Fast RIP matrices with fewer rows

Jelani Nelson Eric Price Mary Wootters
Princeton MIT Michigan

2013-04-05

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration

Outline

(9) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number

Outline

(9) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number

4 Conclusion

Outline

(9) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Compressive Sensing

Given: A few linear measurements of an (approximately) k-sparse vector $x \in \mathbb{R}^{n}$.
Goal: Recover x (approximately).

Compressive Sensing Algorithms: Two Classes

Compressive Sensing Algorithms: Two Classes

Structure-aware

Recovery algorithm tied to matrix structure (e.g. Count-Sketch)

Compressive Sensing Algorithms: Two Classes

Structure-aware
Recovery algorithm
tied to matrix structure
(e.g. Count-Sketch)

Structure-oblivious
Recovery algorithms just multiply by Φ, Φ^{T}
(e.g. L1 minimization)

Compressive Sensing Algorithms: Two Classes

Recovery algorithm
tied to matrix structure
(e.g. Count-Sketch)

Structure-oblivious
Recovery algorithms just multiply by Φ, Φ^{T}
(e.g. L1 minimization)

Faster

Often: Sparse matrices
Less robust

Compressive Sensing Algorithms: Two Classes

Structure-aware
Recovery algorithm
tied to matrix structure
(e.g. Count-Sketch)

Faster

Often: Sparse matrices
Less robust

Structure-oblivious
Recovery algorithms just multiply by Φ, Φ^{T}
(e.g. L1 minimization)

Slower
Dense matrices
More robust

Compressive Sensing Algorithms: Two Classes

Structure-aware
Recovery algorithm
tied to matrix structure
(e.g. Count-Sketch)

Faster

Often: Sparse matrices
Less robust

Structure-oblivious
Recovery algorithms just multiply by Φ, Φ^{T}
(e.g. L1 minimization)

Slower
Dense matrices
More robust \uparrow
Yesterday:
Fourier \rightarrow sparse

Compressive Sensing Algorithms: Two Classes

Structure-aware
Recovery algorithm
tied to matrix structure
(e.g. Count-Sketch)

Faster

Often: Sparse matrices
Less robust

Structure-oblivious
Recovery algorithms just multiply by Φ, Φ^{T}
(e.g. L1 minimization)

Slower
Dense matrices
More robust

Fourier \rightarrow sparse

Algorithms for compressive sensing

- Goal: recover approximately k-sparse x from $y=\Phi x$.

Algorithms for compressive sensing

- Goal: recover approximately k-sparse x from $y=\Phi x$.
- A lot of people use convex optimization:

$$
\min \|x\|_{1}
$$

s.t. $\Phi x=y$

Algorithms for compressive sensing

- Goal: recover approximately k-sparse x from $y=\Phi x$.
- A lot of people use convex optimization:

$$
\min \|x\|_{1}
$$

s.t. $\Phi x=y$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....

Algorithms for compressive sensing

- Goal: recover approximately k-sparse x from $y=\Phi x$.
- A lot of people use convex optimization:

$$
\min \|x\|_{1}
$$

$$
\text { s.t. } \Phi x=y
$$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
- the time it takes to multiply by Φ or Φ^{T} is the bottleneck.

Algorithms for compressive sensing

- Goal: recover approximately k-sparse x from $y=\Phi x$.
- A lot of people use convex optimization:

$$
\min \|x\|_{1}
$$

$$
\text { s.t. } \Phi x=y
$$

- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
- the time it takes to multiply by Φ or Φ^{\top} is the bottleneck.
- the Restricted Isometry Property is a sufficient condition.

Restricted Isometry Property (RIP)

Restricted Isometry Property (RIP)

$$
(1-\epsilon)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\epsilon)\|x\|_{2}^{2}
$$ for all k-sparse $x \in \mathbb{R}^{n}$.

Goals

What properties should an RIP matrix have?

Goals

What properties should an RIP matrix have?

- Good compression: m small
- Random Gaussian matrix: $\Theta(k \log (n / k))$ rows.

Goals

What properties should an RIP matrix have?

- Good compression: m small
- Random Gaussian matrix: $\Theta(k \log n)$ rows.
* Talk will assume $n^{0.1}<k<n^{0.9}$, so $\log k \simeq \log n \simeq \log (n / k)$.

Goals

What properties should an RIP matrix have?

- Good compression: m small
- Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
- Reconstruction dominated by $\log n$ multiplications by Φ, Φ^{T}.
* Talk will assume $n^{0.1}<k<n^{0.9}$, so $\log k \simeq \log n \simeq \log (n / k)$.

Goals

What properties should an RIP matrix have?

- Good compression: m small
- Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
- Reconstruction dominated by $\log n$ multiplications by Φ, Φ^{\top}.
- Random Gaussian matrix: $\Theta(n k \log n)$ time.
* Talk will assume $n^{0.1}<k<n^{0.9}$, so $\log k \simeq \log n \simeq \log (n / k)$.

Goals

What properties should an RIP matrix have?

- Good compression: m small
- Random Gaussian matrix: $\Theta(k \log n)$ rows.
- Fast multiplication:
- Reconstruction dominated by $\log n$ multiplications by Φ, Φ^{\top}.
- Random Gaussian matrix: $\Theta(n k \log n)$ time.
- Goal: an RIP matrix with $O(n \log n)$ multiplication and small m.
* Talk will assume $n^{0.1}<k<n^{0.9}$, so $\log k \simeq \log n \simeq \log (n / k)$.

An open question

Let A contain random rows from a Fourier matrix.

An open question

Let A contain random rows from a Fourier matrix. You can multiply by A in $O(n \log n)$ time.

An open question

Let A contain random rows from a Fourier matrix.
You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

An open question

Let A contain random rows from a Fourier matrix.
You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

- $m=O\left(k \log ^{4} n\right)$ [CT06,RV08,CGV13].

An open question

Let A contain random rows from a Fourier matrix.
You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

- $m=O\left(k \log ^{4} n\right)$ [CT06,RV08,CGV13].

Ideal:

- $m=O(k \log n)$.

An open question

Let A contain random rows from a Fourier matrix.
You can multiply by A in $O(n \log n)$ time. How many rows do you need to ensure that A has the RIP?

- $m=O\left(k \log ^{4} n\right)$ [CT06,RV08,CGV13].

Ideal:

- $m=O(k \log n)$.
(Related: how about partial circulant matrices?)
- $m=O\left(k \log ^{4} n\right)$ [RRT12,KMR12].

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Another motivation: Johnson Lindenstrauss (JL) Transforms

High dimensional data

$$
S \subset \mathbb{R}^{n}
$$

Another motivation:

 Johnson Lindenstrauss (JL) Transforms

High dimensional data

$$
S \subset \mathbb{R}^{n}
$$

Linear map Φ

Low dimensional sketch

$$
\Phi(S) \in \mathbb{R}^{m}
$$

Another motivation:

 Johnson Lindenstrauss (JL) Transforms

High dimensional data

$$
S \subset \mathbb{R}^{n}
$$

Φ preserves the geometry of S
Low dimensional sketch

$$
\Phi(S) \in \mathbb{R}^{m}
$$

Another motivation:

 Johnson Lindenstrauss (JL) Transforms

High dimensional data

$$
S \subset \mathbb{R}^{n}
$$

Linear map Φ

Φ preserves the geometry of S
Low dimensional sketch
$(1-\epsilon)\|x\|_{2} \leq\|\Phi x\|_{2} \leq(1+\epsilon)\|x\|_{2}$

$$
\Phi(S) \in \mathbb{R}^{m}
$$

Another motivation:

 Johnson Lindenstrauss (JL) Transforms

High dimensional data

$$
S \subset \mathbb{R}^{n}
$$

Linear map Φ

Φ preserves the geometry of S
Low dimensional sketch
$(1-\epsilon)\|x\|_{2} \leq\|\Phi x\|_{2} \leq(1+\epsilon)\|x\|_{2}$

$$
\Phi(S) \in \mathbb{R}^{m}
$$

$$
\langle\Phi x, \Phi y\rangle=\langle x, y\rangle \pm \epsilon\|x\|_{2}\|y\|_{2}
$$

Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss '84)
Let $x \in \mathbb{R}^{n}$. A random Gaussian matrix Φ will have

$$
(1-\epsilon)\|x\|_{2} \leq\|\Phi x\|_{2} \leq(1+\epsilon)\|x\|_{2}
$$

with probability $1-\delta$, so long as

$$
m \gtrsim \frac{1}{\epsilon^{2}} \log (1 / \delta)
$$

Johnson-Lindenstrauss Lemma

Theorem (variant of Johnson-Lindenstrauss '84)
Let $x \in \mathbb{R}^{n}$. A random Gaussian matrix Φ will have

$$
(1-\epsilon)\|x\|_{2} \leq\|\Phi x\|_{2} \leq(1+\epsilon)\|x\|_{2}
$$

with probability $1-\delta$, so long as

$$
m \gtrsim \frac{1}{\epsilon^{2}} \log (1 / \delta)
$$

Set $\delta=1 / 2^{k}$: embed 2^{k} points into $O(k)$ dimensions.

What do we want in a JL matrix?

What do we want in a JL matrix?

- Target dimension should be small (close to $\frac{1}{\epsilon^{2}} k$ for 2^{k} points).

What do we want in a JL matrix?

- Target dimension should be small (close to $\frac{1}{\epsilon^{2}} k$ for 2^{k} points).
- Fast multiplication.
- Approximate numerical algebra problems (e.g., linear regression, low-rank approximation)
- k-means clustering

How do we get a JL matrix?

How do we get a JL matrix?

- Gaussians
- Dimension $O\left(\frac{1}{\epsilon^{2}} k\right)$.

How do we get a JL matrix?

- Gaussians
- Dimension $O\left(\frac{1}{\epsilon^{2}} k\right)$.
- $\frac{1}{\epsilon^{2}} n k$ multiplication time.

How do we get a JL matrix?

- Gaussians
- Dimension $O\left(\frac{1}{\epsilon^{2}} k\right)$.
- $\frac{1}{\epsilon^{2}} n k$ multiplication time.
- Best way known for fast JL: by [Krahmer-Ward '11], RIP \Rightarrow JL.

How do we get a JL matrix?

- Gaussians
- Dimension $O\left(\frac{1}{\epsilon^{2}} k\right)$.
- $\frac{1}{\epsilon^{2}} n k$ multiplication time.
- Best way known for fast JL: by [Krahmer-Ward '11], RIP \Rightarrow JL.
- Existing results: dimension $O\left(\frac{1}{\epsilon^{2}} k \log ^{4} n\right)$.

How do we get a JL matrix?

- Gaussians
- Dimension $O\left(\frac{1}{\epsilon^{2}} k\right)$.
- $\frac{1}{\epsilon^{2}} n k$ multiplication time.
- Best way known for fast JL: by [Krahmer-Ward '11], RIP \Rightarrow JL.
- Existing results: dimension $O\left(\frac{1}{\epsilon^{2}} k \log ^{4} n\right)$.
- $n \log n$ multiplication time.

How do we get a JL matrix?

- Gaussians
- Dimension $O\left(\frac{1}{\epsilon^{2}} k\right)$.
- $\frac{1}{\epsilon^{2}} n k$ multiplication time.
- Best way known for fast JL: by [Krahmer-Ward '11], RIP \Rightarrow JL.
- Existing results: dimension $O\left(\frac{1}{\epsilon^{2}} k \log ^{4} n\right)$.
- $n \log n$ multiplication time.
- And by [BDDW '08], JL \Rightarrow RIP; so equivalent. ${ }^{1}$
${ }^{1}$ Round trip loses $\log n$ factor in dimension

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Our result: a fast RIP matrix with fewer rows

Subsampled Fourier

- New construction of fast RIP matrices: sparse times Fourier.
- $k \log ^{3} n$ rows and $n \log n$ multiplication time.

Theorem

If $m \simeq k \log ^{3} n, B \simeq \log ^{c} n$, and A is a random partial Fourier matrix, then Φ has the RIP with probability at least $2 / 3$.

Generalization

Our approach is actually works for more general A :

Subsampled Fourier

Generalization

Our approach is actually works for more general A :

If A is a "decent" RIP matrix:

- A has RIP (whp), but too many ($m B$) rows.

Generalization

Our approach is actually works for more general A :

If A is a "decent" RIP matrix:

- A has RIP (whp), but too many ($m B$) rows.
- RIP-ness degrades "gracefully" as number of rows decreases:

Generalization

Our approach is actually works for more general A :
Subsampled Fourier

If A is a "decent" RIP matrix:

- A has RIP (whp), but too many ($m B$) rows.
- RIP-ness degrades "gracefully" as number of rows decreases:
- For all A_{i} the RIP constant, although $\gg 1$, is still controlled.

Generalization

Our approach is actually works for more general A :
Subsampled Fourier

If A is a "decent" RIP matrix:

- A has RIP (whp), but too many ($m B$) rows.
- RIP-ness degrades "gracefully" as number of rows decreases:
- For all A_{i} the RIP constant, although $\gg 1$, is still controlled.

Then Φ is a good RIP matrix:

- Φ has the RIP (whp) with $m=O\left(k \log ^{3} n\right)$ rows.
- Time to multiply by $\Phi=$ time to multiply by $A+m B$.

Results in the area

Construction	Measurements m	Multiplication Time
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^{2}} k \log n$	$\epsilon m n$
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Partial Circulant [KMR12]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Our result: Hash of partial circulant	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$

Results in the area

Construction	Measurements m	Multiplication Time
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^{2}} k \log n$	$\epsilon m n$
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Partial Circulant [KMR12]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Our result: Hash of partial circulant	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Iterated Fourier [AC06,AL09,AR13]	$\frac{1}{\epsilon^{2}} k \log n^{\dagger}$	$n \log n$

${ }^{\dagger}$ Requires $k \leq n^{1 / 2-\delta}$. This is the "easy" case:

Results in the area

Construction	Measurements m	Multiplication Time
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^{2}} k \log n$	$\epsilon m n$
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Partial Circulant [KMR12]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Our result: Hash of partial circulant	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Iterated Fourier [AC06,AL09,AR13]	$\frac{1}{\epsilon^{2}} k \log n^{\dagger}$	$n \log n$

${ }^{\dagger}$ Requires $k \leq n^{1 / 2-\delta}$. This is the "easy" case:
Dimension: $n \longrightarrow k \log ^{4} n$

Time:	$n \log n$
	$[R V 08]$

Results in the area

Construction	Measurements m	Multiplication Time
Sparse JL matrices [KN12]	$\frac{1}{\epsilon^{2}} k \log n$	$\epsilon m n$
Partial Fourier [RV08,CGV13]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Partial Circulant [KMR12]	$\frac{1}{\epsilon^{2}} k \log ^{4} n$	$n \log n$
Our result: Hash of partial Fourier	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Our result: Hash of partial circulant	$\frac{1}{\epsilon^{2}} k \log ^{3} n$	$n \log n$
Iterated Fourier [AC06,AL09,AR13]	$\frac{1}{\epsilon^{2}} k \log n^{\dagger}$	$n \log n$

${ }^{\dagger}$ Requires $k \leq n^{1 / 2-\delta}$. This is the "easy" case:
Dimension: $n \longrightarrow k \log ^{4} n \longrightarrow k \log n$

Time:	$n \log n$	$k^{2} \log ^{5} n$
	$[$ RV08 $]$	Gaussian

Concentration of Measure

Let Σ_{k} is unit-norm k-sparse vectors.
We want to show for our distribution Φ on matrices that

$$
\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|<\epsilon
$$

Concentration of Measure

Let Σ_{k} is unit-norm k-sparse vectors.
We want to show for our distribution Φ on matrices that

Concentration of Measure

Let Σ_{k} is unit-norm k-sparse vectors.
We want to show for our distribution Φ on matrices that

Expected deviation of $\Phi^{T} \Phi$ from mean I_{n}, in a funny norm.

Concentration of Measure

Let Σ_{k} is unit-norm k-sparse vectors.
We want to show for our distribution Φ on matrices that

Expected deviation of $\Phi^{T} \Phi$ from mean I_{n}, in a funny norm.

Probabilists have lots of tools to analyze this.

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Tools

Tools

Screwdriver

Tools

Screwdriver

Drill

Tools

Screwdriver

Bit sets

Drill

Tools

Screwdriver

Bit sets

Bit

Drill

Tools

Drill

Tools

Common interface: m drivers, n bits $\Longrightarrow m n$ combinations.

Tools

Common interface: m drivers, n bits $\Longrightarrow m n$ combinations.

Common interface for drill bits

Hex shanks

Tools

Common interface: m drivers, n bits $\Longrightarrow m n$ combinations.

Common interface for drill bits

Hex shanks

Common interface

 for probability
Gaussians

A Probabilist’s Toolbox

Convert to Gaussians
Gaussian concentration

A Probabilist’s Toolbox

Convert to Gaussians
Gaussian concentration

Will prove: symmetrization and Dudley's entropy integral.

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.
How well does X concentrate about its mean?

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.
How well does X concentrate about its mean?

Example (RIP)

For some norm $\|\cdot\|$, RIP constant of subsampled Fourier

$$
\left\|A^{T} A-I\right\|
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.
How well does X concentrate about its mean?

Example (RIP)

For some norm $\|\cdot\|$, RIP constant of subsampled Fourier

$$
\left\|A^{T} A-I\right\|=\left\|\sum A_{i}^{T} A_{i}-I\right\|
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Proof.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Proof.

Draw $X_{1}^{\prime}, \ldots, X_{t}^{\prime}$ independently from the same distribution.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Proof.

Draw $X_{1}^{\prime}, \ldots, X_{t}^{\prime}$ independently from the same distribution.

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum X_{i}-\mathbb{E}\left[\frac{1}{t} \sum X_{i}^{\prime}\right]\right\|\right]
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Proof.

Draw $X_{1}^{\prime}, \ldots, X_{t}^{\prime}$ independently from the same distribution.

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum X_{i}-\mathbb{E}\left[\frac{1}{t} \sum X_{i}^{\prime}\right]\right\|\right] \leq \mathbb{E}\left[\left\|\frac{1}{t} \sum\left(X_{i}-X_{i}^{\prime}\right)\right\|\right]
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Proof.

Draw $X_{1}^{\prime}, \ldots, X_{t}^{\prime}$ independently from the same distribution.

$$
\begin{aligned}
\mathbb{E}\left[\left\|\frac{1}{t} \sum X_{i}-\mathbb{E}\left[\frac{1}{t} \sum X_{i}^{\prime}\right]\right\|\right] & \leq \mathbb{E}\left[\left\|\frac{1}{t} \sum\left(X_{i}-X_{i}^{\prime}\right)\right\|\right] \\
& =\mathbb{E}\left[\left\|\frac{1}{t} \sum s_{i}\left(X_{i}-X_{i}^{\prime}\right)\right\|\right]
\end{aligned}
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Proof.

Draw $X_{1}^{\prime}, \ldots, X_{t}^{\prime}$ independently from the same distribution.

$$
\begin{aligned}
\mathbb{E}\left[\left\|\frac{1}{t} \sum X_{i}-\mathbb{E}\left[\frac{1}{t} \sum X_{i}^{\prime}\right]\right\|\right] & \leq \mathbb{E}\left[\left\|\frac{1}{t} \sum\left(X_{i}-X_{i}^{\prime}\right)\right\|\right] \\
\text { y the triangle inequality. } & =\mathbb{E}\left[\left\|\frac{1}{t} \sum s_{i}\left(X_{i}-X_{i}^{\prime}\right)\right\|\right]
\end{aligned}
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} x_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Proof.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} x_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} x_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Proof.

We have $\mathbb{E}\left[\left|g_{i}\right|\right] \approx .8>2 / 3$.

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Proof.

We have $\mathbb{E}\left[\left|g_{i}\right|\right] \approx .8>2 / 3$.

$$
2 \mathbb{E}\left[\left\|\sum s_{i} X_{i}\right\|\right]
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Proof.

We have $\mathbb{E}\left[\left|g_{i}\right|\right] \approx .8>2 / 3$.

$$
2 \mathbb{E}\left[\left\|\sum s_{i} X_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\sum s_{i} \mathbb{E}\left[\left|g_{i}\right|\right] X_{i}\right\|\right]
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Proof.

We have $\mathbb{E}\left[\left|g_{i}\right|\right] \approx .8>2 / 3$.

$$
\begin{aligned}
2 \mathbb{E}\left[\left\|\sum s_{i} X_{i}\right\|\right] & \leq 3 \mathbb{E}\left[\left\|\sum s_{i} \mathbb{E}\left[\left|g_{i}\right|\right] X_{i}\right\|\right] \\
& \leq 3 \mathbb{E}\left[\left\|\sum s_{i}\left|g_{i}\right| X_{i}\right\|\right]
\end{aligned}
$$

Symmetrization

Lemma (Symmetrization)
Suppose X_{1}, \ldots, X_{t} are i.i.d. with mean μ. For any norm $\|\cdot\|$,

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} X_{i}-\mu\right\|\right] \leq 2 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} s_{i} X_{i}\right\|\right] \leq 3 \mathbb{E}\left[\left\|\frac{1}{t} \sum_{i} g_{i} X_{i}\right\|\right]
$$

where $s_{i} \in\{ \pm 1\}$ independently and $g_{i} \sim N(0,1)$ independently.

Proof.

We have $\mathbb{E}\left[\left|g_{i}\right|\right] \approx .8>2 / 3$.

$$
\begin{aligned}
2 \mathbb{E}\left[\left\|\sum s_{i} X_{i}\right\|\right] & \leq 3 \mathbb{E}\left[\left\|\sum s_{i} \mathbb{E}\left[\left|g_{i}\right|\right] X_{i}\right\|\right] \\
& \leq 3 \mathbb{E}\left[\left\|\sum s_{i}\left|\mathrm{~g}_{\mathrm{i}}\right| X_{i}\right\|\right] \\
& =3 \mathbb{E}\left[\left\|\sum \mathrm{~g}_{\mathrm{i}} X_{i}\right\|\right] .
\end{aligned}
$$

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.

Example (Maximum singular value of random Gaussian matrix)
Let A be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, define

$$
G_{u, v}:=u^{T} A v=\left\langle u v^{T}, A\right\rangle
$$

Then $G_{u, v} \sim N\left(0,\left\|u v^{T}\right\|_{F}^{2}\right)$.

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.

Example (Maximum singular value of random Gaussian matrix)
Let A be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, define

$$
G_{u, v}:=u^{\top} A v=\left\langle u v^{\top}, A\right\rangle .
$$

Then $G_{u, v} \sim N\left(0,\left\|u v^{\top}\right\|_{F}^{2}\right)$.

$$
\mathbb{E}\|A\|_{2}=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} u^{T} A v=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} G_{u, v}
$$

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup _{x \in T} G_{x}$.

Example (Maximum singular value of random Gaussian matrix)

Let A be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, define

$$
G_{u, v}:=u^{\top} A v=\left\langle u v^{\top}, A\right\rangle .
$$

Then $G_{u, v} \sim N\left(0,\left\|u v^{\top}\right\|_{F}^{2}\right)$.

$$
\mathbb{E}\|A\|_{2}=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} u^{T} A v=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} G_{u, v}
$$

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup _{x \in T} G_{x}$.

Example (Maximum singular value of random Gaussian matrix)

Let A be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, define

$$
G_{u, v}:=u^{T} A v=\left\langle u v^{T}, A\right\rangle
$$

Then $G_{u, v} \sim N\left(0,\left\|u v^{T}\right\|_{F}^{2}\right)$.

$$
\mathbb{E}\|A\|_{2}=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} u^{T} A v=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} G_{u, v}
$$

- Depends on the geometry of T.

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup _{x \in T} G_{x}$.

Example (Maximum singular value of random Gaussian matrix)

Let A be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, define

$$
G_{u, v}:=u^{T} A v=\left\langle u v^{T}, A\right\rangle
$$

Then $G_{u, v} \sim N\left(0,\left\|u v^{T}\right\|_{F}^{2}\right)$.

$$
\mathbb{E}\|A\|_{2}=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} u^{T} A v=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} G_{u, v}
$$

- Depends on the geometry of T.
- Distance: $\|x-y\|$ is standard deviation of $G_{x}-G_{y}$.

Gaussian Processes

- Gaussian process G_{x} : a Gaussian at each point $x \in T$.
- Standard problem: $\mathbb{E} \sup _{x \in T} G_{x}$.

Example (Maximum singular value of random Gaussian matrix)

Let A be a random $m \times n$ Gaussian matrix. For any $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$, define

$$
G_{u, v}:=u^{T} A v=\left\langle u v^{T}, A\right\rangle
$$

Then $G_{u, v} \sim N\left(0,\left\|u v^{T}\right\|_{F}^{2}\right)$.

$$
\mathbb{E}\|A\|_{2}=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} u^{T} A v=\mathbb{E} \sup _{u, v \in S^{m-1} \times S^{n-1}} G_{u, v}
$$

- Depends on the geometry of T.
- Distance: $\|x-y\|$ is standard deviation of $G_{x}-G_{y}$.
- In example: $\left\|(u, v)-\left(u^{\prime}, v^{\prime}\right)\right\|=\left\|u v^{T}-u^{\prime} v^{\prime T}\right\|_{F}$.

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.
- Ignoring geometry:

\bigcirc

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.
- Ignoring geometry:
- $\operatorname{Pr}\left[G_{x}>\sigma_{\text {max }} t\right] \leq e^{-t^{2} / 2}$

\bigcirc

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.
- Ignoring geometry:
- $\operatorname{Pr}\left[G_{x}>\sigma_{\text {max }} t\right] \leq e^{-t^{2} / 2}$
- Union bound: with high probability, $G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$.

○

$$
\begin{aligned}
\text { Position } & =x \\
\text { Color } & =G_{x}
\end{aligned}
$$ $G_{0}=0$

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.
- Ignoring geometry:
- $\operatorname{Pr}\left[G_{x}>\sigma_{\max } t\right] \leq e^{-t^{2} / 2}$
- Union bound: with high probability, $G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$.
- $\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$

○

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.
- Ignoring geometry:
- $\operatorname{Pr}\left[G_{x}>\sigma_{\max } t\right] \leq e^{-t^{2} / 2}$
- Union bound: with high probability, $G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$.
- $\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$

$$
\begin{aligned}
\text { Position } & =x \\
\text { Color } & =G_{x}
\end{aligned}
$$ $G_{0}=0$

Gaussian Processes

- Goal: $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y} \sim N\left(0,\|x-y\|^{2}\right)$.
- Ignoring geometry:
- $\operatorname{Pr}\left[G_{x}>\sigma_{\max } t\right] \leq e^{-t^{2} / 2}$
- Union bound: with high probability, $G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$.
- $\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sigma_{\max } \sqrt{\log n}$
- Two levels: $\sigma_{\max } \sqrt{\log 4}+\sigma_{\text {small }} \sqrt{\log n}$.

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{\max } \sqrt{\log 4}+\sigma_{\text {small }} \sqrt{\log n}$.

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{\max } \sqrt{\log 4}+\sigma_{\text {small }} \sqrt{\log n}$.
T

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{\max } \sqrt{\log 4}+\sigma_{\text {small }} \sqrt{\log n}$.
T

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{\max } \sqrt{\log 4}+\sigma_{s m a l l} \sqrt{\log n}$.
T

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{\max } \sqrt{\log 4}+\sigma_{s m a l l} \sqrt{\log n}$.

\# balls necessary:

$$
N\left(\sigma_{2}\right)
$$

(covering number depends on $T,\|\cdot\|$)

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.

\# balls necessary:

$$
N\left(\sigma_{2}\right)
$$

(covering number depends on $T,\|\cdot\|$)

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?

\# balls necessary:

$$
N\left(\sigma_{2}\right)
$$

(covering number depends on $T,\|\cdot\|$)

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?

$$
\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+
$$

\# balls necessary:

$$
N\left(\sigma_{2}\right)
$$

(covering number depends on $T,\|\cdot\|$)

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?
$\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log N\left(\sigma_{3}\right)}+$ $x \in T$
T

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?
$\mathbb{E} \sup G_{x} \lesssim \sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log N\left(\sigma_{3}\right)}+\sigma_{3} \sqrt{\log N\left(\sigma_{4}\right)}+$ $x \in T$
T

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?
$\mathbb{E} \sup G_{x} \lesssim \sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log N\left(\sigma_{3}\right)}+\sigma_{3} \sqrt{\log N\left(\sigma_{4}\right)}+\cdots$ $x \in T$

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?
$\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sum_{r=0}^{\infty} \frac{\sigma_{1}}{2^{r}} \sqrt{\log N\left(\frac{\sigma_{1}}{2^{r+1}}\right)}$

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?
$\mathbb{E} \sup _{x \in T} G_{x} \lesssim \sum_{r=0}^{\infty} \frac{\sigma_{1}}{2^{r}} \sqrt{\log N\left(\frac{\sigma_{1}}{2^{r+1}}\right)}$

Gaussian Processes: chaining

- Bound $\mathbb{E} \sup _{x \in T} G_{x}$, where $G_{x}-G_{y}$ has variance $\|x-y\|^{2}$.
- Two levels: $\sigma_{1} \sqrt{\log N\left(\sigma_{2}\right)}+\sigma_{2} \sqrt{\log n}$.
- Why stop at two?
$\mathbb{E} \sup _{x \in T} G_{x} \lesssim \int_{0}^{\infty} \sqrt{\log N(\sigma)} d \sigma$

Gaussian Processes

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)
Define the norm $\|\cdot\|$ of a Gaussian process G by

$$
\|x-y\|=\text { standard deviation of }\left(G_{x}-G_{y}\right) \text {. }
$$

Then

$$
\mathbb{E} \sup _{x \in T} G_{x} \lesssim \int_{0}^{\infty} \sqrt{\log N(T,\|\cdot\|, u)} d u
$$

Gaussian Processes

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)
Define the norm $\|\cdot\|$ of a Gaussian process G by

$$
\|x-y\|=\text { standard deviation of }\left(G_{x}-G_{y}\right)
$$

Then

$$
\gamma_{2}(T,\|\cdot\|):=\mathbb{E} \sup _{x \in T} G_{x} \lesssim \int_{0}^{\infty} \sqrt{\log N(T,\|\cdot\|, u)} d u
$$

Gaussian Processes

Dudley's Entropy Integral, Talagrand's generic chaining

Theorem (Dudley's Entropy Integral)
Define the norm $\|\cdot\|$ of a Gaussian process G by

$$
\|x-y\|=\text { standard deviation of }\left(G_{x}-G_{y}\right) \text {. }
$$

Then

$$
\gamma_{2}(T,\|\cdot\|):=\mathbb{E} \sup _{x \in T} G_{x} \lesssim \int_{0}^{\infty} \sqrt{\log N(T,\|\cdot\|, u)} d u
$$

- Bound a random variable using geometry.

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Lipschitz Concentration of Gaussians

Theorem
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C-Lipschitz and $g \sim N\left(0, I_{n}\right)$, then for any $t>0$,

$$
\operatorname{Pr}[f(g)>\mathbb{E}[f(g)]+C t] \leq e^{-\Omega\left(t^{2}\right)}
$$

- f concentrates as well as individual Gaussians.
- Can replace f with $-f$ to get lower tail bound.

Lipschitz Concentration of Gaussians

Theorem
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C-Lipschitz and $g \sim N\left(0, I_{n}\right)$, then for any $t>0$,

$$
\operatorname{Pr}[f(g)>\mathbb{E}[f(g)]+C t] \leq e^{-\Omega\left(t^{2}\right)}
$$

- f concentrates as well as individual Gaussians.
- Can replace f with $-f$ to get lower tail bound.

Example

If $g \sim N\left(0, I_{n}\right)$, then with probability $1-\delta$,

$$
\|g\|_{2} \leq \sqrt{n}+O(\sqrt{\log (1 / \delta)})
$$

Lipschitz Concentration of Gaussians

Theorem
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C-Lipschitz and $g \sim N\left(0, I_{n}\right)$, then for any $t>0$,

$$
\operatorname{Pr}[f(g)>\mathbb{E}[f(g)]+C t] \leq e^{-\Omega\left(t^{2}\right)}
$$

- f concentrates as well as individual Gaussians.
- Can replace f with $-f$ to get lower tail bound.

Example

If $g \sim N\left(0, I_{n}\right)$, then with probability $1-\delta$,

$$
\|g\|_{2} \leq \sqrt{n}+O(\sqrt{\log (1 / \delta)})
$$

For $n=O\left(1 / \epsilon^{2} \log (1 / \delta)\right)$, this is $1 \pm \epsilon$ approximation.

Lipschitz Concentration of Gaussians

Theorem

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C-Lipschitz and $g \sim N\left(0, I_{n}\right)$, then for any $t>0$,

$$
\operatorname{Pr}[f(g)>\mathbb{E}[f(g)]+C t] \leq e^{-\Omega\left(t^{2}\right)} .
$$

- f concentrates as well as individual Gaussians.
- Can replace f with $-f$ to get lower tail bound.

Example

If $g \sim N\left(0, I_{n}\right)$, then with probability $1-\delta$,

$$
\|g\|_{2} \leq \sqrt{n}+O(\sqrt{\log (1 / \delta)}) .
$$

For $n=O\left(1 / \epsilon^{2} \log (1 / \delta)\right)$, this is $1 \pm \epsilon$ approximation.
\Longrightarrow the Johnson-Lindenstrauss lemma.

A Probabilist's Toolbox (recap)

Convert to Gaussians
Gaussian concentration

Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number
(4) Conclusion

Goal

Random sign flips

$m B$ rows of Fourier matrix $\log ^{c} n$

For Σ_{k} denoting unit-norm k-sparse vectors, we want

$$
\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|<\epsilon,
$$

Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right.$) rows.```
E sup
\(\left\|A^{T} A-\mathrm{I}\right\|\) Expected sup deviation
```


## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right.$ ) rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.
$\gamma_{2}$ : supremum of Gaussian process
$\Sigma_{k}: k$-sparse unit vectors
$\|\cdot\|$ : a norm that depends on $A$ (specified in a few slides)

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline: Rudelson-Vershynin

 Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows.

## Proof outline

Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows. Nelson-P-Wootters: sparse times Fourier, $O\left(k \log ^{3} n\right)$ rows.


## Proof outline

Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows. Nelson-P-Wootters: sparse times Fourier, $O\left(k \log ^{3} n\right)$ rows.


## Proof outline

Rudelson-Vershynin: subsampled Fourier, $O\left(k \log ^{4} n\right)$ rows. Nelson-P-Wootters: sparse times Fourier, $O\left(k \log ^{3} n\right)$ rows.


## Proof part I: triangle inequality


$\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|$

$$
\leq \mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|A x\|_{2}^{2}\right|+\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right|
$$

## Proof part I: triangle inequality

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{|l} 
\\
\hline \\
\hline \\
\\
\\
\left|x \|_{2}^{2}\right|
\end{array}
\end{array} \\
& \leq \mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|A x\|_{2}^{2}\right|+\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right| \\
& =\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\left\|X_{A} S\right\|_{2}^{2}-\mathbb{E}_{S}\left\|X_{A} S\right\|_{2}^{2}\right|+(\text { RIP constant of } A),
\end{aligned}
$$

where $X_{A}$ is some matrix depending $x$ and $A$, and $s$ is the vector of random sign flips used in $H$.

## Proof part I: triangle inequality

$$
\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\left\|X_{A} S\right\|_{2}^{2}-\mathbb{E}_{s}\left\|X_{A} S\right\|_{2}^{2}\right|+(\text { RIP constant of } A)
$$

## Proof part I: triangle inequality

$$
\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\left\|X_{A} S\right\|_{2}^{2}-\mathbb{E}_{S}\left\|X_{A} S\right\|_{2}^{2}\right|+(\text { RIP constant of } A)
$$



By assumption, this is small.
(Recall $A$ has extra rows)

## Proof part I: triangle inequality

$\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\left\|X_{A} S\right\|_{2}^{2}-\mathbb{E}_{s}\left\|X_{A} S\right\|_{2}^{2}\right|+($ RIP constant of $A)$


By assumption, this is small.
(Recall $A$ has extra rows)

This is a Rademacher Chaos Process.
We have to do some work to show that it is small.

## Proof part II: probability and geometry

By [KMR12] and some manipulation, can bound the Rademacher chaos using


Dudley's entropy integral: can estimate this by bounding the covering number $N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)$.

## Definition of the Norm

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$

for the norm $\|x\|_{A}$ :

## Definition of the Norm

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$

for the norm $\|x\|_{A}$ :


## Definition of the Norm

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$

for the norm $\|x\|_{A}$ :


## Definition of the Norm

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$

for the norm $\|x\|_{A}$ :


## Definition of the Norm

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$

for the norm $\|x\|_{A}$ :


## Definition of the Norm

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$

for the norm $\|x\|_{A}:$


Rudelson-Vershynin: estimates $N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)$ when $B=1$.

## Progress



## Outline

(1) Introduction

- Compressive sensing
- Johnson Lindenstrauss Transforms
- Our result
(2) Concentration of measure: a toolbox
- Overview
- Symmetrization
- Gaussian Processes
- Lipschitz Concentration
(3) Proof
- Overview
- Covering Number

4 Conclusion

## Covering Number Bound

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right)
$$



## Covering Number Bound

$$
N\left(\Sigma_{k},\|\cdot\|_{A}, u\right) \leq N\left(B_{1},\|\cdot\|_{A}, u / \sqrt{k}\right)
$$



$$
\begin{aligned}
\Sigma_{k} & =\left\{k \text {-sparse } x \mid\|x\|_{2} \leq 1\right\} \\
\subset \sqrt{k} B_{1} & =\left\{x \mid\|x\|_{1} \leq \sqrt{k}\right\}
\end{aligned}
$$

## Covering number bound

## $N\left(B_{1},\|\cdot\|_{A}, u\right)$

## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?


## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?
- How many $\ell_{2}$ balls of radius $u$ required to cover $B_{1}$ ?

$$
N\left(B_{1},\|\cdot\|_{2}, u\right)
$$

## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?
- How many $\ell_{2}$ balls of radius $u$ required to cover $B_{1}$ ?

$$
N\left(B_{1},\|\cdot\|_{2}, u\right) \lesssim\left\{(1 / u)^{O(n)} \quad\right. \text { by an easy volume argument }
$$

## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?
- How many $\ell_{2}$ balls of radius $u$ required to cover $B_{1}$ ?

$$
N\left(B_{1},\|\cdot\|_{2}, u\right) \lesssim \begin{cases}(1 / u)^{O(n)} & \text { by an easy volume argument } \\ n^{O\left(1 / u^{2}\right)} & \text { trickier; next few slides }\end{cases}
$$

## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?
- How many $\ell_{2}$ balls of radius $u$ required to cover $B_{1}$ ?

$$
N\left(B_{1},\|\cdot\|_{2}, u\right) \lesssim \begin{cases}(1 / u)^{O(n)} & \text { by an easy volume argument } \\ n^{O\left(1 / u^{2}\right)} & \text { trickier; next few slides }\end{cases}
$$

- Latter bound is better when $u \gg 1 / \sqrt{n}$.


## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?
- How many $\ell_{2}$ balls of radius $u$ required to cover $B_{1}$ ?

$$
N\left(B_{1},\|\cdot\|_{2}, u\right) \lesssim \begin{cases}(1 / u)^{O(n)} & \text { by an easy volume argument } \\ n^{O\left(1 / u^{2}\right)} & \text { trickier; next few slides }\end{cases}
$$

- Latter bound is better when $u \gg 1 / \sqrt{n}$.
- Maurey's empirical method: generalizes to arbitrary norms


## Covering number bound

$$
N\left(B_{1},\|\cdot\|_{A}, u\right)
$$

- Simpler to imagine: what about $\ell_{2}$ ?
- How many $\ell_{2}$ balls of radius $u$ required to cover $B_{1}$ ?

$$
N\left(B_{1},\|\cdot\|_{A}, u\right) \lesssim \begin{cases}(\sqrt{B} / u)^{O(n)} & \text { by an easy volume argument } \\ n^{O\left(B / u^{2}\right)} & \text { trickier; next few slides }\end{cases}
$$

- Latter bound is better when $u \gg 1 / \sqrt{n}$.
- Maurey's empirical method: generalizes to arbitrary norms


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}$ ?


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.


## Covering Number Bound

Maurey's empirical method
Radius $u$


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq u
$$

## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq u .
$$

- All $x$ lie within $u$ of at least one possible $\mathbf{z}$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq u .
$$

- All $x$ lie within $u$ of at least one possible $\mathbf{z}$.
- Then $N\left(B_{1},\|\cdot\|, u\right) \leq$ number of $\mathbf{z}$


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq u .
$$

- All $x$ lie within $u$ of at least one possible $\mathbf{z}$.
- Then $N\left(B_{1},\|\cdot\|, u\right) \leq$ number of $\mathbf{z} \leq(n+1)^{t}$.
- Only $(n+1)^{t}$ possible tuples $\left(z_{1}, \ldots, z_{t}\right) \Longrightarrow \mathbf{z}$.


## Covering Number Bound

Maurey's empirical method


- How many balls of radius $u$ required to cover $B_{1}^{+}$?
- Consider any $x \in B_{1}^{+}$.
- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq \boldsymbol{u} .
$$

- All $x$ lie within $u$ of at least one possible $\mathbf{z}$.
- Then $N\left(B_{1},\|\cdot\|, u\right) \leq$ number of $\mathbf{z} \leq(n+1)^{t}$.
- Only $(n+1)^{t}$ possible tuples $\left(z_{1}, \ldots, z_{t}\right) \Longrightarrow \mathbf{z}$.


## Covering Number Bound

Maurey's empirical method


Will show: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \leq \sqrt{B / t}$

- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq \boldsymbol{u} .
$$

- All $x$ lie within $u$ of at least one possible $\mathbf{z}$.
- Then $N\left(B_{1},\|\cdot\|, u\right) \leq$ number of $\mathbf{z} \leq(n+1)^{t}$.
- Only $(n+1)^{t}$ possible tuples $\left(z_{1}, \ldots, z_{t}\right) \Longrightarrow \mathbf{z}$.


## Covering Number Bound

Maurey's empirical method


Will show: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \leq \sqrt{B / t} \Longrightarrow N\left(T,\|\cdot\|_{A}, u\right) \leq n^{B / u^{2}}$

- Let $z_{1}, \ldots, z_{t}$ be i.i.d. randomized roundings of $x$ to simplex.
- The sample mean $\mathbf{z}=\frac{1}{t} \sum z_{i}$ converges to $x$ as $t \rightarrow \infty$.
- Let $t$ be large enough that, regardless of $x$,

$$
\mathbb{E}[\|\mathbf{z}-x\|] \leq \boldsymbol{u} .
$$

- All $x$ lie within $u$ of at least one possible $\mathbf{z}$.
- Then $N\left(B_{1},\|\cdot\|, u\right) \leq$ number of $\mathbf{z} \leq(n+1)^{t}$.
- Only $(n+1)^{t}$ possible tuples $\left(z_{1}, \ldots, z_{t}\right) \Longrightarrow \mathbf{z}$.


## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.


## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.
- Symmetrize!

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|_{A}\right]
$$

## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.
- Symmetrize!

$$
\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|_{A}\right] \lesssim \mathbb{E}\left[\left\|\frac{1}{t} \sum g_{i} z_{i}\right\|_{A}\right]
$$

## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.
- Symmetrize!

$$
\begin{aligned}
\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|_{A}\right] & \lesssim \mathbb{E}\left[\left\|\frac{1}{t} \sum g_{i} z_{i}\right\|_{A}\right] \\
& =: \frac{1}{\sqrt{t}} \mathbb{E}\left[\|\mathbf{g}\|_{A}\right]
\end{aligned}
$$

where $\mathbf{g} \in \mathbb{R}^{n}$ has

$$
\mathbf{g}_{j} \sim N\left(0, \frac{\text { number of } z_{i} \text { at } e_{j}}{t}\right)
$$

independently in each coordinate.

## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.
- Symmetrize!

$$
\begin{aligned}
\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|_{A}\right] & \lesssim \mathbb{E}\left[\left\|\frac{1}{t} \sum g_{i} z_{i}\right\|_{A}\right] \\
& =: \frac{1}{\sqrt{t}} \mathbb{E}\left[\|\mathbf{g}\|_{A}\right]
\end{aligned}
$$

where $\mathbf{g} \in \mathbb{R}^{n}$ has

$$
\mathbf{g}_{j} \sim N\left(0, \frac{\text { number of } z_{i} \text { at } e_{j}}{t}\right)
$$

independently in each coordinate.

- Hence $\mathbb{E}\left[\|\mathbf{g}\|_{2}^{2}\right]=\left(\right.$ fraction of $z_{i}$ that are nonzero $) \leq 1$.


## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.
- Symmetrize!

$$
\begin{aligned}
\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|_{A}\right] & \lesssim \mathbb{E}\left[\left\|\frac{1}{t} \sum g_{i} z_{i}\right\|_{A}\right] \\
& =: \frac{1}{\sqrt{t}} \mathbb{E}\left[\|\mathbf{g}\|_{A}\right]
\end{aligned}
$$

where $\mathbf{g} \in \mathbb{R}^{n}$ has

$$
\mathbf{g}_{j} \sim N\left(0, \frac{\text { number of } z_{i} \text { at } e_{j}}{t}\right)
$$

independently in each coordinate.

- Hence $\mathbb{E}\left[\|\mathbf{g}\|_{2}^{2}\right]=\left(\right.$ fraction of $z_{i}$ that are nonzero $) \leq 1$.
- Goal: $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right] \leq \sqrt{B}$.


## Covering Number Bound

- Goal: $\mathbb{E}\left[\|\mathbf{z}-x\|_{A}\right] \lesssim \sqrt{B / t}$.
- Symmetrize!

$$
\begin{aligned}
\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|_{A}\right] & \lesssim \mathbb{E}\left[\left\|\frac{1}{t} \sum g_{i} z_{i}\right\|_{A}\right] \\
& =: \frac{1}{\sqrt{t}} \mathbb{E}\left[\|\mathbf{g}\|_{A}\right]
\end{aligned}
$$

where $\mathbf{g} \in \mathbb{R}^{n}$ has

$$
\mathbf{g}_{j} \sim N\left(0, \frac{\text { number of } z_{i} \text { at } e_{j}}{t}\right)
$$

independently in each coordinate.

- Hence $\mathbb{E}\left[\|\mathbf{g}\|_{2}^{2}\right]=\left(\right.$ fraction of $z_{i}$ that are nonzero $) \leq 1$.
- Goal: $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right] \leq \sqrt{B}$.
- (Note: $\mathbb{E}\left[\|\mathbf{g}\|_{2}\right] \leq 1 \Longrightarrow N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}$.)


## Progress



## Progress



## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.

- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.

- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$. $\quad$ Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
- Gives the $\log n$ loss in their bound.


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$. $\quad$ Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
- Gives the $\log n$ loss in their bound.
- If the $\widehat{\mathbf{g}}_{i}$ were independent:

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \leq \sqrt{B}+O(\sqrt{\log n}) \quad \text { w.h.p. }
$$

Lipschitz concentration
(just like $\sqrt{n}+\sqrt{\log (1 / \delta)}$ in tutorial)

## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$. $\quad$ Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
- Gives the $\log n$ loss in their bound.
- If the $\widehat{\mathbf{g}}_{i}$ were independent:

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \leq \sqrt{B}+O(\sqrt{\log n}) \quad \text { w.h.p. }
$$

- Would get $\mathbb{E}[\|\mathbf{g}\| A] \lesssim \sqrt{B}$


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$. $\quad$ Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
- Gives the $\log n$ loss in their bound.
- If the $\widehat{\mathbf{g}}_{i}$ were independent:

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \leq \sqrt{B}+O(\sqrt{\log n}) \quad \text { w.h.p. }
$$

- Would get $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right] \lesssim \sqrt{B}$ so union bound just loses a constant.


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$. $\quad$ Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
- Gives the $\log n$ loss in their bound.
- If the $\widehat{\mathbf{g}}_{i}$ were independent:

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \leq \sqrt{B}+O(\sqrt{\log n}) \quad \text { w.h.p. }
$$

- Would get $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right] \lesssim \sqrt{B}$ so union bound just loses a constant.
- They're not independent... but the $A_{i}$ satisfy "very weak" RIP.


## Bounding the norm (intuition)

- Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$. $\quad$ Each is $N(0,1)$

$\mathbf{g} \in \mathbb{R}^{n}$ has Gaussian coordinates, $k$-sparse, total variance 1.
- Each coordinate $\widehat{\mathbf{g}}_{j}=F_{j} \mathbf{g} \sim N(0,1)$.
- Rudelson-Vershynin: $B=1$
- Naive: $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim \sqrt{\log n}$.
- Gives the $\log n$ loss in their bound.
- If the $\widehat{\mathbf{g}}_{i}$ were independent:

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \leq \sqrt{B}+O(\sqrt{\log n}) \quad \text { w.h.p. }
$$

- Would get $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right] \lesssim \sqrt{B}$ so union bound just loses a constant.
- They're not independent... but the $A_{i}$ satisfy "very weak" RIP.
- Bound $\left\|A_{i} \mathbf{g}\right\|_{2}$ using $\|\mathbf{g}\|_{2}$, which has independent entries.


# Bounding the norm (by example) 

$A \mathbf{g}$
$=$ subset of $\hat{\mathbf{g}}$

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.



## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.



## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume

$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large $t$ " limit).

## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume

$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large $t$ " limit).

- Two examples:


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large $t$ " limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large $t$ " limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.

(2) Very spread out: $x_{1}=\cdots=x_{k}=1 / k$.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large t" limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.
(2) Very spread out: $x_{1}=\cdots=x_{k}=1 / k$.

Example (1):

## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large t" limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.
(2) Very spread out: $x_{1}=\cdots=x_{k}=1 / k$.

Example (1):

- $\|x\|_{1} \ll 1$.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large t" limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.

(2) Very spread out:

Example (1):

- $\|x\|_{1} \ll 1$.
- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1 / \sqrt{k}$.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large t" limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.
(2) Very spread out: $x_{1}=\cdots=x_{k}=1 / k$.

Example (1):

- $\|x\|_{1} \ll 1$.
- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1 / \sqrt{k}$.
- $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim k^{-1 / 4} \cdot \sqrt{\log n} \ll 1$.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large t" limit).

- Two examples:
(1) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.

(2) Very spread out:

Example (1):

- $\|x\|_{1} \ll 1$.
- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1 / \sqrt{k}$.
- $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim k^{-1 / 4} \cdot \sqrt{\log n} \ll 1$.
- Hence $\left\|A_{i} \mathbf{g}\right\|_{2} \ll \sqrt{B}$ for all $i$.


## Bounding the norm (by example)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$.

- Recall: $x \in \Sigma_{k} / \sqrt{k} \longrightarrow z_{1}, \ldots, z_{t} \longrightarrow \mathbf{g}$.
- The full proof is complicated.
- Will assume


$$
\mathbf{g}_{i} \sim N\left(0, x_{i}\right)
$$

(the "large $t$ " limit).

- Two examples:

(.) Very concentrated: $x_{1}=1 / \sqrt{k}$, rest is zero.
(2) Very spread out: $x_{1}=\cdots=x_{k}=1 / k$.

Example (1):

- $\|x\|_{1} \ll 1$.
- Fourier transform $\hat{\mathbf{g}}$ is Gaussian with variance $1 / \sqrt{k}$.
- $\|\widehat{\mathbf{g}}\|_{\infty} \lesssim k^{-1 / 4} . \sqrt{\log n} \ll 1$.
- Hence $\left\|A_{i} \mathbf{g}\right\|_{2} \ll \sqrt{B}$ for all $i$.


## Bounding the norm (example 2)

 Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.
## Bounding the norm (example 2)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.

- $\left\|A_{i} \mathbf{g}\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot 1 / \sqrt{k}
$$



## Bounding the norm (example 2)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.

- $\left\|A_{i} \mathbf{g}\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot 1 / \sqrt{k}
$$

- Then with high probability,

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B}+C \sqrt{\log n}
$$

## Bounding the norm (example 2)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.

- $\left\|A_{i} \mathbf{g}\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot 1 / \sqrt{k}
$$

- Then with high probability,

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B}+C \sqrt{\log n}
$$

- Naive bound:

$$
\left\|A_{i}\right\|_{R I P} \leq\left\|A_{i}\right\|_{F}=\sqrt{B k} \Longrightarrow C \leq \sqrt{B}
$$

## Bounding the norm (example 2)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.

- $\left\|A_{i} \mathbf{g}\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot 1 / \sqrt{k}
$$

- Then with high probability,

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B}+C \sqrt{\log n}
$$

- Naive bound:

$$
\left\|A_{i}\right\|_{R I P} \leq\left\|A_{i}\right\|_{F}=\sqrt{B k} \Longrightarrow C \leq \sqrt{B}
$$

- "Very weak" RIP bound, with $B=\log ^{c} n$ :

$$
\left\|A_{i}\right\|_{R I P} \lesssim\left\|A_{i}\right\|_{F} / \sqrt{\log n}
$$

## Bounding the norm (example 2)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.

- $\left\|A_{i} \mathbf{g}\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R \mid P} \cdot 1 / \sqrt{k}
$$

- Then with high probability,

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B}+C \sqrt{\log n}
$$

- Naive bound:

$$
\left\|A_{i}\right\|_{R I P} \leq\left\|A_{i}\right\|_{F}=\sqrt{B k} \Longrightarrow C \leq \sqrt{B}
$$

- "Very weak" RIP bound, with $B=\log ^{c} n$ :

$$
\left\|A_{i}\right\|_{R I P} \lesssim\left\|A_{i}\right\|_{F} / \sqrt{\log n}
$$

- So

$$
C \lesssim \sqrt{B / \log n} \Longrightarrow\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B} \text { w.h.p }
$$

## Bounding the norm (example 2)

Just want to bound $\mathbb{E}\left[\|\mathbf{g}\|_{A}\right]$ when $\mathbf{g}_{i} \sim N(0,1 / k)$ for $i \in[k]$.

- $\left\|A_{i} \mathbf{g}\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot 1 / \sqrt{k}
$$

- Then with high probability,

$$
\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B}+C \sqrt{\log n}
$$

- Naive bound:

$$
\left\|A_{i}\right\|_{R I P} \leq\left\|A_{i}\right\|_{F}=\sqrt{B k} \Longrightarrow C \leq \sqrt{B}
$$

- "Very weak" RIP bound, with $B=\log ^{c} n$ :

$$
\left\|A_{i}\right\|_{R I P} \lesssim\left\|A_{i}\right\|_{F} / \sqrt{\log n}
$$

- So

$$
C \lesssim \sqrt{B / \log n} \Longrightarrow\left\|A_{i} \mathbf{g}\right\|_{2} \lesssim \sqrt{B} \text { w.h.p }
$$

- So $\mathbb{E}\|\mathbf{g}\|_{A}=\max \left\|\boldsymbol{A}_{\boldsymbol{i}} \mathbf{g}\right\|_{2} \lesssim \sqrt{B}$.


## Unrolling everything



Union bound just loses a constant factor

## Unrolling everything



Sample mean $\mathbf{z}$ expects to lie within $u$ of $\mathbf{x}$ for $t \geq B / u^{2}$

## Unrolling everything



Covering number of $B_{1}$ is $(n+1)^{B / u^{2}}$

## Unrolling everything



Entropy integral is $\sqrt{k B \log ^{3} n}$

## Unrolling everything



RIP constant $\epsilon \lesssim \sqrt{\frac{k \log ^{3} n}{m}}$

## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.


## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?


## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?
- Loss seems to be from Dudley's entropy integral:

$$
\sup \sum \leq \sum \sup
$$

## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?
- Loss seems to be from Dudley's entropy integral:

$$
\sup \sum \leq \sum \sup
$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]


## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?
- Loss seems to be from Dudley's entropy integral:

$$
\sup \sum \leq \sum \sup
$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra $\log ^{3} n$ necessary?
- [Krahmer-Ward] only needs "model-based" RIP; could save log $n$.


## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?
- Loss seems to be from Dudley's entropy integral:

$$
\sup \sum \leq \sum \sup
$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra $\log ^{3} n$ necessary?
- [Krahmer-Ward] only needs "model-based" RIP; could save log $n$.
- Any other constructions?


## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?
- Loss seems to be from Dudley's entropy integral:

$$
\sup \sum \leq \sum \sup
$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra $\log ^{3} n$ necessary?
- [Krahmer-Ward] only needs "model-based" RIP; could save log $n$.
- Any other constructions?
- Lots of cool techniques in the field; can we use them elsewhere?


## Summary and Open Questions

- We get fast RIP matrices with $O\left(k \log ^{3} n\right)$ rows.
- Is the extra $\log ^{2} n$ necessary?
- Loss seems to be from Dudley's entropy integral:

$$
\sup \sum \leq \sum \sup
$$

- Generic chaining: tight but harder to use. [Fernique, Talagrand]
- For JL, is the extra $\log ^{3} n$ necessary?
- [Krahmer-Ward] only needs "model-based" RIP; could save log $n$.
- Any other constructions?
- Lots of cool techniques in the field; can we use them elsewhere?

Thanks!

## Thoughts on loss

- Recall that

$$
N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}
$$

## Thoughts on loss

- Recall that

$$
N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}
$$

- So the entropy integral gives

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right) \leq \log ^{3 / 2} n
$$

## Thoughts on loss

- Recall that

$$
N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}
$$

- So the entropy integral gives

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right) \leq \log ^{3 / 2} n
$$

- But the associated Gaussian process is just:

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right)=\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle
$$

for $g \sim N\left(0, I_{n}\right) .\left(\right.$ Check: $\left.\mathbb{E}\left[(\langle g, x\rangle-\langle g, y\rangle)^{2}\right]=\|x-y\|_{2}^{2}\right)$

## Thoughts on loss

- Recall that

$$
N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}
$$

- So the entropy integral gives

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right) \leq \log ^{3 / 2} n .
$$

- But the associated Gaussian process is just:

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right)=\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle
$$

for $g \sim N\left(0, I_{n}\right)$. (Check: $\left.\mathbb{E}\left[(\langle g, x\rangle-\langle g, y\rangle)^{2}\right]=\|x-y\|_{2}^{2}\right)$

- We can compute this directly:

$$
\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle=\|g\|_{\infty}=\sqrt{\log n}
$$

## Thoughts on loss

- Recall that

$$
N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}
$$

- So the entropy integral gives

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right) \leq \log ^{3 / 2} n .
$$

- But the associated Gaussian process is just:

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right)=\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle
$$

for $g \sim N\left(0, I_{n}\right)$. (Check: $\left.\mathbb{E}\left[(\langle g, x\rangle-\langle g, y\rangle)^{2}\right]=\|x-y\|_{2}^{2}\right)$

- We can compute this directly:

$$
\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle=\|g\|_{\infty}=\sqrt{\log n}
$$

- Generic chaining: there exists a partition $A_{1}, A_{2}, \ldots$ such that

$$
\gamma_{2} \simeq \sup _{x} \sum \sqrt{\log \left|A_{i+1}\right|} d\left(x, A_{i}\right)
$$

## Thoughts on loss

- Recall that

$$
N\left(B_{1}, \ell_{2}, u\right) \leq n^{1 / u^{2}}
$$

- So the entropy integral gives

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right) \leq \log ^{3 / 2} n .
$$

- But the associated Gaussian process is just:

$$
\gamma_{2}\left(B_{1}, \ell_{2}\right)=\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle
$$

for $g \sim N\left(0, I_{n}\right)$. (Check: $\left.\mathbb{E}\left[(\langle g, x\rangle-\langle g, y\rangle)^{2}\right]=\|x-y\|_{2}^{2}\right)$

- We can compute this directly:

$$
\mathbb{E} \sup _{x \in B_{1}}\langle g, x\rangle=\|g\|_{\infty}=\sqrt{\log n}
$$

- Generic chaining: there exists a partition $A_{1}, A_{2}, \ldots$ such that

$$
\gamma_{2} \simeq \sup _{x} \sum \sqrt{\log \left|A_{i+1}\right|} d\left(x, A_{i}\right)
$$

- Dudley: choose $A_{i}$ so $\sup d\left(x, A_{i}\right) \leq \sigma_{1} / 2^{i}$.


## Covering Number Bound

Maurey's empirical method

- Answer is $n^{t}$, where $t$ is such that

$$
E:=\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-x\right\|\right] \leq u
$$

## Covering Number Bound

Maurey's empirical method

- Answer is $n^{t}$, where $t$ is such that

$$
E:=\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-\check{x}\right\|\right] \leq u
$$

## Covering Number Bound

Maurey's empirical method

- Answer is $n^{t}$, where $t$ is such that

$$
E:=\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-\underset{x}{t}\right\|\right] \leq u
$$

- Symmetrize:

$$
E \lesssim \frac{1}{t} \mathbb{E}\left[\left\|\sum g_{i} z_{i}\right\|\right]
$$

for $g_{i} \sim N(0,1)$ i.i.d.

## Covering Number Bound

Maurey's empirical method

- Answer is $n^{t}$, where $t$ is such that

$$
E:=\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-\stackrel{x}{x}\right\|\right] \leq u
$$

- Symmetrize:

$$
E \lesssim \frac{1}{t} \mathbb{E}\left[\left\|\sum g_{i} z_{i}\right\|\right]
$$

for $g_{i} \sim N(0,1)$ i.i.d.

- Then $g:=\sum g_{i} z_{i}$ is an independent Gaussian in each coordinate.


## Covering Number Bound

Maurey's empirical method

- Answer is $n^{t}$, where $t$ is such that

$$
\begin{aligned}
& \mathrm{e} t \text { is such that } \\
& E:=\mathbb{E}\left[\left\|\frac{1}{t} \sum z_{i}-\tilde{x}\right\|\right] \leq u .
\end{aligned}
$$

- Symmetrize:

$$
E \lesssim \frac{1}{t} \mathbb{E}\left[\left\|\sum g_{i} z_{i}\right\|\right]
$$

for $g_{i} \sim N(0,1)$ i.i.d.

- Then $g:=\sum g_{i} z_{i}$ is an independent Gaussian in each coordinate.
- $\ln \ell_{2}$,

$$
\frac{1}{t} \mathbb{E}\left[\|g\|_{2}\right] \leq \frac{1}{t} \mathbb{E}\left[\|g\|_{2}^{2}\right]^{1 / 2}=\frac{\sqrt{\text { number nonzero } z_{i}}}{t} \leq \frac{1}{\sqrt{t}}
$$

giving an $n^{O\left(1 / u^{2}\right)}$ bound.

## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$


## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$
- Bound:

$$
\left\|x_{\text {large }}\right\|_{1}
$$

## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$
- Bound:

$$
\left\|x_{\text {large }}\right\|_{1}
$$

- Given $\|x\|_{2}^{2} \leq 1 / k$, maximal $\left\|x_{\text {large }}\right\|_{1}$ if spread out.


## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$
- Bound:

$$
\left\|x_{\text {large }}\right\|_{1}
$$

- Given $\|x\|_{2}^{2} \leq 1 / k$, maximal $\left\|x_{\text {large }}\right\|_{1}$ if spread out.
- $k /\left(\log ^{2} n\right)$ of value $(\log n) / k$


## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$
- Bound:

$$
\left\|x_{\text {large }}\right\|_{1} \leq 1 / \log n .
$$

- Given $\|x\|_{2}^{2} \leq 1 / k$, maximal $\left\|x_{\text {large }}\right\|_{1}$ if spread out.
- $k /\left(\log ^{2} n\right)$ of value $(\log n) / k$


## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$
- Bound:

$$
\left\|x_{\text {large }}\right\|_{1} \leq 1 / \log n .
$$

- Given $\|x\|_{2}^{2} \leq 1 / k$, maximal $\left\|x_{\text {large }}\right\|_{1}$ if spread out.
- $k /\left(\log ^{2} n\right)$ of value $(\log n) / k$
- Absorbs the loss from union bound.


## Bounding the norm in our case (part 1)

- $x \in \Sigma_{k} / \sqrt{k} \subset B_{1}$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.

$$
\mathcal{G}(x)=\mathbb{E}_{z, g}\|g\|_{A}
$$

- First: split $x$ into "large" and "small" coordinates.

$$
\mathcal{G}(x) \leq \mathcal{G}\left(x_{\text {large }}\right)+\mathcal{G}\left(x_{\text {small }}\right)
$$

- $x_{\text {large }}$ : Locations where $x_{i}>(\log n) / k$
- Bound:

$$
\left\|x_{\text {large }}\right\|_{1} \leq 1 / \log n .
$$

- Given $\|x\|_{2}^{2} \leq 1 / k$, maximal $\left\|x_{\text {large }}\right\|_{1}$ if spread out.
- $k /\left(\log ^{2} n\right)$ of value $(\log n) / k$
- Absorbs the loss from union bound.
- So can focus on $\|x\|_{\infty}<(\log n) / k$.


## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$


## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2}$


## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.


## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$



## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t}
$$

## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t} \leq \sqrt{B k} \cdot \sqrt{\log n /(k t)}=\sqrt{B \log n / t}
$$

## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t} \leq \sqrt{B k} \cdot \sqrt{\log n /(k t)}=\sqrt{B \log n / t}
$$

- "Very weak" RIP bound:

$$
\left\|A_{i}\right\|_{R I P} \lesssim \log ^{4} n(\sqrt{B}+\sqrt{k})
$$

## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t} \leq \sqrt{B k} \cdot \sqrt{\log n /(k t)}=\sqrt{B \log n / t}
$$

- "Very weak" RIP bound: for some $B=\log ^{c} n$,

$$
\left\|A_{i}\right\|_{R I P} \lesssim \log ^{4} n(\sqrt{B}+\sqrt{k}) \leq\left\|A_{i}\right\|_{F} / \log n
$$

## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t} \leq \sqrt{B k} \cdot \sqrt{\log n /(k t)}=\sqrt{B \log n / t}
$$

- "Very weak" RIP bound: for some $B=\log ^{c} n$,

$$
\left\|A_{i}\right\|_{R I P} \lesssim \log ^{4} n(\sqrt{B}+\sqrt{k}) \leq\left\|A_{i}\right\|_{F} / \log n
$$

- Gives

$$
C \lesssim \sqrt{B /(t \log n)}
$$

## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t} \leq \sqrt{B k} \cdot \sqrt{\log n /(k t)}=\sqrt{B \log n / t}
$$

- "Very weak" RIP bound: for some $B=\log ^{c} n$,

$$
\left\|A_{i}\right\|_{R I P} \lesssim \log ^{4} n(\sqrt{B}+\sqrt{k}) \leq\left\|A_{i}\right\|_{F} / \log n
$$

- Gives

$$
C \lesssim \sqrt{B /(t \log n)}
$$

- So with high probability, $\left\|A_{i} g\right\|_{2} \lesssim \sqrt{B / t}+C \sqrt{\log n} \lesssim \sqrt{B / t}$.


## Bounding the norm in our case (part 2)

- $k$-sparse $x$ rounded to $z_{1}, \ldots, z_{t}$ symmetrized to $g$.
- $\|x\|_{\infty}<(\log n) / k$
- $g_{i} \sim N\left(0, \sigma_{i}^{2}\right)$ for $\sigma_{i}^{2}=\left\{\# z_{j}\right.$ at vertex $\left.e_{i}\right\} / t^{2} \approx x_{i} / t$.
- $\left\|A_{i} g\right\|_{2}$ is $C$-Lipschitz with factor

$$
C=\left\|A_{i}\right\|_{R I P} \cdot\|\sigma\|_{\infty}
$$

- Naive bound:


$$
C \lesssim\left\|A_{i}\right\|_{F} \cdot \sqrt{\|x\|_{\infty} / t} \leq \sqrt{B k} \cdot \sqrt{\log n /(k t)}=\sqrt{B \log n / t}
$$

- "Very weak" RIP bound: for some $B=\log ^{c} n$,

$$
\left\|A_{i}\right\|_{R I P} \lesssim \log ^{4} n(\sqrt{B}+\sqrt{k}) \leq\left\|A_{i}\right\|_{F} / \log n
$$

- Gives

$$
C \lesssim \sqrt{B /(t \log n)}
$$

- So with high probability, $\left\|A_{i} g\right\|_{2} \lesssim \sqrt{B / t}+C \sqrt{\log n} \lesssim \sqrt{B / t}$.
- So $\mathbb{E}\|g\|_{A}=\max \left\|A_{i} g\right\|_{2} \lesssim \sqrt{B / t}$.

