Tight Bounds for Learning a Mixture of Two Gaussians

Moritz Hardt Eric Price
Google Research UT Austin

2015-06-17

Problem

- Height distribution of American 20 year olds.

Problem

- Height distribution of American 20 year olds.
- Male/female heights are very close to Gaussian distribution.

Problem

- Height distribution of American 20 year olds.
- Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from unlabeled population data?

Problem

- Height distribution of American 20 year olds.
- Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from unlabeled population data?
- How many samples to learn μ_{1}, μ_{2} to $\pm \epsilon \sigma$?

Problem

- Height distribution of American 20 year olds.
- Male/female heights are very close to Gaussian distribution.
- Can we learn the average male and female heights from unlabeled population data?
- How many samples to learn μ_{1}, μ_{2} to $\pm \epsilon \sigma$?
- d-dimensional setting: also learn weight, shoe size, ...

Gaussian Mixtures: Origins

> III. Contributions to the Mathematical Theory of Erolution.
> By Kart, Prarson, University College, London.
> Communicated by Professor. Henrict, Ir.R.S.

Received October 18,-Read November 16, 1893.

> [Plates 1-5.]

Contents.

Page.
I.-On the Dissection of Asymmetrical Frequency-Curves. Gcueral Thoory, §\$ 1-8. 71-85
Example: Professor Wemosis mensmrements of the "Forchead" of Crabs.§§ $9-10$$85-90$
IL.-On the Dissoction of Symmetrical Trequency-Curves. General Theory, §§ 11-12 Application. Crabs "No. 4," §§ 13-1" $90-100$
11L.-Investigation of an Asymmetrical Frequency, Curve repmesenting Mr. H. Thomsor's measurcments of the Carapaco of Prawns. §§ 16-18 100-106
Table J. First Six Powers of First Thirty Natural Nambers 106
Table LLL. Ordinates of Normal Frequency-Curve 107
Note alded February 10, 1894 107-11.0

Gaussian Mixtures: Origins

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.

Gaussian Mixtures: Origins

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)

Gaussian Mixtures: Origins

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)
- But the "forehead" size wasn't symmetric.

Gaussian Mixtures: Origins

Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

- Pearson's naturalist buddy measured lots of crab body parts.
- Most lengths seemed to follow the "normal" distribution (a recently coined name)
- But the "forehead" size wasn't symmetric.
- Maybe there were actually two species of crabs?

More previous work

- Pearson 1894: proposed method for 2 Gaussians

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
- Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
- Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
- Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
- Our result: tight upper and lower bounds for the sample complexity.

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
- Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
- Our result: tight upper and lower bounds for the sample complexity.
- For $k=2$ mixtures, arbitrary d dimensions.

More previous work

- Pearson 1894: proposed method for 2 Gaussians
- "Method of moments"
- Other empirical papers over the years:
- Royce '58, Gridgeman '70, Gupta-Huang '80
- Provable results assuming the components are well-separated:
- Clustering: Dasgupta '99, DA '00
- Spectral methods: VW '04, AK '05, KSV '05, AM '05, VW '05
- Kalai-Moitra-Valiant 2010: first general polynomial bound.
- Extended to general k mixtures: Moitra-Valiant '10, Belkin-Sinha '10
- The KMV polynomial is very large.
- Our result: tight upper and lower bounds for the sample complexity.
- For $k=2$ mixtures, arbitrary d dimensions.
- Lower bound extends to larger k.

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.
- Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.
- Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]
- Proper learning: [Daskalakis-Kamath '14]

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.
- Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]
- Proper learning: [Daskalakis-Kamath '14]
- But only in low dimensions.

Learning the components vs. learning the sum

- It's important that we want to learn the individual components:
- Male/female average heights, std. deviations.
- Getting ϵ approximation in TV norm to overall distribution takes $\widetilde{\Theta}\left(1 / \epsilon^{2}\right)$ samples from black box techniques.
- Quite general: non-properly for any mixture of known unimodal distributions. [Chan, Diakonikolas, Servedio, Sun '13]
- Proper learning: [Daskalakis-Kamath '14]
- But only in low dimensions.
- Generic high-d TV estimation algs use 1d parameter estimation.

Our result

- A variant of Pearson's 1894 method is optimal!

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$
- σ_{i}^{2} to $\pm \epsilon^{2} \sigma^{2}$

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$
- σ_{i}^{2} to $\pm \epsilon^{2} \sigma^{2}$
- In one dimension: $\Theta\left(1 / \epsilon^{12}\right)$ samples necessary and sufficient.

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$
- σ_{i}^{2} to $\pm \epsilon^{2} \sigma^{2}$
- In one dimension: $\Theta\left(1 / \epsilon^{12}\right)$ samples necessary and sufficient.
- Previously: $1 / \epsilon \approx 300$, no lower bound.

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$
- σ_{i}^{2} to $\pm \epsilon^{2} \sigma^{2}$
- In one dimension: $\Theta\left(1 / \epsilon^{12}\right)$ samples necessary and sufficient.
- Previously: $1 / \epsilon^{\approx 300}$, no lower bound.
- Moreover: algorithm is almost the same as Pearson (1894).

Our result

- A variant of Pearson's 1894 method is optimal!
- Suppose we want means and variances to ϵ accuracy:
- μ_{i} to $\pm \epsilon \sigma$
- σ_{i}^{2} to $\pm \epsilon^{2} \sigma^{2}$
- In one dimension: $\Theta\left(1 / \epsilon^{12}\right)$ samples necessary and sufficient.
- Previously: $1 / \epsilon^{\approx 300}$, no lower bound.
- Moreover: algorithm is almost the same as Pearson (1894).

- More precisely: if two gaussians are α standard deviations apart, getting $\epsilon \alpha$ precision takes $\Theta\left(\frac{1}{\alpha^{12} \epsilon^{2}}\right)$ samples.

Our result: higher dimensions

- In dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
- If components overlap, then parameter distance \approx TV.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
- If components overlap, then parameter distance \approx TV.
- If components don't overlap, then clustering is trivial.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
- If components overlap, then parameter distance \approx TV.
- If components don't overlap, then clustering is trivial.
- Straightforwardly gives $\widetilde{O}\left(d^{30} / \epsilon^{36}\right)$ samples.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
- If components overlap, then parameter distance \approx TV.
- If components don't overlap, then clustering is trivial.
- Straightforwardly gives $\widetilde{O}\left(d^{30} / \epsilon^{36}\right)$ samples.
- Best known, but not the $\widetilde{O}\left(d / \epsilon^{c}\right)$ we want.

Our result: higher dimensions

- In d dimensions, $\Theta\left(1 / \epsilon^{12} \log d\right)$ samples for parameter distance.
- " σ^{2} " is max variance in any coordinate.
- Get each entry of covariance matrix to $\pm \epsilon^{2} \sigma^{2}$.
- Useful when covariance matrix is sparse.
- Also gives an improved bound in TV error of each component:
- If components overlap, then parameter distance \approx TV.
- If components don't overlap, then clustering is trivial.
- Straightforwardly gives $\widetilde{O}\left(d^{30} / \epsilon^{36}\right)$ samples.
- Best known, but not the $\widetilde{O}\left(d / \epsilon^{c}\right)$ we want.
- Caveat: assume p_{1}, p_{2} are bounded away from zero throughout.

Outline

(1) Algorithm in One Dimension

Outline

(1) Algorithm in One Dimension

(2) Lower Bound

Outline

(1) Algorithm in One Dimension

(2) Lower Bound
(3) Algorithm in d Dimensions

Outline

(1) Algorithm in One Dimension

(2) Lower Bound

(3) Algorithm in d Dimensions

Method of Moments

- We want to learn five parameters: $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, p_{1}, p_{2}$ with $p_{1}+p_{2}=1$.

Method of Moments

- We want to learn five parameters: $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, p_{1}, p_{2}$ with $p_{1}+p_{2}=1$.
- Moments give polynomial equations in parameters:

$$
\begin{aligned}
& M_{1}:=\mathbb{E}\left[x^{1}\right]=p_{1} \mu_{1}+p_{2} \mu_{2} \\
& M_{2}:=\mathbb{E}\left[x^{2}\right] \\
&=p_{1} \mu_{1}^{2}+p_{2} \mu_{2}^{2}+p_{1} \sigma_{1}^{2}+p_{2} \sigma_{2}^{2} \\
& M_{3}, M_{4}, M_{5}, M_{6}=[\ldots]
\end{aligned}
$$

Method of Moments

- We want to learn five parameters: $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, p_{1}, p_{2}$ with $p_{1}+p_{2}=1$.
- Moments give polynomial equations in parameters:

$$
\begin{aligned}
M_{1} & :=\mathbb{E}\left[x^{1}\right] \\
M_{2} & :=p_{1} \mu_{1}+p_{2} \mu_{2} \\
M_{3}, M_{4}, M_{5}, M_{6} & =[\ldots]
\end{aligned}
$$

- Use our samples to estimate the moments.

Method of Moments

- We want to learn five parameters: $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, p_{1}, p_{2}$ with $p_{1}+p_{2}=1$.
- Moments give polynomial equations in parameters:

$$
\begin{aligned}
& M_{1}:=\mathbb{E}\left[x^{1}\right]=p_{1} \mu_{1}+p_{2} \mu_{2} \\
& M_{2}:=\mathbb{E}\left[x^{2}\right] \\
&=p_{1} \mu_{1}^{2}+p_{2} \mu_{2}^{2}+p_{1} \sigma_{1}^{2}+p_{2} \sigma_{2}^{2} \\
& M_{3}, M_{4}, M_{5}, M_{6}=[\ldots]
\end{aligned}
$$

- Use our samples to estimate the moments.
- Solve the system of equations to find the parameters.

Method of Moments

Solving the system

- Start with five parameters.

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:
- Convert to "central moments"

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:
- Convert to "central moments"
- $M_{2}^{\prime}=M_{2}-M_{1}^{2}$ is independent of translation.

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:
- Convert to "central moments"
- $M_{2}^{\prime}=M_{2}-M_{1}^{2}$ is independent of translation.
- Analogously, can assume $\min \left(\sigma_{1}, \sigma_{2}\right)=0$ by converting to "excess moments"

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:
- Convert to "central moments"
- $M_{2}^{\prime}=M_{2}-M_{1}^{2}$ is independent of translation.
- Analogously, can assume $\min \left(\sigma_{1}, \sigma_{2}\right)=0$ by converting to "excess moments"
- $X_{4}=M_{4}-3 M_{2}^{2}$ is independent of adding $N\left(0, \sigma^{2}\right)$.

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:

Parameters	$\lambda>0$ rate, or inverse scale
Support	$x \in[0, \infty)$
pdf	$\lambda e^{-\lambda x}$
CDF	$1-e^{-\lambda x}$
Mean	λ^{-1}
Median	$\lambda^{-1} \ln (2)$
Mode	0
Variance	λ^{-2}
Skewness	2
Ex. kurtosis	$1-\ln (\lambda)$
Entropy	$\left(1-\frac{t}{\lambda}\right)^{-1}$ for $t<\lambda$
MGF	$\left(1-\frac{i t}{\lambda}\right)^{-1}$
CF	$1-2$
Cichar infarmation	

- Convert to "central moments"
- $M_{2}^{\prime}=M_{2}-M_{1}^{2}$ is independent of translation.
- Analogously, can assume $\min \left(\sigma_{1}, \sigma_{2}\right)=0$ by converting to "excess moments"
- $X_{4}=M_{4}-3 M_{2}^{2}$ is independent of adding $N\left(0, \sigma^{2}\right)$.
- "Excess kurtosis" coined by Pearson, appearing in every Wikipedia probability distribution infobox.

Method of Moments

Solving the system

- Start with five parameters.
- First, can assume mean zero:

Parameters	$\lambda>0$ rate, or inverse scale
Support	$x \in[0, \infty)$
pdf	$\lambda e^{-\lambda x}$
CDF	$1-e^{-\lambda x}$
Mean	λ^{-1}
Median	$\lambda^{-1} \ln (2)$
Mode	0
Variance	λ^{-2}
Skewness	2
Ex. kurtosis	6
Entropy	$1-\ln (\lambda)$
MGF	$\left(1-\frac{t}{\lambda}\right)^{-1}$ for $t<\lambda$
CF	$\left(1-\frac{i t}{\lambda}\right)^{-1}$
Fichar infarmation	$1-2$

- Convert to "central moments"
- $M_{2}^{\prime}=M_{2}-M_{1}^{2}$ is independent of translation.
- Analogously, can assume $\min \left(\sigma_{1}, \sigma_{2}\right)=0$ by converting to "excess moments"
- $X_{4}=M_{4}-3 M_{2}^{2}$ is independent of adding $N\left(0, \sigma^{2}\right)$.
- "Excess kurtosis" coined by Pearson, appearing in every Wikipedia probability distribution infobox.
- Leaves three free parameters.

Method of Moments: system of equations

- Convenient to reparameterize by

$$
\alpha=-\mu_{1} \mu_{2}, \beta=\mu_{1}+\mu_{2}, \gamma=\frac{\sigma_{2}^{2}-\sigma_{1}^{2}}{\mu_{2}-\mu_{1}}
$$

Method of Moments: system of equations

- Convenient to reparameterize by

$$
\alpha=-\mu_{1} \mu_{2}, \beta=\mu_{1}+\mu_{2}, \gamma=\frac{\sigma_{2}^{2}-\sigma_{1}^{2}}{\mu_{2}-\mu_{1}}
$$

- Gives that

$$
\begin{aligned}
& X_{3}=\alpha(\beta+3 \gamma) \\
& X_{4}=\alpha\left(-2 \alpha+\beta^{2}+6 \beta \gamma+3 \gamma^{2}\right) \\
& X_{5}=\alpha\left(\beta^{3}-8 \alpha \beta+10 \beta^{2} \gamma+15 \gamma^{2} \beta-20 \alpha \gamma\right) \\
& X_{6}=\alpha\left(16 \alpha^{2}-12 \alpha \beta^{2}-60 \alpha \beta \gamma+\beta^{4}+15 \beta^{3} \gamma+45 \beta^{2} \gamma^{2}+15 \beta \gamma^{3}\right)
\end{aligned}
$$

Method of Moments: system of equations

- Convenient to reparameterize by

$$
\alpha=-\mu_{1} \mu_{2}, \beta=\mu_{1}+\mu_{2}, \gamma=\frac{\sigma_{2}^{2}-\sigma_{1}^{2}}{\mu_{2}-\mu_{1}}
$$

- Gives that

$$
\begin{aligned}
& X_{3}=\alpha(\beta+3 \gamma) \\
& X_{4}=\alpha\left(-2 \alpha+\beta^{2}+6 \beta \gamma+3 \gamma^{2}\right) \\
& X_{5}=\alpha\left(\beta^{3}-8 \alpha \beta+10 \beta^{2} \gamma+15 \gamma^{2} \beta-20 \alpha \gamma\right) \\
& X_{6}=\alpha\left(16 \alpha^{2}-12 \alpha \beta^{2}-60 \alpha \beta \gamma+\beta^{4}+15 \beta^{3} \gamma+45 \beta^{2} \gamma^{2}+15 \beta \gamma^{3}\right)
\end{aligned}
$$

All my attempts to obtain a simpler set have failed... It is possible, however, that some other ... equations of a less complex kind may ultimately be found.

Pearson's Polynomial

- Chug chug chug...

Pearson's Polynomial

- Chug chug chug...
- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5} :

$$
\begin{aligned}
p(\alpha)= & 8 \alpha^{9}+28 X_{4} \alpha^{7}-12 X_{3}^{2} \alpha^{6}+\left(24 X_{3} X_{5}+30 X_{4}^{2}\right) \alpha^{5} \\
& \quad+\left(6 X_{5}^{2}-148 X_{3}^{2} X_{4}\right) \alpha^{4}+\left(96 X_{3}^{4}-36 X_{3} X_{4} X_{5}+9 X_{4}^{3}\right) \alpha^{3} \\
& \quad+\left(24 X_{3}^{3} X_{5}+21 X_{3}^{2} X_{4}^{2}\right) \alpha^{2}-32 X_{3}^{4} X_{4} \alpha+8 X_{3}^{6} \\
= & 0
\end{aligned}
$$

Pearson's Polynomial

- Chug chug chug...
- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5} :

$$
\begin{aligned}
p(\alpha)= & 8 \alpha^{9}+28 X_{4} \alpha^{7}-12 X_{3}^{2} \alpha^{6}+\left(24 X_{3} X_{5}+30 X_{4}^{2}\right) \alpha^{5} \\
& +\left(6 X_{5}^{2}-148 X_{3}^{2} X_{4}\right) \alpha^{4}+\left(96 X_{3}^{4}-36 X_{3} X_{4} X_{5}+9 X_{4}^{3}\right) \alpha^{3} \\
& \quad+\left(24 X_{3}^{3} X_{5}+21 X_{3}^{2} X_{4}^{2}\right) \alpha^{2}-32 X_{3}^{4} X_{4} \alpha+8 X_{3}^{6} \\
= & 0
\end{aligned}
$$

- Easy to go from solutions $\alpha=-\mu_{1} \mu_{2}$ to mixtures $\mu_{i}, \sigma_{i}, p_{i}$.

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Pearson's proposal: choose root with closer 6th moment.

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?
- Usually works well

Pearson's Polynomial

- Get a 9th degree polynomial in the excess moments X_{3}, X_{4}, X_{5}.
- Positive roots correspond to mixtures that match on five moments.
- Pearson's proposal: choose root with closer 6th moment.
- Works because six moments uniquely identify mixture [KMV]
- How robust to moment estimation error?
- Usually works well
- Not when there's a double root.

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

- How robust is the solution to perturbations of X_{3}, \ldots, X_{6} ?

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

- How robust is the solution to perturbations of X_{3}, \ldots, X_{6} ?
- We know $q(x):=r /(x-\alpha)^{2}$ has no positive roots.

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

- How robust is the solution to perturbations of X_{3}, \ldots, X_{6} ?
- We know $q(x):=r /(x-\alpha)^{2}$ has no positive roots.
- By compactness: $q(x) \geq c>0$ for some constant c.

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

- How robust is the solution to perturbations of X_{3}, \ldots, X_{6} ?
- We know $q(x):=r /(x-\alpha)^{2}$ has no positive roots.
- By compactness: $q(x) \geq c>0$ for some constant c.
- Therefore plugging in empirical moments \widetilde{X}_{i} to estimate polynomials p_{5}, p_{6} is robust:

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

- How robust is the solution to perturbations of X_{3}, \ldots, X_{6} ?
- We know $q(x):=r /(x-\alpha)^{2}$ has no positive roots.
- By compactness: $q(x) \geq c>0$ for some constant c.
- Therefore plugging in empirical moments \widetilde{X}_{i} to estimate polynomials p_{5}, p_{6} is robust:
- Given approximations $\left|\widetilde{p}_{5}-p_{5}\right|,\left|\widetilde{p}_{6}-p_{6}\right| \leq \epsilon$,

$$
|\alpha-\arg \min \widetilde{r}(x)| \lesssim \epsilon .
$$

Making it robust in all cases

- Can create another ninth degree polynomial p_{6} from $X_{3}, X_{4}, X_{5}, X_{6}$.
- Then α is the unique positive root of

$$
r(\alpha):=p_{5}(\alpha)^{2}+p_{6}(\alpha)^{2}=0
$$

- How robust is the solution to perturbations of X_{3}, \ldots, X_{6} ?
- We know $q(x):=r /(x-\alpha)^{2}$ has no positive roots.
- By compactness: $q(x) \geq c>0$ for some constant c.
- Therefore plugging in empirical moments \widetilde{X}_{i} to estimate polynomials p_{5}, p_{6} is robust:
- Given approximations $\left|\widetilde{p}_{5}-p_{5}\right|,\left|\widetilde{p}_{6}-p_{6}\right| \leq \epsilon$,

$$
|\alpha-\arg \min \widetilde{r}(x)| \lesssim \epsilon .
$$

- Getting α lets us estimate means, variances.

Result

- Scale so the excess moments are $O(1): \mu_{i}$ are $\pm O(1)$.

Result

- Scale so the excess moments are $O(1): \mu_{i}$ are $\pm O(1)$.
- Getting the \widetilde{p}_{i} to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.

Result

- Scale so the excess moments are $O(1): \mu_{i}$ are $\pm O(1)$.
- Getting the \widetilde{p}_{i} to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^{2}, then M_{i} has variance $O\left(\sigma^{2 i}\right)$.

Result

- Scale so the excess moments are $O(1): \mu_{i}$ are $\pm O(1)$.
- Getting the \widetilde{p}_{i} to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^{2}, then M_{i} has variance $O\left(\sigma^{2 i}\right)$.
- Thus $O\left(\sigma^{12} / \epsilon^{2}\right)$ samples to learn the μ_{i} to $\pm \epsilon$.

Result

- Scale so the excess moments are $O(1): \mu_{i}$ are $\pm O(1)$.
- Getting the \widetilde{p}_{i} to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^{2}, then M_{i} has variance $O\left(\sigma^{2 i}\right)$.
- Thus $O\left(\sigma^{12} / \epsilon^{2}\right)$ samples to learn the μ_{i} to $\pm \epsilon$.
- If components are $\Omega(1)$ standard deviations apart, $O\left(1 / \epsilon^{2}\right)$ samples suffice.

Result

- Scale so the excess moments are $O(1): \mu_{i}$ are $\pm O(1)$.
- Getting the \widetilde{p}_{i} to $O(\epsilon)$ requires getting the first six moments to $\pm O(\epsilon)$.
- If the variance is σ^{2}, then M_{i} has variance $O\left(\sigma^{2 i}\right)$.
- Thus $O\left(\sigma^{12} / \epsilon^{2}\right)$ samples to learn the μ_{i} to $\pm \epsilon$.
- If components are $\Omega(1)$ standard deviations apart, $O\left(1 / \epsilon^{2}\right)$ samples suffice.
- In general, $O\left(1 / \epsilon^{12}\right)$ samples suffice to get $\epsilon \sigma$ accuracy.

Outline

(1) Algorithm in One Dimension

3) Algorithm in d Dimensions

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.

Lower bound in one dimension

- The algorithm takes $O\left(\epsilon^{-12}\right)$ samples because it uses six moments
- Necessary to get sixth moment to $\pm(\epsilon \sigma)^{6}$.
- Let F, F^{\prime} be any two mixtures with five matching moments:

- Constant means and variances.
- Add $N\left(0, \sigma^{2}\right)$ to each mixture for growing σ.
- Claim: $\Omega\left(\sigma^{12}\right)$ samples necessary to distinguish the distributions.

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have $\operatorname{TV}\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have $\operatorname{TV}\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have $\operatorname{TV}\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have $\operatorname{TV}\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.
- $H^{2}(P, Q):=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x$

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have TV $\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.
- $H^{2}(P, Q):=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x$
- H^{2} is subadditive on product measures:

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have TV $\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.
- $H^{2}(P, Q):=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x$
- H^{2} is subadditive on product measures:

$$
\star H^{2}\left(\left(x_{1}, \ldots, x_{m}\right),\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)\right) \leq m H^{2}\left(x, x^{\prime}\right)
$$

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have TV $\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.
- $H^{2}(P, Q):=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x$
- H^{2} is subadditive on product measures:

$$
\star H^{2}\left(\left(x_{1}, \ldots, x_{m}\right),\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)\right) \leq m H^{2}\left(x, x^{\prime}\right) .
$$

- Sample complexity is $\Omega\left(1 / H^{2}\left(F, F^{\prime}\right)\right)$

Lower bound in one dimension

- Two mixtures F, F^{\prime} with $F \approx F^{\prime}$.
- Have TV $\left(F, F^{\prime}\right) \approx 1 / \sigma^{6}$.
- Shows $\Omega\left(\sigma^{6}\right)$ samples, $O\left(\sigma^{12}\right)$ samples.

- Improve using squared Hellinger distance.
- $H^{2}(P, Q):=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x$
- H^{2} is subadditive on product measures:

$$
\star H^{2}\left(\left(x_{1}, \ldots, x_{m}\right),\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)\right) \leq m H^{2}\left(x, x^{\prime}\right) .
$$

- Sample complexity is $\Omega\left(1 / H^{2}\left(F, F^{\prime}\right)\right)$
- $H^{2} \lesssim T V \lesssim H$, but often $H \approx T V$.

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
H^{2}(p, q)=1-\int \sqrt{1+\Delta(x)} p(x) d x
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}\left[1+\Delta(x) / 2-O\left(\Delta^{2}(x)\right)\right]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}\left[1+\Delta(x) / 2-O\left(\Delta^{2}(x)\right)\right]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x=1-\int \sqrt{p(x) q(x)} d x
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}[1+\underbrace{\Delta(x)}_{\int q(x)-p(x)=0} / 2-O\left(\Delta^{2}(x)\right)]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int\left(\sqrt{p(x)}-\sqrt{q(x))^{2}} d x=1-\int \sqrt{p(x) q(x)} d x\right.
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}[1+\underbrace{1+(x)} / 2-O\left(\Delta^{2}(x)\right)] \\
& \lesssim \underset{x \sim p}{\mathbb{E}}\left[\Delta^{2}(x)\right]
\end{aligned}
$$

Bounding the Hellinger distance: general idea

Definition

$$
H^{2}(P, Q)=\frac{1}{2} \int\left(\sqrt{p(x)}-\sqrt{q(x))^{2}} d x=1-\int \sqrt{p(x) q(x)} d x\right.
$$

- If $q(x)=(1+\Delta(x)) p(x)$ for some small Δ, then [Pollard '00]

$$
\begin{aligned}
H^{2}(p, q) & =1-\int \sqrt{1+\Delta(x)} p(x) d x \\
& =1-\underset{x \sim p}{\mathbb{E}}[\sqrt{1+\Delta(x)}] \\
& =1-\underset{x \sim p}{\mathbb{E}}[1+\underbrace{1+(x)} / 2-O\left(\Delta^{2}(x)\right)] \\
& \lesssim \underset{x \sim p}{\mathbb{E}}\left[\Delta^{2}(x)\right]
\end{aligned}
$$

- Compare to $T V(p, q)=\frac{1}{2} \mathbb{E}_{x \sim p}[|\Delta(x)|]$

Bounding the Hellinger distance: our setting

Lemma

Let F, F^{\prime} be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G^{\prime}=F+N\left(0, \sigma^{2}\right), F^{\prime}+N\left(0, \sigma^{2}\right)$,

$$
H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{2 k+2} .
$$

Bounding the Hellinger distance: our setting

Lemma

Let F, F^{\prime} be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G^{\prime}=F+N\left(0, \sigma^{2}\right), F^{\prime}+N\left(0, \sigma^{2}\right)$,

$$
H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{2 k+2} .
$$

- Power series expansion of $\mathbb{E}\left[\Delta^{2}\right]=\mathbb{E}\left[\left(\frac{G^{\prime}(x)-G(x)}{G(x)}\right)^{2}\right]$.

Bounding the Hellinger distance: our setting

Lemma

Let F, F^{\prime} be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G^{\prime}=F+N\left(0, \sigma^{2}\right), F^{\prime}+N\left(0, \sigma^{2}\right)$,

$$
H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{2 k+2} .
$$

- Power series expansion of $\mathbb{E}\left[\Delta^{2}\right]=\mathbb{E}\left[\left(\frac{G^{\prime}(x)-G(x)}{G(x)}\right)^{2}\right]$.
- Matching moments make the first k terms zero.

Bounding the Hellinger distance: our setting

Lemma

Let F, F^{\prime} be two subgaussian distributions with k matching moments and constant parameters. Then for $G, G^{\prime}=F+N\left(0, \sigma^{2}\right), F^{\prime}+N\left(0, \sigma^{2}\right)$,

$$
H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{2 k+2} .
$$

- Power series expansion of $\mathbb{E}\left[\Delta^{2}\right]=\mathbb{E}\left[\left(\frac{G^{\prime}(x)-G(x)}{G(x)}\right)^{2}\right]$.
- Matching moments make the first k terms zero.
- Leaves $\left(1 / \sigma^{k+1}\right)^{2}$ as largest remaining term.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

- For

$$
\begin{aligned}
G & =\frac{1}{2} N\left(-1,1+\sigma^{2}\right)+\frac{1}{2} N\left(1,2+\sigma^{2}\right) \\
G^{\prime} & \approx 0.297 N\left(-1.226,0.610+\sigma^{2}\right)+0.703 N\left(0.517,2.396+\sigma^{2}\right)
\end{aligned}
$$

have $H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{12}$.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

- For

$$
\begin{aligned}
G & =\frac{1}{2} N\left(-1,1+\sigma^{2}\right)+\frac{1}{2} N\left(1,2+\sigma^{2}\right) \\
G^{\prime} & \approx 0.297 N\left(-1.226,0.610+\sigma^{2}\right)+0.703 N\left(0.517,2.396+\sigma^{2}\right)
\end{aligned}
$$

have $H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{12}$.

- Therefore distinguishing G from G^{\prime} takes $\Omega\left(\sigma^{12}\right)$ samples.

Lower bound in one dimension

- Add $N\left(0, \sigma^{2}\right)$ to two mixtures with five matching moments.

- For

$$
\begin{aligned}
G & =\frac{1}{2} N\left(-1,1+\sigma^{2}\right)+\frac{1}{2} N\left(1,2+\sigma^{2}\right) \\
G^{\prime} & \approx 0.297 N\left(-1.226,0.610+\sigma^{2}\right)+0.703 N\left(0.517,2.396+\sigma^{2}\right)
\end{aligned}
$$

have $H^{2}\left(G, G^{\prime}\right) \lesssim 1 / \sigma^{12}$.

- Therefore distinguishing G from G^{\prime} takes $\Omega\left(\sigma^{12}\right)$ samples.
- Cannot learn either means to $\pm \epsilon \sigma$ or variance to $\pm \epsilon^{2} \sigma^{2}$ with $o\left(1 / \epsilon^{12}\right)$ samples.

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.
- Solution must solve all d instances.

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O\left(\epsilon^{12}\right)$.

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O\left(\epsilon^{12}\right)$.
- Therefore $\Omega\left(\epsilon^{-12} \log (d / \delta)\right)$ samples are necessary to succeed with probability $1-\delta$:

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O\left(\epsilon^{12}\right)$.
- Therefore $\Omega\left(\epsilon^{-12} \log (d / \delta)\right)$ samples are necessary to succeed with probability $1-\delta$:
- Each set of ϵ^{-12} samples has a constant chance of giving no information about each coordinate.

Lower bound in d dimensions

- Trivial based on the Hellinger distance bound.
- Place the "hard" instance independently in all d coordinates.
- Solution must solve all d instances.
- Each instance has Hellinger distance $O\left(\epsilon^{12}\right)$.
- Therefore $\Omega\left(\epsilon^{-12} \log (d / \delta)\right)$ samples are necessary to succeed with probability $1-\delta$:
- Each set of ϵ^{-12} samples has a constant chance of giving no information about each coordinate.
- With $o\left(\epsilon^{-12} \log d\right)$ samples, some coordinate will be independent of all the samples.

Outline

(1) Algorithm in One Dimension

(2) Lower Bound
(3) Algorithm in d Dimensions

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:
- Does μ_{i} go with μ_{j} or μ_{j}^{\prime} ?

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:
- Does μ_{i} go with μ_{j} or μ_{j}^{\prime} ?
- Project onto a random direction $e_{i} \sin \theta+e_{j} \cos \theta$.

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:
- Does μ_{i} go with μ_{j} or μ_{j}^{\prime} ?
- Project onto a random direction $e_{i} \sin \theta+e_{j} \cos \theta$.
- $\left(\mu_{i}, \mu_{j}\right)$ usually has a significantly different projection from $\left(\mu_{i}, \mu_{j}^{\prime}\right)$.

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:
- Does μ_{i} go with μ_{j} or μ_{j}^{\prime} ?
- Project onto a random direction $e_{i} \sin \theta+e_{j} \cos \theta$.
- $\left(\mu_{i}, \mu_{j}\right)$ usually has a significantly different projection from $\left(\mu_{i}, \mu_{j}^{\prime}\right)$.
- Thus we can piece them together by solving the $O\left(d^{2}\right)$ one dimensional problems.

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:
- Does μ_{i} go with μ_{j} or μ_{j}^{\prime} ?
- Project onto a random direction $e_{i} \sin \theta+e_{j} \cos \theta$.
- $\left(\mu_{i}, \mu_{j}\right)$ usually has a significantly different projection from $\left(\mu_{i}, \mu_{j}^{\prime}\right)$.
- Thus we can piece them together by solving the $O\left(d^{2}\right)$ one dimensional problems.
- For covariances: reduce to $d=4$, so $O\left(d^{4}\right)$ one dimensional problems.

Algorithm in d dimensions

- Want to learn average male/female height, weight, shoe size, ...
- (And covariance matrix)
- Look at individual attributes to get all these.
- Just need to know: is the taller group also heavier or lighter?
- Suffices to consider $d=2$:
- Does μ_{i} go with μ_{j} or μ_{j}^{\prime} ?
- Project onto a random direction $e_{i} \sin \theta+e_{j} \cos \theta$.
- $\left(\mu_{i}, \mu_{j}\right)$ usually has a significantly different projection from $\left(\mu_{i}, \mu_{j}^{\prime}\right)$.
- Thus we can piece them together by solving the $O\left(d^{2}\right)$ one dimensional problems.
- For covariances: reduce to $d=4$, so $O\left(d^{4}\right)$ one dimensional problems.
- Only loss is $\log (1 / \delta) \rightarrow \log (d / \delta):$

$$
\Theta\left(1 / \epsilon^{12} \log (d / \delta)\right) \text { samples }
$$

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, at least to $\Omega\left(\epsilon^{-6 k-2}\right)$.

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, at least to $\Omega\left(\epsilon^{-6 k-2}\right)$.
- Do we really care about finding an $O\left(\epsilon^{-22}\right)$ algorithm?

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, at least to $\Omega\left(\epsilon^{-6 k-2}\right)$.
- Do we really care about finding an $O\left(\epsilon^{-22}\right)$ algorithm?
- Solving the system of equations gets nasty.

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, at least to $\Omega\left(\epsilon^{-6 k-2}\right)$.
- Do we really care about finding an $O\left(\epsilon^{-22}\right)$ algorithm?
- Solving the system of equations gets nasty.
- [Next talk: Ge-Huang-Kakade avoid this for smoothed instances]

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, at least to $\Omega\left(\epsilon^{-6 k-2}\right)$.
- Do we really care about finding an $O\left(\epsilon^{-22}\right)$ algorithm?
- Solving the system of equations gets nasty.
- [Next talk: Ge-Huang-Kakade avoid this for smoothed instances]
- Automated way of figuring out whether solution to system of polynomial equations is robust?

Recap and open questions

- Our result:
- $\Theta\left(\epsilon^{-12} \log d\right)$ samples necessary and sufficient to estimate μ_{i} to $\pm \epsilon \sigma, \sigma_{i}^{2}$ to $\pm \epsilon^{2} \sigma^{2}$.
- If the means have $\alpha \sigma$ separation, just $O\left(\epsilon^{-2} \alpha^{-12}\right)$ for $\epsilon \alpha \sigma$ accuracy.
- Extend to $k>2$?
- Lower bound extends, at least to $\Omega\left(\epsilon^{-6 k-2}\right)$.
- Do we really care about finding an $O\left(\epsilon^{-22}\right)$ algorithm?
- Solving the system of equations gets nasty.
- [Next talk: Ge-Huang-Kakade avoid this for smoothed instances]
- Automated way of figuring out whether solution to system of polynomial equations is robust?
- TV estimation in d dimensions with d / ϵ^{c} rather than d^{30} / ϵ^{c} ?

