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Problem
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Height (cm)
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Height distribution of American 20 year olds.

I Male/female heights are very close to Gaussian distribution.

Can we learn the average male and female heights from
unlabeled population data?
How many samples to learn µ1, µ2 to ±εσ?
d-dimensional setting: also learn weight, shoe size, ...
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Gaussian Mixtures: Origins
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Gaussian Mixtures: Origins
Contributions to the Mathematical Theory of Evolution, Karl Pearson, 1894

Pearson’s naturalist buddy measured lots of crab body parts.

Most lengths seemed to follow the “normal” distribution (a recently
coined name)
But the “forehead” size wasn’t symmetric.
Maybe there were actually two species of crabs?
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More previous work

Pearson 1894: proposed method for 2 Gaussians

I “Method of moments”
Other empirical papers over the years:

I Royce ’58, Gridgeman ’70, Gupta-Huang ’80

Provable results assuming the components are well-separated:

I Clustering: Dasgupta ’99, DA ’00
I Spectral methods: VW ’04, AK ’05, KSV ’05, AM ’05, VW ’05

Kalai-Moitra-Valiant 2010: first general polynomial bound.

I Extended to general k mixtures: Moitra-Valiant ’10, Belkin-Sinha ’10

The KMV polynomial is very large.

I Our result: tight upper and lower bounds for the sample complexity.
I For k = 2 mixtures, arbitrary d dimensions.
I Lower bound extends to larger k .
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Learning the components vs. learning the sum

140 160 180 200
Height (cm)

140 160 180 200
Height (cm)

140 160 180 200
Height (cm)

It’s important that we want to learn the individual components:

I Male/female average heights, std. deviations.
Getting ε approximation in TV norm to overall distribution takes
Θ̃(1/ε2) samples from black box techniques.

I Quite general: non-properly for any mixture of known unimodal
distributions. [Chan, Diakonikolas, Servedio, Sun ’13]

I Proper learning: [Daskalakis-Kamath ’14]
I But only in low dimensions.
I Generic high-d TV estimation algs use 1d parameter estimation.
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Our result
A variant of Pearson’s 1894 method is optimal!

Suppose we want means and variances to ε accuracy:

I µi to ±εσ
I σ2

i to ±ε2σ2

In one dimension: Θ(1/ε12) samples necessary and sufficient.

I Previously: 1/ε≈300, no lower bound.
I Moreover: algorithm is almost the same as Pearson (1894).

α

More precisely: if two gaussians are α standard deviations apart,
getting εα precision takes Θ( 1

α12ε2 ) samples.
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Our result: higher dimensions

In d dimensions, Θ(1/ε12 log d) samples for parameter distance.

I “σ2” is max variance in any coordinate.
I Get each entry of covariance matrix to ±ε2σ2.
I Useful when covariance matrix is sparse.

Also gives an improved bound in TV error of each component:

I If components overlap, then parameter distance ≈ TV.
I If components don’t overlap, then clustering is trivial.
I Straightforwardly gives Õ(d30/ε36) samples.
I Best known, but not the Õ(d/εc) we want.

Caveat: assume p1,p2 are bounded away from zero throughout.
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I Straightforwardly gives Õ(d30/ε36) samples.
I Best known, but not the Õ(d/εc) we want.

Caveat: assume p1,p2 are bounded away from zero throughout.
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Outline

1 Algorithm in One Dimension

2 Lower Bound

3 Algorithm in d Dimensions

Moritz Hardt, Eric Price (Google/UT) Tight Bounds for Learning a Mixture of Two Gaussians 2015-06-17 9 / 27



Outline

1 Algorithm in One Dimension

2 Lower Bound

3 Algorithm in d Dimensions

Moritz Hardt, Eric Price (Google/UT) Tight Bounds for Learning a Mixture of Two Gaussians 2015-06-17 9 / 27



Outline

1 Algorithm in One Dimension

2 Lower Bound

3 Algorithm in d Dimensions

Moritz Hardt, Eric Price (Google/UT) Tight Bounds for Learning a Mixture of Two Gaussians 2015-06-17 9 / 27



Outline

1 Algorithm in One Dimension

2 Lower Bound

3 Algorithm in d Dimensions

Moritz Hardt, Eric Price (Google/UT) Tight Bounds for Learning a Mixture of Two Gaussians 2015-06-17 10 / 27



Method of Moments

140 160 180 200
Height (cm)

We want to learn five parameters: µ1, µ2, σ1, σ2,p1,p2 with
p1 + p2 = 1.

Moments give polynomial equations in parameters:

M1 := E[x1] = p1µ1 + p2µ2

M2 := E[x2] = p1µ
2
1 + p2µ

2
2 + p1σ

2
1 + p2σ

2
2

M3,M4,M5,M6 = [...]

Use our samples to estimate the moments.
Solve the system of equations to find the parameters.
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Method of Moments
Solving the system

Start with five parameters.

First, can assume mean zero:

I Convert to “central moments”
I M ′2 = M2 −M2

1 is independent of translation.

Analogously, can assume min(σ1, σ2) = 0 by converting to
“excess moments”

I X4 = M4 − 3M2
2 is independent of adding N(0, σ2).

I “Excess kurtosis” coined by Pearson, appearing in every Wikipedia
probability distribution infobox.

Leaves three free parameters.
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Method of Moments: system of equations
Convenient to reparameterize by

α = −µ1µ2, β = µ1 + µ2, γ =
σ2

2 − σ2
1

µ2 − µ1

Gives that

X3 = α(β + 3γ)

X4 = α(−2α + β2 + 6βγ + 3γ2)

X5 = α(β3 − 8αβ + 10β2γ + 15γ2β − 20αγ)

X6 = α(16α2 − 12αβ2 − 60αβγ + β4 + 15β3γ + 45β2γ2 + 15βγ3)

All my attempts to obtain a simpler set have failed... It is
possible, however, that some other ... equations of a less
complex kind may ultimately be found.

—Karl Pearson
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Pearson’s Polynomial

Chug chug chug...

Get a 9th degree polynomial in the excess moments X3,X4,X5:

p(α) = 8α9 + 28X4α
7 − 12X 2

3α
6 + (24X3X5 + 30X 2

4 )α5

+ (6X 2
5 − 148X 2

3 X4)α4 + (96X 4
3 − 36X3X4X5 + 9X 3

4 )α3

+ (24X 3
3 X5 + 21X 2

3 X 2
4 )α2 − 32X 4

3 X4α + 8X 6
3

= 0

Easy to go from solutions α = −µ1µ2 to mixtures µi , σi ,pi .
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Pearson’s Polynomial

1 0 1 2 36 4 2 0 2 4 6 8 1 0 1 2 36 4 2 0 2 4 6 8

Get a 9th degree polynomial in the excess moments X3,X4,X5.

I Positive roots correspond to mixtures that match on five moments.
I Pearson’s proposal: choose root with closer 6th moment.

Works because six moments uniquely identify mixture [KMV]
How robust to moment estimation error?

I Usually works well
I Not when there’s a double root.
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Making it robust in all cases

Can create another ninth degree polynomial p6 from X3,X4,X5,X6.

Then α is the unique positive root of

r(α) := p5(α)2 + p6(α)2 = 0.

How robust is the solution to perturbations of X3, . . . ,X6?
We know q(x) := r/(x − α)2 has no positive roots.
By compactness: q(x) ≥ c > 0 for some constant c.

Therefore plugging in empirical moments X̃i to estimate
polynomials p5, p6 is robust:

I Given approximations |p̃5 − p5|, |p̃6 − p6| ≤ ε,

|α− arg min r̃(x)| . ε.

I Getting α lets us estimate means, variances.
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Result

1 σ

Scale so the excess moments are O(1): µi are ±O(1).

Getting the p̃i to O(ε) requires getting the first six moments to
±O(ε).
If the variance is σ2, then Mi has variance O(σ2i).
Thus O(σ12/ε2) samples to learn the µi to ±ε.

I If components are Ω(1) standard deviations apart, O(1/ε2) samples
suffice.

I In general, O(1/ε12) samples suffice to get εσ accuracy.
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Lower bound in one dimension
The algorithm takes O(ε−12) samples because it uses six
moments

I Necessary to get sixth moment to ±(εσ)6.
Let F ,F ′ be any two mixtures with five matching moments:

I Constant means and variances.
I Add N(0, σ2) to each mixture for growing σ.

Claim: Ω(σ12) samples necessary to distinguish the distributions.
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Lower bound in one dimension

Two mixtures F ,F ′ with F ≈ F ′.

Have TV(F ,F ′) ≈ 1/σ6.
Shows Ω(σ6) samples, O(σ12) samples.
Improve using squared Hellinger distance.

I H2(P,Q) := 1
2

∫
(
√

p(x)−
√

q(x))2dx
I H2 is subadditive on product measures:

F H2((x1, . . . , xm), (x ′
1, . . . , x

′
m)) ≤ mH2(x , x ′).

I Sample complexity is Ω(1/H2(F ,F ′))
I H2 . TV . H, but often H ≈ TV .
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Bounding the Hellinger distance: general idea

Definition

H2(P,Q) =
1
2

∫
(
√

p(x)−
√

q(x))2dx

= 1−
∫ √

p(x)q(x)dx

If q(x) = (1 + ∆(x))p(x) for some small ∆, then [Pollard ’00]

H2(p,q) = 1−
∫ √

1 + ∆(x)p(x)dx

= 1− E
x∼p

[
√

1 + ∆(x)]

= 1− E
x∼p

[1 + ∆(x)/2−O(∆2(x))]∆(x)︸ ︷︷ ︸∫
x

. E
x∼p

[∆2(x)]

Compare to TV (p,q) = 1
2 Ex∼p[|∆(x)|]
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Bounding the Hellinger distance: our setting

Lemma
Let F ,F ′ be two subgaussian distributions with k matching moments
and constant parameters. Then for G,G′ = F + N(0, σ2),F ′ + N(0, σ2),

H2(G,G′) . 1/σ2k+2.

Power series expansion of E[∆2] = E
[(

G′(x)−G(x)
G(x)

)2
]
.

Matching moments make the first k terms zero.
Leaves (1/σk+1)2 as largest remaining term.
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Lower bound in one dimension
Add N(0, σ2) to two mixtures with five matching moments.

For

G =
1
2

N(−1,1 + σ2) +
1
2

N(1,2 + σ2)

G′ ≈ 0.297N(−1.226,0.610 + σ2) + 0.703N(0.517,2.396 + σ2)

have H2(G,G′) . 1/σ12.
Therefore distinguishing G from G′ takes Ω(σ12) samples.
Cannot learn either means to ±εσ or variance to ±ε2σ2 with
o(1/ε12) samples.
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Lower bound in d dimensions

Trivial based on the Hellinger distance bound.

Place the “hard” instance independently in all d coordinates.
Solution must solve all d instances.
Each instance has Hellinger distance O(ε12).
Therefore Ω(ε−12 log(d/δ)) samples are necessary to succeed
with probability 1− δ:

I Each set of ε−12 samples has a constant chance of giving no
information about each coordinate.

I With o(ε−12 log d) samples, some coordinate will be independent of
all the samples.
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Outline

1 Algorithm in One Dimension

2 Lower Bound

3 Algorithm in d Dimensions
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Algorithm in d dimensions
Want to learn average male/female height, weight, shoe size, ...

I (And covariance matrix)

Look at individual attributes to get all these.
Just need to know: is the taller group also heavier or lighter?
Suffices to consider d = 2:

I Does µi go with µj or µ′j ?
I Project onto a random direction ei sin θ + ej cos θ.
I (µi , µj ) usually has a significantly different projection from (µi , µ

′
j ).

Thus we can piece them together by solving the O(d2) one
dimensional problems.
For covariances: reduce to d = 4, so O(d4) one dimensional
problems.
Only loss is log(1/δ)→ log(d/δ):

Θ(1/ε12 log(d/δ)) samples
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Recap and open questions

Our result:
I Θ(ε−12 log d) samples necessary and sufficient to estimate µi to
±εσ, σ2

i to ±ε2σ2.

I If the means have ασ separation, just O(ε−2α−12) for εασ accuracy.
Extend to k > 2?

I Lower bound extends, at least to Ω(ε−6k−2).
I Do we really care about finding an O(ε−22) algorithm?
I Solving the system of equations gets nasty.
I [Next talk: Ge-Huang-Kakade avoid this for smoothed instances]

Automated way of figuring out whether solution to system of
polynomial equations is robust?
TV estimation in d dimensions with d/εc rather than d30/εc?
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