

Our approach is actually works for more general A:

If A is a "decent" RIP matrix:

- *A* has RIP (whp), but too many (*mB*) rows.
- RIP-ness degrades "gracefully" as number of rows decreases:

4 E 5 4

Our approach is actually works for more general A:

If A is a "decent" RIP matrix:

- *A* has RIP (whp), but too many (*mB*) rows.
- RIP-ness degrades "gracefully" as number of rows decreases:
 - For all A_i the RIP constant, although $\gg 1$, is still controlled.

Our approach is actually works for more general A:

If A is a "decent" RIP matrix:

- A has RIP (whp), but too many (*mB*) rows.
- RIP-ness degrades "gracefully" as number of rows decreases:
 - For all A_i the RIP constant, although $\gg 1$, is still controlled.
- **Then** Φ is a good RIP matrix:
 - Φ has the RIP (whp) with $m = O(k \log^3 n)$ rows.
 - Time to multiply by Φ = time to multiply by A + mB.

Construction	Measurements <i>m</i> Multiplication	
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^2}k\log n$	€mn
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^2}k\log^4 n$	nlog n
Partial Circulant [KMR12]	$\frac{1}{\epsilon^2}k\log^4 n$	nlog n
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^2}k\log^3 n$	nlog n
Our result: Hash of partial circulant	$\frac{1}{\epsilon^2}k\log^3 n$	nlog n

Fast RIP matrices with fewer rows

2013-04-05 18/52

Construction	Measurements <i>m</i> Multiplication	
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^2}k\log n$	€MN
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^2}k\log^4 n$	nlog n
Partial Circulant [KMR12]	$\frac{1}{\epsilon^2}k\log^4 n$	n log n
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^2}k\log^3 n$	nlog n
Our result: Hash of partial circulant	$\frac{1}{\epsilon^2}k\log^3 n$	n log n
Iterated Fourier [AC06,AL09,AR13]	$\frac{1}{\epsilon^2}k\log n^{\dagger}$	nlog n

[†] Requires $k \le n^{1/2-\delta}$. This is the "easy" case:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2013-04-05 18/52

Construction	Measurements <i>m</i> Multiplication	
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^2}k\log n$	€MN
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^2}k\log^4 n$	nlog n
Partial Circulant [KMR12]	$\frac{1}{\epsilon^2}k\log^4 n$	n log n
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^2}k\log^3 n$	nlog n
Our result: Hash of partial circulant	$\frac{1}{\epsilon^2}k\log^3 n$	n log n
Iterated Fourier [AC06,AL09,AR13]	$\frac{1}{\epsilon^2}k\log n^{\dagger}$	nlog n

[†] Requires $k \le n^{1/2-\delta}$. This is the "easy" case:

Dimension:	n ———	$\rightarrow k \log^4 n$			
Time:	n log n				
	[RV08]		< 口 > < 問 > < 注 > < 注 >	⊒ √	2

Eric Price (MIT)

2013-04-05 18 / 52

Construction	Measurements <i>m</i> Multiplication	
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^2}k\log n$	€MN
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^2}k\log^4 n$	nlog n
Partial Circulant [KMR12]	$\frac{1}{\epsilon^2}k\log^4 n$	n log n
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^2}k\log^3 n$	nlog n
Our result: Hash of partial circulant	$\frac{1}{\epsilon^2}k\log^3 n$	n log n
Iterated Fourier [AC06,AL09,AR13]	$\frac{1}{\epsilon^2}k\log n^{\dagger}$	nlog n

[†] Requires $k \le n^{1/2-\delta}$. This is the "easy" case:

Dimension:	$n \longrightarrow k$	$\operatorname{og}^4 n \longrightarrow k \log$	n
Time:	n log n	k² log ⁵ n	
	[RV08]	Gaussian	
		< □ > < 圖 > < 直 > < 亘	। । । । । । ।
Eric Price (MIT)	Fast RIP	matrices with fewer rows 2013-	-04-05 18 / 52

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E}\sup_{\boldsymbol{x}\in\boldsymbol{\Sigma}_{k}}\left|\|\boldsymbol{\Phi}\boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|<\epsilon,$$

★ ∃ ► 4

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E} \sup_{x \in \Sigma_k} \left| \| \Phi x \|_2^2 - \| x \|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

Fast RIP matrices with fewer rows

2013-04-05 19 / 52

★ ∃ ► 4

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E} \sup_{x \in \Sigma_k} \left| \|\Phi x\|_2^2 - \|x\|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

Expected deviation of $\Phi^T \Phi$ from mean I_n, in a funny norm.

Let Σ_k is unit-norm *k*-sparse vectors. We want to show for our distribution Φ on matrices that

$$\mathbb{E} \sup_{x \in \Sigma_k} \left| \|\Phi x\|_2^2 - \|x\|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

Expected deviation of $\Phi^T \Phi$ from mean I_n, in a funny norm.

Probabilists have lots of tools to analyze this.

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

20/52

Tools

Eric Price (MIT)

Fast RIP matrices with fewer rows

► ▲ ■ ► ■ • • ○ < ○ 2013-04-05 21 / 52

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Screwdriver

Eric Price (MIT)

Fast RIP matrices with fewer rows

イロト 不良 とくほとくほう

Screwdriver

Drill

Eric Price (MIT)

Fast RIP matrices with fewer rows

イロト イヨト イヨト イヨト

Tools

Screwdriver

Bit sets

Drill

Eric Price (MIT)

Fast RIP matrices with fewer rows

イロト イヨト イヨト イヨト

Tools

Screwdriver

Bit sets

Bit

イロト イヨト イヨト イヨト

Drill

Eric Price (MIT)

Fast RIP matrices with fewer rows

21 / 52

Common interface: *m* drivers, *n* bits \implies *mn* combinations.

Fast RIP matrices with fewer rows

2013-04-05 22/52

イロト イヨト イヨト イヨト

Common interface: *m* drivers, *n* bits \implies *mn* combinations.

Common interface for drill bits

Hex shanks

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 22 / 52

Common interface: *m* drivers, *n* bits \implies *mn* combinations.

Hex shanks

Common interface for drill bits

Common interface for probability

Gaussians

A

(4) (5) (4) (5)

2013-04-05 22 / 52

A Probabilist's Toolbox

Convert to Gaussians

Gaussian concentration

Fast RIP matrices with fewer rows

2013-04-05 23 / 52

A Probabilist's Toolbox

Gaussian concentration

Will prove: symmetrization and Dudley's entropy integral.

Eric Price	

Fast RIP matrices with fewer rows

2013-04-05 23 / 52

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

Overview

Symmetrization

- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

How well does X concentrate about its mean?

< ロ > < 同 > < 回 > < 回 >

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

How well does X concentrate about its mean?

Example (RIP) For some norm $\|\cdot\|$, RIP constant of subsampled Fourier $\|A^TA - I\|$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

How well does X concentrate about its mean?

Example (RIP)

For some norm $\|\cdot\|$, RIP constant of subsampled Fourier

$$||A^T A - I|| = ||\sum A_i^T A_i - I||.$$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Eric Price (MIT)

Proof.

2013-04-05 25/52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

2013-04-05 25/52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|\frac{1}{t}\sum X_i - \mathbb{E}[\frac{1}{t}\sum X_i']\|]$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 25/52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|\frac{1}{t}\sum X_i - \mathbb{E}[\frac{1}{t}\sum X_i']\|] \leq \mathbb{E}[\|\frac{1}{t}\sum (X_i - X_i')\|]$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 25/52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|rac{1}{t}\sum X_i - \mathbb{E}[rac{1}{t}\sum X_i']\|] \leq \mathbb{E}[\|rac{1}{t}\sum (X_i - X_i')\|] \ = \mathbb{E}[\|rac{1}{t}\sum s_i(X_i - X_i')\|]$$

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Proof.

Draw X'_1, \ldots, X'_t independently from the same distribution.

$$\mathbb{E}[\|\frac{1}{t}\sum X_{i} - \mathbb{E}[\frac{1}{t}\sum X_{i}']\|] \leq \mathbb{E}[\|\frac{1}{t}\sum (X_{i} - X_{i}')\|]$$
$$= \mathbb{E}[\|\frac{1}{t}\sum s_{i}(X_{i} - X_{i}')\|]$$

and apply the triangle inequality.

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently.

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

2013-04-05 25 / 52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

2013-04-05 25 / 52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

 $2\mathbb{E}[\|\sum s_iX_i\|]$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 25 / 52

<ロ> <四> <四> <四> <四> <四</p>

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

$$2 \mathbb{E}[\|\sum s_i X_i\|] \leq 3 \mathbb{E}[\|\sum s_i \mathbb{E}[|\mathbf{g}_i|] X_i\|]$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 25 / 52

・ロット (四) ・ (日) ・ (日) ・ (日)

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

$$egin{aligned} &2\,\mathbb{E}[\|\sum s_iX_i\|]\leq 3\,\mathbb{E}[\|\sum s_i\mathbb{E}[|\mathsf{g}_i|]X_i\|]\ &\leq 3\,\mathbb{E}[\|\sum s_i|\mathsf{g}_i|X_i\|] \end{aligned}$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 25 / 52

Lemma (Symmetrization)

Suppose X_1, \ldots, X_t are *i.i.d.* with mean μ . For any norm $\|\cdot\|$,

$$\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}X_{i}-\mu\right\|\right] \leq 2\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}s_{i}X_{i}\right\|\right] \leq 3\mathbb{E}\left[\left\|\frac{1}{t}\sum_{i}g_{i}X_{i}\right\|\right]$$

where $s_i \in \{\pm 1\}$ independently and $g_i \sim N(0, 1)$ independently.

Proof.

We have $\mathbb{E}[|g_i|] \approx .8 > 2/3$.

$$\begin{split} 2\,\mathbb{E}[\|\sum s_iX_i\|] &\leq 3\,\mathbb{E}[\|\sum s_i\mathbb{E}[|\mathbf{g}_i|]X_i\|] \\ &\leq 3\,\mathbb{E}[\|\sum s_i|\mathbf{g}_i|X_i\|] \\ &= 3\,\mathbb{E}[\|\sum \mathbf{g}_iX_i\|]. \end{split}$$

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

04-05 26 / 52

• Gaussian process G_x : a Gaussian at each point $x \in T$.

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 27 / 52

• Gaussian process G_x : a Gaussian at each point $x \in T$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

• Gaussian process G_x : a Gaussian at each point $x \in T$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

$$\mathbb{E}\|A\|_{2} = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} u^{T}Av = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} G_{u,v}$$

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

$$\mathbb{E}\|A\|_{2} = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} u^{T}Av = \mathbb{E} \sup_{u,v \in S^{m-1} \times S^{n-1}} G_{u,v}$$

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|\boldsymbol{A}\|_{2} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{v} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{G}_{\boldsymbol{u}, \boldsymbol{v}}$$

• Depends on the geometry of *T*.

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

Then $G_{u,v} \sim N(0, \|uv^T\|_F^2)$.

$$\mathbb{E}\|\boldsymbol{A}\|_{2} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{v} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{G}_{\boldsymbol{u}, \boldsymbol{v}}$$

• Depends on the geometry of *T*.

• Distance: ||x - y|| is standard deviation of $G_x - G_y$.

- Gaussian process G_x : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup_{x \in T} G_x$.

Example (Maximum singular value of random Gaussian matrix) Let *A* be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, define

$$G_{u,v} := u^T A v = \langle u v^T, A \rangle.$$

$$\mathbb{E}\|\boldsymbol{A}\|_{2} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{v} = \mathbb{E} \sup_{\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}^{m-1} \times \mathcal{S}^{n-1}} \boldsymbol{G}_{\boldsymbol{u}, \boldsymbol{v}}$$

- Depends on the geometry of *T*.
- Distance: ||x y|| is standard deviation of $G_x G_y$.
- In example: $||(u, v) (u', v')|| = ||uv^T u'v'^T||_F$.

• Goal:
$$\mathbb{E} \sup_{x \in T} G_x$$
, where $G_x - G_y \sim N(0, ||x - y||^2)$.

Eric Price (MIT)

Fast RIP matrices with fewer rows

২ য় → য় → য়
 2013-04-05
 28/52

イロト イヨト イヨト イヨト

• Goal:
$$\mathbb{E} \sup_{x \in T} G_x$$
, where $G_x - G_y \sim N(0, ||x - y||^2)$.

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:

•
$$\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$$

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:

•
$$\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$$

• Union bound: with high probability, $G_x \leq \sigma_{max} \sqrt{\log n}$.

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:
 - $\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$
 - Union bound: with high probability, $G_x \leq \sigma_{max} \sqrt{\log n}$.
 - $\mathbb{E} \sup_{x \in T} G_x \leq \sigma_{max} \sqrt{\log n}$

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:
 - $\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$
 - Union bound: with high probability, $G_x \leq \sigma_{max} \sqrt{\log n}$.
 - $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_{max} \sqrt{\log n}$

Eric Price (MIT)

- Goal: $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y \sim N(0, ||x y||^2)$.
- Ignoring geometry:
 - $\Pr[G_x > \sigma_{max}t] \le e^{-t^2/2}$
 - Union bound: with high probability, $G_x \leq \sigma_{max} \sqrt{\log n}$.
 - $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_{max} \sqrt{\log n}$
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 29 / 52

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

Т

< 6 b

2013-04-05 29 / 52

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

Т

< 6 k

(4) (5) (4) (5)

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max}\sqrt{\log 4} + \sigma_{small}\sqrt{\log n}$.

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 29 / 52

A B A A B A

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_{max} \sqrt{\log 4} + \sigma_{small} \sqrt{\log n}$.

Eric Price (MIT)

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

Eric Price (MIT)

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} +$$

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

 $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_2 \sqrt{\log$

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

 $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_3 \sqrt{\log N(\sigma_4)} + \sigma_2 \sqrt{\log N(\sigma_4)} + \sigma_3 \sqrt{\log N(\sigma_4)} + \sigma_4 \sqrt{\log$

A (1) > A (2) > A

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

 $\mathbb{E} \sup_{x \in T} G_x \lesssim \sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log N(\sigma_3)} + \sigma_3 \sqrt{\log N(\sigma_4)} + \cdots$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E} \sup_{x \in T} G_x \lesssim \sum_{r=0}^{\infty} \frac{\sigma_1}{2^r} \sqrt{\log N\left(\frac{\sigma_1}{2^{r+1}}\right)}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E}\sup_{x\in T}G_x\lesssim \sum_{r=0}^{\infty}\frac{\sigma_1}{2^r}\sqrt{\log N\left(\frac{\sigma_1}{2^{r+1}}\right)}$$

A (10) > A (10) > A

- Bound $\mathbb{E} \sup_{x \in T} G_x$, where $G_x G_y$ has variance $||x y||^2$.
- Two levels: $\sigma_1 \sqrt{\log N(\sigma_2)} + \sigma_2 \sqrt{\log n}$.
- Why stop at two?

$$\mathbb{E} \sup_{x \in T} G_x \lesssim \int_0^\infty \sqrt{\log N(\sigma)} d\sigma$$

A (10) > A (10) > A

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)

Define the norm $\|\cdot\|$ of a Gaussian process G by

$$|x - y|| = standard deviation of (G_x - G_y).$$

Then

$$\mathbb{E}\sup_{x\in\mathcal{T}}G_x\lesssim\int_0^\infty\sqrt{\log N(\mathcal{T},\|\cdot\|,u)}du$$

2013-04-05 30 / 52

< ロ > < 同 > < 回 > < 回 >

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)

Define the norm $\|\cdot\|$ of a Gaussian process G by

$$|x - y|| = standard deviation of (G_x - G_y).$$

Then

$$\gamma_2(T, \|\cdot\|) := \mathbb{E} \sup_{x \in T} G_x \lesssim \int_0^\infty \sqrt{\log N(T, \|\cdot\|, u)} du$$

2013-04-05 30 / 52

< ロ > < 同 > < 回 > < 回 >

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)

Define the norm $\|\cdot\|$ of a Gaussian process G by

$$|x - y|| = standard deviation of (G_x - G_y).$$

Then

$$\gamma_2(T, \|\cdot\|) := \mathbb{E} \sup_{x \in T} G_x \lesssim \int_0^\infty \sqrt{\log N(T, \|\cdot\|, u)} du$$

Bound a random variable using geometry.

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ is C-Lipschitz and $g \sim N(0, I_n)$, then for any t > 0,

 $\Pr[f(g) > \mathbb{E}[f(g)] + Ct] \le e^{-\Omega(t^2)}.$

- f concentrates as well as individual Gaussians.
- Can replace f with -f to get lower tail bound.

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ is C-Lipschitz and $g \sim N(0, I_n)$, then for any t > 0,

 $\Pr[f(g) > \mathbb{E}[f(g)] + Ct] \le e^{-\Omega(t^2)}.$

- f concentrates as well as individual Gaussians.
- Can replace f with -f to get lower tail bound.

Example

If $g \sim N(0, I_n)$, then with probability $1 - \delta$,

$$\|g\|_2 \leq \sqrt{n} + O(\sqrt{\log(1/\delta)}).$$

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ is C-Lipschitz and $g \sim N(0, I_n)$, then for any t > 0,

 $\Pr[f(g) > \mathbb{E}[f(g)] + Ct] \le e^{-\Omega(t^2)}.$

- f concentrates as well as individual Gaussians.
- Can replace f with -f to get lower tail bound.

Example

If $g \sim N(0, I_n)$, then with probability $1 - \delta$,

$$\|g\|_2 \leq \sqrt{n} + O(\sqrt{\log(1/\delta)}).$$

For $n = O(1/\epsilon^2 \log(1/\delta))$, this is $1 \pm \epsilon$ approximation.

2013-04-05 32 / 52

Theorem

If $f : \mathbb{R}^n \to \mathbb{R}$ is C-Lipschitz and $g \sim N(0, I_n)$, then for any t > 0,

 $\Pr[f(g) > \mathbb{E}[f(g)] + Ct] \le e^{-\Omega(t^2)}.$

- f concentrates as well as individual Gaussians.
- Can replace f with -f to get lower tail bound.

Example

If $g \sim N(0, I_n)$, then with probability $1 - \delta$,

$$\|g\|_2 \leq \sqrt{n} + O(\sqrt{\log(1/\delta)}).$$

For $n = O(1/\epsilon^2 \log(1/\delta))$, this is $1 \pm \epsilon$ approximation.

 \implies the Johnson-Lindenstrauss lemma.

A Probabilist's Toolbox (recap)

Convert to Gaussians

Gaussian concentration

Fast RIP matrices with fewer rows

2013-04-05 33 / 52

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

3 Proof

- Overview
- Covering Number

Conclusion

34/52

For Σ_k denoting unit-norm k-sparse vectors, we want

$$\mathbb{E} \sup_{x \in \Sigma_k} \left| \|\Phi x\|_2^2 - \|x\|_2^2 \right| < \epsilon,$$
(Expectation of *) = *

Eric Price (MIT)

2013-04-05 35 / 52

Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

$$\begin{array}{c} \mathbb{E} \, \text{sup} \\ \| A^T A - \mathrm{I} \| \end{array} \begin{array}{c} \text{Expected} \\ \text{sup deviation} \end{array}$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 36 / 52

Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Fast RIP matrices with fewer rows

2013-04-05 36 / 52

Proof outline: Rudelson-Vershynin Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

- γ_2 : supremum of Gaussian process
- Σ_k : *k*-sparse unit vectors
- ||·|| : a norm that depends on A (specified in a few slides)

2013-04-05 36 / 52

A B b 4 B b

Proof outline: Rudelson-Vershynin Rudelson-Vershynin: subsampled Fourier, O(k log⁴ n) rows.

- $\gamma_{\rm 2}$: supremum of Gaussian process
- Σ_k : *k*-sparse unit vectors
- ||·|| : a norm that depends on A (specified in a few slides)

< 6 b

2013-04-05 36 / 52

A B F A B F

Proof outline: Rudelson-Vershynin Rudelson-Vershynin: subsampled Fourier, O(k log⁴ n) rows.

- $\gamma_{\rm 2}$: supremum of Gaussian process
- Σ_k : *k*-sparse unit vectors
- ||·|| : a norm that depends on A (specified in a few slides)

2013-04-05 36 / 52

< 同 ト < 三 ト < 三 ト

Proof outline: Rudelson-Vershynin

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows.

Eric Price (MIT)

2013-04-05 36 / 52

< 同 ト < 三 ト < 三 ト

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 36 / 52

Proof outline

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows. Nelson-P-Wootters: sparse times Fourier, $O(k \log^3 n)$ rows.

Proof outline

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows. Nelson-P-Wootters: sparse times Fourier, $O(k \log^3 n)$ rows.

Proof outline

Rudelson-Vershynin: subsampled Fourier, $O(k \log^4 n)$ rows. Nelson-P-Wootters: sparse times Fourier, $O(k \log^3 n)$ rows.

$$\mathbb{E} \sup_{x \in \Sigma_{k}} \left| \|\Phi x\|_{2}^{2} - \|x\|_{2}^{2} \right|$$

$$\leq \mathbb{E} \sup_{x \in \Sigma_{k}} \left| \|\Phi x\|_{2}^{2} - \|Ax\|_{2}^{2} \right| + \mathbb{E} \sup_{x \in \Sigma_{k}} \left| \|Ax\|_{2}^{2} - \|x\|_{2}^{2} \right|$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

where X_A is some matrix depending x and A, and s is the vector of random sign flips used in H.

2013-04-05 37 / 52

$\mathbb{E} \sup_{x \in \Sigma_k} \left| \|X_A s\|_2^2 - \mathbb{E}_s \|X_A s\|_2^2 \right| + (\text{RIP constant of } A)$

Eric Price (MIT)

Fast RIP matrices with fewer rows

▶ < 클 ▶ 클 ∽ ♀ ○</p>
2013-04-05 38 / 52

イロト イポト イヨト イヨト

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 38 / 52

 $\mathbb{E} \sup_{x \in \Sigma_k} \left| \|X_A s\|_2^2 - \mathbb{E}_s \|X_A s\|_2^2 \right| + (\text{RIP constant of } A)$ By assumption, this is small. (Recall A has extra rows)

This is a *Rademacher Chaos Process*. We have to do some work to show that it is small.

Fast RIP matrices with fewer rows

2013-04-05 38 / 52

Proof part II: probability and geometry

By [KMR12] and some manipulation, can bound the Rademacher chaos using

 $\gamma_2(\Sigma_k, \|\cdot\|_A)$

Dudley's entropy integral: can estimate this by bounding the *covering* number $N(\Sigma_k, \|\cdot\|_A, u)$.

A B b 4 B b

 $N(\Sigma_k, \|\cdot\|_A, u)$

for the norm $||x||_A$:

Fast RIP matrices with fewer rows

2013-04-05 40 / 52

 $N(\Sigma_k, \|\cdot\|_A, u)$

for the norm $||x||_A$:

Fast RIP matrices with fewer rows

 ▶ < ∃ </th>
 > ∃
 < <</th>
 <</th>

 2013-04-05
 40 / 52

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $N(\Sigma_k, \|\cdot\|_A, u)$

for the norm $||x||_A$:

Fast RIP matrices with fewer rows

< 6 b

(4) (5) (4) (5)

э 2013-04-05 40 / 52

 $N(\Sigma_k, \|\cdot\|_A, u)$

for the norm $||x||_A$:

< A

-

 $N(\Sigma_k, \|\cdot\|_A, u)$

for the norm $||x||_A$:

$$||x||_{\mathcal{A}} = \max_{i\in[m]} ||A_ix||_2.$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

< A

2013-04-05 40 / 52

э

-

 $N(\Sigma_k, \|\cdot\|_A, u)$

for the norm $||x||_A$:

$$||x||_{\mathcal{A}} = \max_{i\in[m]} ||A_ix||_2.$$

Rudelson-Vershynin: estimates $N(\Sigma_k, \|\cdot\|_A, u)$ when B = 1.

Eric Price (MIT)

Fast RIP matrices with fewer rows

Progress

イロト イポト イヨト イヨト

41 / 52

э

Outline

Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Concentration of measure: a toolbox

- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Proof

- Overview
- Covering Number

Conclusion

42/52

 $N(\Sigma_k, \|\cdot\|_A, u)$

 $\Sigma_k = \{k \text{-sparse } x \mid ||x||_2 \leq 1\}$

Eric Price (MIT)

Fast RIP matrices with fewer rows

$$N(\Sigma_k, \|\cdot\|_A, u) \leq N(B_1, \|\cdot\|_A, u/\sqrt{k})$$

$$\Sigma_k = \{k \text{-sparse } x \mid ||x||_2 \le 1\}$$

$$\subset \sqrt{k}B_1 = \{x \mid ||x||_1 \le \sqrt{k}\}$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 ¥3/52

 $N(B_1, \|\cdot\|_A, u)$

Eric Price (MIT)

Fast RIP matrices with fewer rows

> < E > E ∽ Q ⊂ 2013-04-05 44/52

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $N(B_1, \|\cdot\|_A, u)$

• Simpler to imagine: what about ℓ_2 ?

Fast RIP matrices with fewer rows

2013-04-05 44 / 52

A (10) A (10)

 $N(B_1, \|\cdot\|_A, u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1,\|\cdot\|_2,u)$

A b

 $N(B_1,\|\cdot\|_A,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1, \|\cdot\|_2, u) \lesssim \left\{egin{array}{cc} (1/u)^{O(n)} & ext{by an easy volume argument} \end{array}
ight.$

 $N(B_1,\|\cdot\|_A,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

$$N(B_1, \|\cdot\|_2, u) \lesssim \left\{ egin{array}{cc} (1/u)^{O(n)} & ext{by a} \ n^{O(1/u^2)} & ext{trick} \end{array}
ight.$$

by an easy volume argument trickier; next few slides

 $N(B_1,\|\cdot\|_A,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

 $N(B_1, \|\cdot\|_2, u) \lesssim \begin{cases} (1/u)^{O(n)} & \text{by an easy volume argument} \\ n^{O(1/u^2)} & \text{trickier; next few slides} \end{cases}$

• Latter bound is better when $u \gg 1/\sqrt{n}$.

 $N(B_1,\|\cdot\|_A,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many l₂ balls of radius u required to cover B₁?

 $N(B_1, \|\cdot\|_2, u) \lesssim \begin{cases} (1/u)^{O(n)} & \text{by an easy volume argument} \\ n^{O(1/u^2)} & \text{trickier; next few slides} \end{cases}$

- Latter bound is better when $u \gg 1/\sqrt{n}$.
- Maurey's empirical method: generalizes to arbitrary norms

 $N(B_1,\|\cdot\|_A,u)$

- Simpler to imagine: what about ℓ_2 ?
- How many ℓ_2 balls of radius *u* required to cover B_1 ?

$$N(B_1, \|\cdot\|_A, u) \lesssim \begin{cases} (\sqrt{B}/u)^{O(n)} & \text{by an easy volume argument} \\ n^{O(B/u^2)} & ext{trickier; next few slides} \end{cases}$$

- Latter bound is better when $u \gg 1/\sqrt{n}$.
- Maurey's empirical method: generalizes to arbitrary norms

Covering Number Bound Maurey's empirical method

• How many balls of radius u required to cover B_1 ?

Fast RIP matrices with fewer rows

2013-04-05 45 / 52

Covering Number Bound Maurey's empirical method

• How many balls of radius *u* required to cover B_1^+ ?

Fast RIP matrices with fewer rows

2013-04-05 45 / 52

Covering Number Bound Maurey's empirical method

How many balls of radius *u* required to cover B₁⁺?
Consider any *x* ∈ B₁⁺.

Fast RIP matrices with fewer rows

2013-04-05 45 / 52

★ ∃ ► 4

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

 $\mathbb{E}[\|\mathbf{Z}-\mathbf{X}\|] \leq u.$

All x lie within u of at least one possible z.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq$ number of **z**

- How many balls of radius u required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \implies \mathbf{z}$.

- How many balls of radius *u* required to cover B_1^+ ?
- Consider any $\mathbf{x} \in B_1^+$.
- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \implies \mathbf{z}$.

Will show: $\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_{A}] \leq \sqrt{B/t}$

- Let z_1, \ldots, z_t be i.i.d. randomized roundings of *x* to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \implies \mathbf{z}$.

Will show: $\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_{A}] \leq \sqrt{B/t} \implies N(T, \|\cdot\|_{A}, u) \leq n^{B/u^{2}}$

- Let z_1, \ldots, z_t be i.i.d. randomized roundings of x to simplex.
- The sample mean $\mathbf{z} = \frac{1}{t} \sum z_i$ converges to \mathbf{x} as $t \to \infty$.
- Let *t* be large enough that, regardless of *x*,

- All x lie within u of at least one possible z.
 - Then $N(B_1, \|\cdot\|, u) \leq \text{number of } \mathbf{z} \leq (n+1)^t$.
 - Only $(n+1)^t$ possible tuples $(z_1, \ldots, z_t) \implies \mathbf{z}$.

• Goal:
$$\mathbb{E}[\|\mathbf{Z} - \mathbf{X}\|_{A}] \lesssim \sqrt{B/t}$$
.

Eric Price (MIT)

Fast RIP matrices with fewer rows

> < E > E ∽ Q ⊂ 2013-04-05 46/52

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_{A}] \lesssim \sqrt{B/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_A]$$

2013-04-05 46/52

イロト イポト イヨト イヨト

- Goal: $\mathbb{E}[\|\mathbf{z} \mathbf{x}\|_{A}] \lesssim \sqrt{B/t}$.
- Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \boldsymbol{x}\|_A] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_A]$$

イロト イポト イヨト イヨト

• Goal:
$$\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_A] \lesssim \sqrt{B/t}$$
.

• Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum z_i - \mathbf{x}\|_A] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i z_i\|_A]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_A]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim N(\mathbf{0}, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

A (10) × A (10) × A (10)

• Goal:
$$\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_{\mathcal{A}}] \lesssim \sqrt{B/t}$$
.

• Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_A] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_A]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_A]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim N(0, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

• Hence $\mathbb{E}[\|\mathbf{g}\|_2^2] = (\text{fraction of } z_i \text{ that are nonzero}) \leq 1.$

• Goal:
$$\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_A] \lesssim \sqrt{B/t}$$
.

• Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \boldsymbol{x}\|_A] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_A]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\boldsymbol{g}\|_A]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim N(0, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

- Hence $\mathbb{E}[\|\mathbf{g}\|_2^2] = (\text{fraction of } z_i \text{ that are nonzero}) \leq 1.$
- Goal: $\mathbb{E}[\|\mathbf{g}\|_A] \leq \sqrt{B}$.

• Goal:
$$\mathbb{E}[\|\mathbf{z} - \mathbf{x}\|_A] \lesssim \sqrt{B/t}$$
.

• Symmetrize!

$$\mathbb{E}[\|\frac{1}{t}\sum Z_i - \mathbf{x}\|_A] \lesssim \mathbb{E}[\|\frac{1}{t}\sum g_i Z_i\|_A]$$
$$=: \frac{1}{\sqrt{t}} \mathbb{E}[\|\mathbf{g}\|_A]$$

where $\mathbf{g} \in \mathbb{R}^n$ has

$$\mathbf{g}_j \sim N(0, rac{ ext{number of } z_i ext{ at } e_j}{t})$$

independently in each coordinate.

- Hence $\mathbb{E}[\|\mathbf{g}\|_2^2] = (\text{fraction of } z_i \text{ that are nonzero}) \leq 1.$
- Goal: $\mathbb{E}[\|\mathbf{g}\|_A] \leq \sqrt{B}$.
- (Note: $\mathbb{E}[\|\mathbf{g}\|_2] \leq 1 \implies N(B_1, \ell_2, u) \leq n^{1/u^2}$.)

Progress

<ロ> <問> <問> < 回> < 回> 、

Progress

<ロ> <問> <問> < 回> < 回> 、

э

• Just want to bound $\mathbb{E}[\|\mathbf{g}\|_{\mathcal{A}}]$.

 $\mathbf{g} \in \mathbb{R}^n$ has Gaussian coordinates, *k*-sparse, total variance 1.

Fast RIP matrices with fewer rows

A .

2013-04-05 48 / 52

Ag = subset of **g**

• Just want to bound $\mathbb{E}[\|\mathbf{g}\|_{\mathcal{A}}]$. Each is N(0, 1)

 $\mathbf{g} \in \mathbb{R}^n$ has Gaussian coordinates, *k*-sparse, total variance 1. • Each coordinate $\hat{\mathbf{g}}_j = F_j \mathbf{g} \sim N(0, 1)$.

★ ∃ ► 4

Aq = subset of $\hat{\mathbf{g}}$

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1

★ ∃ ► 4

Aq = subset of $\hat{\mathbf{g}}$

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{g} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate ĝ_j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{q}}\|_{\infty} \leq \sqrt{\log n}$.

Aq = subset of $\hat{\mathbf{g}}$

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
 - Gives the log n loss in their bound.

Aq = subset of $\hat{\mathbf{g}}$

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{q}}\|_{\infty} \leq \sqrt{\log n}$.
 - Gives the log n loss in their bound.
- If the $\hat{\mathbf{q}}_i$ were independent:

$$\|A_i \mathbf{g}\|_2 \le \sqrt{B} + O(\sqrt{\log n}) \quad \text{w.h.p.}$$

$$\uparrow$$
Lipschitz concentration
(just like $\sqrt{n} + \sqrt{\log(1/\delta)}$ in tutorial)

Aq = subset of **a**

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{q}}\|_{\infty} \leq \sqrt{\log n}$.
 - Gives the log n loss in their bound.
- If the $\hat{\mathbf{q}}_i$ were independent:

$$\|A_i \mathbf{g}\|_2 \leq \sqrt{B} + O(\sqrt{\log n})$$
 w.h.p.

• Would get $\mathbb{E}[\|\mathbf{g}\|_A] \lesssim \sqrt{B}$

Aq = subset of **a**

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{q}}\|_{\infty} \leq \sqrt{\log n}$.
 - Gives the log n loss in their bound.
- If the $\hat{\mathbf{q}}_i$ were independent:

$$\|A_i \mathbf{g}\|_2 \leq \sqrt{B} + O(\sqrt{\log n})$$
 w.h.p.

• Would get $\mathbb{E}[\|\mathbf{g}\|_{A}] \leq \sqrt{B}$ so union bound just loses a constant.

2013-04-05 48/52

Aq = subset of $\hat{\mathbf{g}}$

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{q}}\|_{\infty} \leq \sqrt{\log n}$.
 - Gives the log n loss in their bound.
- If the $\hat{\mathbf{q}}_i$ were independent:

$$\|A_i \mathbf{g}\|_2 \leq \sqrt{B} + O(\sqrt{\log n})$$
 w.h.p.

- Would get $\mathbb{E}[\|\mathbf{g}\|_{A}] \leq \sqrt{B}$ so union bound just loses a constant.
- They're not independent... but the A_i satisfy "very weak" RIP.

Bounding the norm (intuition)

Aq = subset of $\hat{\mathbf{g}}$

Each is N(0, 1)• Just want to bound $\mathbb{E}[||\mathbf{g}||_A]$.

 $\mathbf{q} \in \mathbb{R}^n$ has Gaussian coordinates, k-sparse, total variance 1.

- Each coordinate g
 _j = F_jg ~ N(0, 1).
 Rudelson-Vershynin: B = 1
- - Naive: $\|\widehat{\mathbf{q}}\|_{\infty} \leq \sqrt{\log n}$.
 - Gives the log n loss in their bound.
- If the $\hat{\mathbf{q}}_i$ were independent:

$$\|A_i \mathbf{g}\|_2 \leq \sqrt{B} + O(\sqrt{\log n})$$
 w.h.p.

- Would get $\mathbb{E}[\|\mathbf{g}\|_{A}] \leq \sqrt{B}$ so union bound just loses a constant.
- They're not independent... but the A_i satisfy "very weak" RIP.
 - Bound $||A_i \mathbf{g}||_2$ using $||\mathbf{g}||_2$, which has independent entries.

∃ ► < ∃ ►</p>

Ag = subset of ĝ

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 49/52

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_A]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow g$$
.

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$
.

• The full proof is complicated.

2013-04-05 49 / 52

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{\mathcal{A}}]$.

(the "large t" limit).

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$
.

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, x_i)$$

Ag= subset of \hat{g}

2013-04-05 49 / 52

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{\mathcal{A}}]$.

(the "large t" limit).

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$
.

• The full proof is complicated.

Will assume

• Two examples:

$$\mathbf{g}_i \sim N(\mathbf{0}, x_i)$$

A (10) A (10) A (10)

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, \mathbf{x}_i)$$

(the "large t" limit).

• Two examples:

• Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero.

Ag= subset of \hat{g}

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{A}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, \mathbf{x}_i)$$

(the "large t" limit).

- Two examples:
 - **1** Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero.
 - 2 Very spread out: $x_1 = \cdots = x_k = 1/k$.

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, \mathbf{x}_i)$$

(the "large t" limit).

- Two examples:
 - Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero.

Very spread out:
$$x_1 = \cdots = x_k = 1/k$$
.

Example (1):

Just want to bound $\mathbb{E}[\|\boldsymbol{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, \mathbf{x}_i)$$

(the "large t" limit).

- Two examples:
 - Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero.

Very spread out:
$$x_1 = \cdots = x_k = 1/k$$
.

Example (1):

•
$$||x||_1 \ll 1$$
.

2013-04-05 49 / 52

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, \mathbf{x}_i)$$

(the "large t" limit).

- Two examples:
 - Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero. • Very spread out: $x_1 = \cdots = x_k = 1/k$.

• $||x||_1 \ll 1$.

• Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1/\sqrt{k}$.

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(0, x_i)$$

(the "large t" limit).

- Two examples:
 - Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero. • Very spread out: $x_1 = \cdots = x_k = 1/k$.

Example (1):

- $||x||_1 \ll 1$.
- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1/\sqrt{k}$.
- $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim k^{-1/4} \cdot \sqrt{\log n} \ll 1.$

2013-04-05 49 / 52

不同 トイモトイモ

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(\mathbf{0}, \mathbf{x}_i)$$

(the "large t" limit).

- Two examples:
 - Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero. • Very spread out: $x_1 = \cdots = x_k = 1/k$.

Example (1):

- $||x||_1 \ll 1$.
- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1/\sqrt{k}$.
- $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim k^{-1/4} \cdot \sqrt{\log n} \ll 1.$
- Hence $||A_i \mathbf{g}||_2 \ll \sqrt{B}$ for all *i*.

 $A\mathbf{g}$ = subset of $\widehat{\mathbf{g}}$

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_{\mathcal{A}}]$.

• Recall:
$$x \in \Sigma_k / \sqrt{k} \longrightarrow z_1, \dots, z_t \longrightarrow \mathbf{g}$$

• The full proof is complicated.

Will assume

$$\mathbf{g}_i \sim N(0, x_i)$$

(the "large t" limit).

• Two examples:

() Very concentrated: $x_1 = 1/\sqrt{k}$, rest is zero.

2 Very spread out: $x_1 = \cdots = x_k = 1/k$.

Example (1):

• $||x||_1 \ll 1$.

- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1/\sqrt{k}$.
- $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim k^{-1/4} \cdot \sqrt{\log n} \ll 1.$
- Hence $||A_i \mathbf{g}||_2 \ll \sqrt{B}$ for all *i*.

 $A\mathbf{g}$ = subset of $\widehat{\mathbf{g}}$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 50 / 52

3

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_A]$ when $\mathbf{g}_i \sim N(0, 1/k)$ for $i \in [k]$.

• $||A_i \mathbf{g}||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot 1/\sqrt{k}$$

Such want to bound $\mathbb{E}[\|\mathbf{y}\|_{A}]$ when $\mathbf{y}_{i} \sim N(0, 1/k)$ for

• $||A_i \mathbf{g}||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot 1/\sqrt{k}$$

• Then with high probability,

 $\|A_i \mathbf{g}\|_2 \lesssim \sqrt{B} + C\sqrt{\log n}$

→ ∃ →

• $||A_i \mathbf{g}||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot 1/\sqrt{k}$$

• Then with high probability,

$$\|A_i \mathbf{g}\|_2 \lesssim \sqrt{B} + C\sqrt{\log n}$$

Naive bound:

$$\|A_i\|_{RIP} \le \|A_i\|_F = \sqrt{Bk} \implies C \le \sqrt{B}$$

2013-04-05 50 / 52

• $||A_i \mathbf{g}||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot 1/\sqrt{k}$$

• Then with high probability,

$$\|A_i \mathbf{g}\|_2 \lesssim \sqrt{B} + C\sqrt{\log n}$$

Naive bound:

$$\|A_i\|_{RIP} \le \|A_i\|_F = \sqrt{Bk} \implies C \le \sqrt{B}$$

• "Very weak" RIP bound, with $B = \log^c n$: $\|A_i\|_{RIP} \lesssim \|A_i\|_F / \sqrt{\log n}$

Bounding the norm (example 2) Just want to bound $\mathbb{E}[\|\mathbf{q}\|_{\ell}]$ when $\mathbf{q} \in \mathcal{N}(0, 1/k)$ for $i \in [k]$

Just want to bound $\mathbb{E}[\|\mathbf{g}\|_A]$ when $\mathbf{g}_i \sim N(0, 1/k)$ for $i \in [k]$.

• $||A_i \mathbf{g}||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot 1/\sqrt{k}$$

Then with high probability,

$$\|A_i \mathbf{g}\|_2 \lesssim \sqrt{B} + C\sqrt{\log n}$$

Naive bound:

$$\|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}} \leq \|\boldsymbol{A}_i\|_{\boldsymbol{F}} = \sqrt{\boldsymbol{B}\boldsymbol{k}} \implies \boldsymbol{C} \leq \sqrt{\boldsymbol{B}}$$

• "Very weak" RIP bound, with $B = \log^c n$: $\|A_i\|_{RIP} \lesssim \|A_i\|_F / \sqrt{\log n}$

So

$$C \lesssim \sqrt{B/\log n} \implies \|A_i \mathbf{g}\|_2 \lesssim \sqrt{B}$$
 w.h.p

• $||A_i \mathbf{g}||_2$ is C-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot 1/\sqrt{k}$$

Then with high probability,

$$\|A_i\mathbf{g}\|_2 \lesssim \sqrt{B} + C\sqrt{\log n}$$

Naive bound:

$$\|A_i\|_{RIP} \le \|A_i\|_F = \sqrt{Bk} \implies C \le \sqrt{B}$$

• "Very weak" RIP bound, with $B = \log^c n$: $\|A_i\|_{RIP} \lesssim \|A_i\|_F / \sqrt{\log n}$

So

$$C \lesssim \sqrt{B/\log n} \implies \|A_i \mathbf{g}\|_2 \lesssim \sqrt{B}$$
 w.h.p

• So $\mathbb{E} \|\mathbf{g}\|_A = \max \|A_i \mathbf{g}\|_2 \lesssim \sqrt{B}$.

Union bound just loses a constant factor

Eric Price (MIT)

Fast RIP matrices with fewer rows

イロト イポト イヨト イヨト

Sample mean **z** expects to lie within *u* of **x** for $t \ge B/u^2$

Eric	Price	(MIT)

 ▲ 王 → 요 ○

 2013-04-05
 51 / 52

(a) < (a) < (b) < (b)

Covering number of B_1 is $(n+1)^{B/u^2}$

Eric Price (MIT)

Fast RIP matrices with fewer rows

২ য় > য় > য় < ৩ < ০
 2013-04-05
 51 / 52

イロト イポト イヨト イヨト

Entropy integral is
$$\sqrt{kB\log^3 n}$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 51 / 52

э

(a) < (a) < (b) < (b)

$$\mathsf{RIP} \text{ constant } \epsilon \lesssim \sqrt{\frac{k \log^3 n}{m}}$$

Eric Price (MIT)

 →
 ≥

 </th

• We get fast RIP matrices with $O(k \log^3 n)$ rows.

Fast RIP matrices with fewer rows

2013-04-05 52 / 52

A (10) × A (10) × A (10)

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² n necessary?

A b

2013-04-05 52 / 52

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² n necessary?
 - Loss seems to be from Dudley's entropy integral:

$$\sup\sum \leq \sum \sup$$

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² n necessary?
 - Loss seems to be from Dudley's entropy integral:

$$\sup\sum \leq \sum \sup$$

Generic chaining: tight but harder to use. [Fernique, Talagrand]

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² *n* necessary?
 - Loss seems to be from Dudley's entropy integral:

$$\sup\sum \leq \sum \sup$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra log³ *n* necessary?
 - ▶ [Krahmer-Ward] only needs "model-based" RIP; could save log *n*.

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² n necessary?
 - Loss seems to be from Dudley's entropy integral:

$$\sup\sum \leq \sum \sup$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra log³ *n* necessary?
 - ▶ [Krahmer-Ward] only needs "model-based" RIP; could save log *n*.
- Any other constructions?

52 / 52

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² *n* necessary?
 - Loss seems to be from Dudley's entropy integral:

$$\sup\sum \leq \sum \sup$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra log³ n necessary?
 - ▶ [Krahmer-Ward] only needs "model-based" RIP; could save log *n*.
- Any other constructions?
- Lots of cool techniques in the field; can we use them elsewhere?

- We get fast RIP matrices with $O(k \log^3 n)$ rows.
- Is the extra log² *n* necessary?
 - Loss seems to be from Dudley's entropy integral:

$$\sup\sum \leq \sum \sup$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra log³ n necessary?
 - ▶ [Krahmer-Ward] only needs "model-based" RIP; could save log *n*.
- Any other constructions?
- Lots of cool techniques in the field; can we use them elsewhere?

Thanks!

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 53 / 52

Thoughts on loss

Recall that

$$N(B_1,\ell_2,u) \le n^{1/u^2}$$

Eric Price (MIT)

Fast RIP matrices with fewer rows

イロト イヨト イヨト イヨト

Recall that

$$N(B_1,\ell_2,u)\leq n^{1/u^2}$$

• So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

Eric Price (MIT)

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g, x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$

A (1) > A (2) > A

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

• So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g,x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$ • We can compute this directly:

$$\mathbb{E}\sup_{x\in B_1}\langle g,x\rangle=\|g\|_{\infty}=\sqrt{\log n}.$$

Recall that

$$N(B_1,\ell_2,u) \leq n^{1/u^2}$$

• So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

• But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g,x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$ • We can compute this directly:

$$\mathbb{E}\sup_{x\in B_1}\langle g,x\rangle=\|g\|_{\infty}=\sqrt{\log n}.$$

• Generic chaining: there exists a partition A_1, A_2, \ldots such that

$$\gamma_2 \simeq \sup_x \sum \sqrt{\log|A_{i+1}|} d(x, A_i)$$

4 3 5 4 3

Recall that

$$N(B_1,\ell_2,u) \le n^{1/u^2}$$

So the entropy integral gives

$$\gamma_2(B_1,\ell_2) \le \log^{3/2} n.$$

But the associated Gaussian process is just:

$$\gamma_2(B_1,\ell_2) = \mathbb{E} \sup_{x \in B_1} \langle g,x \rangle$$

for $g \sim N(0, I_n)$. (Check: $\mathbb{E}[(\langle g, x \rangle - \langle g, y \rangle)^2] = ||x - y||_2^2)$ • We can compute this directly:

$$\mathbb{E}\sup_{x\in B_1}\langle g,x\rangle=\|g\|_{\infty}=\sqrt{\log n}.$$

• Generic chaining: there exists a partition A_1, A_2, \ldots such that

$$\gamma_2 \simeq \sup_x \sum \sqrt{\log|A_{i+1}|} d(x, A_i)$$

• Dudley: choose A_i so sup $d(x, A_i) \leq \sigma_1/2^i$.

• Answer is n^t , where t is such that

$$\boldsymbol{E} := \mathbb{E}[\|\frac{1}{t}\sum \boldsymbol{z}_i - \boldsymbol{x}\|] \leq \boldsymbol{u}.$$

2013-04-05 55 / 52

• Answer is n^t , where *t* is such that

E t is such that
$$\mathbb{E}[\frac{1}{t}\sum z_i]$$
$$E := \mathbb{E}[\|\frac{1}{t}\sum z_i - \tilde{x}\|] \le u.$$

• Symmetrize:

$$E \lesssim rac{1}{t} \mathbb{E}[\|\sum g_i z_i\|]$$

for $g_i \sim N(0, 1)$ i.i.d.

- Answer is n^t , where t is such that $E := \mathbb{E}[\|\frac{1}{t}\sum z_i - \check{x}\|] \le u.$
- Symmetrize:

$$E \lesssim rac{1}{t} \mathbb{E}[\|\sum g_i z_i\|]$$

for $g_i \sim N(0, 1)$ i.i.d.

• Then $g := \sum g_i z_i$ is an independent Gaussian in each coordinate.

- Answer is n^t , where t is such that $E := \mathbb{E}[\|\frac{1}{t}\sum z_i - \check{x}\|] \le u.$
- Symmetrize:

$$E \lesssim rac{1}{t} \mathbb{E}[\|\sum g_i z_i\|]$$

for $g_i \sim N(0, 1)$ i.i.d.

Then g := ∑ g_iz_i is an independent Gaussian in each coordinate.
In ℓ₂,

$$\frac{1}{t} \mathbb{E}[\|g\|_2] \le \frac{1}{t} \mathbb{E}[\|g\|_2^2]^{1/2} = \frac{\sqrt{\text{number nonzero } z_i}}{t} \le \frac{1}{\sqrt{t}}$$

giving an $n^{O(1/u^2)}$ bound.

• $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \ldots, z_t symmetrized to g.

 $\mathcal{G}(x) = \mathbb{E}_{z,g} \|g\|_A$

 ▶<</th>
 ■
 ⊃
 ○
 ○

 2013-04-05
 56 / 52

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} ||g||_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(\mathbf{x}) \leq \mathcal{G}(\mathbf{x}_{\textit{large}}) + \mathcal{G}(\mathbf{x}_{\textit{small}})$

• x_{large} : Locations where $x_i > (\log n)/k$

A (1) > A (2) > A (2)

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} \|g\|_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

• x_{large} : Locations where $x_i > (\log n)/k$

Bound:

 $\|X_{large}\|_1$

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} \|g\|_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

• x_{large} : Locations where $x_i > (\log n)/k$

Bound:

 $\|X_{large}\|_1$

• Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.

2013-04-05 56 / 52

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} \|g\|_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|X_{large}\|_1$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} \|g\|_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|\boldsymbol{x}_{large}\|_1 \leq 1/\log n.$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k

A (B) < (B) < (B) < (B) </p>

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} \|g\|_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

- x_{large} : Locations where $x_i > (\log n)/k$
 - Bound:

 $\|\boldsymbol{x}_{large}\|_1 \leq 1/\log n.$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k
- Absorbs the loss from union bound.

A (B) < (B) < (B) < (B) </p>

- $x \in \Sigma_k / \sqrt{k} \subset B_1$ rounded to z_1, \dots, z_t symmetrized to g. $\mathcal{G}(x) = \mathbb{E}_{z,g} ||g||_A$
- First: split *x* into "large" and "small" coordinates.

 $\mathcal{G}(x) \leq \mathcal{G}(x_{large}) + \mathcal{G}(x_{small})$

• x_{large} : Locations where $x_i > (\log n)/k$

Bound:

 $\|x_{large}\|_1 \leq 1/\log n.$

- Given $||x||_2^2 \le 1/k$, maximal $||x_{large}||_1$ if spread out.
- k/(log² n) of value (log n)/k
- Absorbs the loss from union bound.
- So can focus on $||x||_{\infty} < (\log n)/k$.

4 **A** N A **B** N A **B** N

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\#z_j \text{ at vertex } e_i\}/t^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\#z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

< 回 ト < 三 ト < 三

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t}$$

2013-04-05 57 / 52

(4) (5) (4) (5)

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

Naive bound:

 $C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

Naive bound:

$$C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$$

• "Very weak" RIP bound:

$$\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k})$$

4 E 6 4

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

• Naive bound:

 $C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

- *k*-sparse *x* rounded to *z*₁,...,*z*_{*t*} symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

Naive bound:

 $C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \le \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

Gives

$$C \lesssim \sqrt{B/(t\log n)}$$

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$\boldsymbol{C} = \|\boldsymbol{A}_i\|_{\boldsymbol{R}\boldsymbol{I}\boldsymbol{P}}\cdot\|\boldsymbol{\sigma}\|_{\infty}$$

Naive bound:

 $C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \leq \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$

11.

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

Gives

So with high probability,
$$\|A_ig\|_2 \lesssim \sqrt{B/t} + C\sqrt{\log n} \lesssim \sqrt{B/t}$$
.

- *k*-sparse *x* rounded to z_1, \ldots, z_t symmetrized to *g*.
- $\|x\|_{\infty} < (\log n)/k$
- $g_i \sim N(0, \sigma_i^2)$ for $\sigma_i^2 = \{\# z_j \text{ at vertex } e_i\}/t^2 \approx x_i/t$.
- $||A_ig||_2$ is *C*-Lipschitz with factor

$$C = \|A_i\|_{RIP} \cdot \|\sigma\|_{\infty}$$

Naive bound:

 $C \lesssim \|A_i\|_F \cdot \sqrt{\|x\|_{\infty}/t} \leq \sqrt{Bk} \cdot \sqrt{\log n/(kt)} = \sqrt{B\log n/t}$

• "Very weak" RIP bound: for some $B = \log^c n$, $\|A_i\|_{RIP} \lesssim \log^4 n(\sqrt{B} + \sqrt{k}) \le \|A_i\|_F / \log n$.

Gives

$$C \lesssim \sqrt{B/(t \log n)}$$

- So with high probability, $\|A_ig\|_2 \lesssim \sqrt{B/t} + C\sqrt{\log n} \lesssim \sqrt{B/t}$.
- So $\mathbb{E} \|g\|_A = \max \|A_i g\|_2 \lesssim \sqrt{B/t}$.

l,

Eric Price (MIT)

Fast RIP matrices with fewer rows

2013-04-05 58 / 52

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @