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Sparsity

An n-dimensional vector x is “k-sparse” if only k non-zero
coefficients.

“Approximate sparsity:” vector “close” to a sparse vector

Approximate sparsity is a common form of structure.

Images sparse in wavelet basis
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Sparse Recovery / Compressive Sensing
AKA heavy hitters/frequency estimation in turnstile streams

Suppose an n-dimensional vector x is k-sparse in known basis.

Observe Ax , a set of m << n linear products.

Why linear? Many applications:

I Genetic testing: mixing blood samples.
I Streaming updates: A(x + ∆) = Ax + A∆.
I Camera optics: filter in front of lens.

Goal is to robustly recover x from Ax .
I Informally: get close to x if x is close to k-sparse.

Extremely well studied: thousands of papers.
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Standard Sparse Recovery Framework

Specify distribution on m × n matrices A (independent of x).

I Choose matrix Ai based on previous observations (possibly
randomized).

I Observe Aix .
I Number of measurements m is total number of rows in all Ai .
I Number of rounds is R.

Given linear sketch Ax , recover x̂ .

Satisfying the recovery guarantee:

‖x̂ − x‖2 6 C min
k-sparse xk

‖x − xk‖2

with probability 2/3.

Solvable with Θ(k log n
k ) measurements [Càndes-Romberg-Tao ’06].

Solvable in O(k log log n
k ) [Indyk-Price-Woodruff ’11].
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k ) measurements [Càndes-Romberg-Tao ’06].

Solvable in O(k log log n
k ) [Indyk-Price-Woodruff ’11].

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 6 / 33



Prior Work

Nonadaptively: m h 1
εk log n for C = 1 + ε.

One line of work: ε = o(1) for m h k log n.
I [Malioutov, Sanghavi, Willski ’08], [Castro, Haupt, Nowak, Raz ’08],

[Haupt, Castro, Nowak ’11], [Haupt, Baraniuk, Castro, Nowak ’12]

Another line: also allows m� k log n.
I [Indyk-Price-Woodruff ’11], [Nakos, Shi, Woodruff, Zhang ’18]

m .
log log(1/ε)

ε
k + k log log n

Lower bounds:
I [Arias-Castro, Candès, Davenport ’13]: m & 1

ε
k

I [Price, Woodruff ’13]: m & log log n.
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Results in adaptive sparse recovery, C = O(1)

Unlimited adaptivity: with unlimited rounds,

k + log log n . m∗ . k · log log n

Limited adaptivity: with R = O(1) rounds,

k + log1/R n . m∗ . k · log1/(R−3) n.

New results: with R = O(1) rounds,

k · log1/R n . m∗ . k · log1/R n log∗ k

With caveat:

the lower bound only applies for k < 2log
1/R n

⇐⇒ m∗ > k log k.
For k < no(1), m∗ = ω(k).
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Well-understood setting: k = 1

Theorem (Indyk-Price-Woodruff ’11, Price-Woodruff ’13)

R-round 1-sparse recovery requires Θ(R log1/R n) measurements.

Outline of this section:

I R = 1 lower bound: Ω(log n).
I Adaptive upper bound: O(log log n).
I Adaptive lower bound: Ω(log log n).

Hard case: x is random ez plus Gaussian noise w with ‖w‖2 ≈ 1.

Robust recovery must locate z .

Observations 〈v , x〉 = vz + 〈v ,w〉 = vz +
‖v‖2√

n
z , for z ∼ N(0, 1).

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 10 / 33
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1-sparse recovery: non-adaptive lower bound

Observe 〈v , x〉 = vz +
‖v‖2√

n
z , where z ∼ N(0,Θ(1))

Shannon-Hartley theorem: AWGN channel capacity is

I (z , 〈v , x〉) 6 1

2
log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

SNR =
E[signal2]

E[noise2]
h

E[v2z ]
‖v‖22/n

= 1

Finding z needs Ω(log n) non-adaptive measurements.
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1-sparse recovery: changes in adaptive setting

Information capacity

I (z , 〈v , x〉) 6 1

2
log(1 + SNR).

where SNR denotes the “signal-to-noise ratio,”

SNR h
E[v2z ]
‖v‖22/n

.

If z is independent of v , this is 1.

As we learn about z , we can increase the SNR.
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1-sparse recovery: adaptive upper bound

x = ez + w

0 bits

v

Candidate setSignal

SNR = 2 I (z , 〈v , x〉) 6 log SNR = 1
〈v , x〉 = vz + 〈v ,w〉
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1-sparse recovery: adaptive upper bound

x = ez + w

0 bits

1 bit

2 bits

v

Candidate setSignal

SNR = 24 I (z , 〈v , x〉) 6 log SNR = 4
〈v , x〉 = vz + 〈v ,w〉
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1-sparse recovery: adaptive upper bound

x = ez + w

0 bits

1 bit

2 bits

4 bits

v

Candidate setSignal

SNR = 28 I (z , 〈v , x〉) 6 log SNR = 8
〈v , x〉 = vz + 〈v ,w〉
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1-sparse recovery: adaptive upper bound

x = ez + w

0 bits

1 bit

2 bits

4 bits

8 bits

v

Candidate setSignal

SNR = 216 I (z , 〈v , x〉) 6 log SNR = 16
〈v , x〉 = vz + 〈v ,w〉
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1-sparse recovery: adaptive lower bound

Review of upper bound:
I Given b bits of information about z .
I Identifies z to set of size n/2b.
I Increases SNR, E[v2

z ], by 2b.
I Recover b bits of information in one measurement.
I 1→ 2→ · · · → log n in log log n measurements.
I R = 2: 1→

√
log n→ log n in

√
log n measurements/round.

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) bits known.

Lemma (Key lemma for k = 1)

For any measurement vector v ,

I (z ; 〈v , x〉) . b + 1
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1-sparse recovery: adaptive lower bound

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) bits known.
I Show any measurement gives O(b + 1) bits of information.

Shannon-Hartley:

I (z ; 〈v , x〉) 6 1

2
log(1 + SNR) . 1 + log

∑
v2z pz∑
v2z /n

. 1 + n‖p‖∞

Bound is good (SNR ≈ 2b) when nonzero pz are similar.

Can be terrible in general: b = 1 but SNR = n/ log n.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 15 / 33



1-sparse recovery: adaptive lower bound

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) bits known.
I Show any measurement gives O(b + 1) bits of information.

Shannon-Hartley:

I (z ; 〈v , x〉) 6 1

2
log(1 + SNR) . 1 + log

∑
v2z pz∑
v2z /n

. 1 + n‖p‖∞

Bound is good (SNR ≈ 2b) when nonzero pz are similar.

Can be terrible in general: b = 1 but SNR = n/ log n.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 15 / 33



1-sparse recovery: adaptive lower bound

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) bits known.
I Show any measurement gives O(b + 1) bits of information.

Shannon-Hartley:

I (z ; 〈v , x〉) 6 1

2
log(1 + SNR) . 1 + log

∑
v2z pz∑
v2z /n

. 1 + n‖p‖∞

Bound is good (SNR ≈ 2b) when nonzero pz are similar.

Can be terrible in general: b = 1 but SNR = n/ log n.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 15 / 33



1-sparse recovery: adaptive lower bound

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) bits known.
I Show any measurement gives O(b + 1) bits of information.

Shannon-Hartley:

I (z ; 〈v , x〉) 6 1

2
log(1 + SNR) . 1 + log

∑
v2z pz∑
v2z /n

. 1 + n‖p‖∞

Bound is good (SNR ≈ 2b) when nonzero pz are similar.

Can be terrible in general: b = 1 but SNR = n/ log n.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 15 / 33



1-sparse recovery: adaptive lower bound

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) bits known.
I Show any measurement gives O(b + 1) bits of information.

Shannon-Hartley:

I (z ; 〈v , x〉) 6 1

2
log(1 + SNR) . 1 + log

∑
v2z pz∑
v2z /n

. 1 + n‖p‖∞

Bound is good (SNR ≈ 2b) when nonzero pz are similar.

Can be terrible in general: b = 1 but SNR = n/ log n.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 15 / 33



1-sparse recovery: adaptive lower bound

Lower bound outline:
I At each stage, have posterior distribution p on z .
I b = log n − H(p) =

∑
pz log npz bits known.

I Show any measurement gives O(b + 1) bits of information.

Partition indices into “level sets” S0,S1, . . . ⊆ [n] of p:

I SJ = {z | pz ∈ [2J/n, 2J+1/n]}
I E[J] 6 b.

I (z ; 〈v , x〉) 6 I (z ; 〈v , x〉 | J) + H(J).

Shannon-Hartley: I (z ; 〈v , x〉 | J = j) . j + 1.

Lemma (Key lemma for k = 1)

I (z ; 〈v , x〉) . b + 1
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1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for k = 1)

I (z ; 〈v , x〉) . b + 1

Suppose two rounds with m measurements each.

I O(m) bits learned in first round.
I O(m2) bits in second round.
I Hence m &

√
log n.

In general: Ω(R log1/R n) bits

I Ω(log log n) for unlimited R.
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Outline

1 Introduction

2 Analysis for k = 1

3 General k: lower bound

4 General k: upper bound
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Recall the k = 1 proof outline

Setting: x = ez + w for z ∼ p.

p is posterior on z from previous measurements.

Previous measurements had information content

b := log n − H(p)

Lemma (Key lemma for k = 1)

I (z ; 〈v , x〉) . b + 1

Question: How to extend this to k > 1?
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Extending to general k

Create k independent copies over domain N = nk.

Formally: x =
∑k

i=1 eni+Zi
+ w for Z ∈ [n]k , Z ∼ p.

p is posterior from previous measurements.

Previous measurements have information content

b := k log n − H(p)

Lemma (Key lemma for general k)

I (Z ; 〈v , x〉) . b + 1 ????

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 20 / 33



Extending to general k

Create k independent copies over domain N = nk.

Formally: x =
∑k

i=1 eni+Zi
+ w for Z ∈ [n]k , Z ∼ p.

p is posterior from previous measurements.

Previous measurements have information content

b := k log n − H(p)

Lemma (Key lemma for general k)

I (Z ; 〈v , x〉) . b + 1 ????

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 20 / 33



Extending to general k

Create k independent copies over domain N = nk.

Formally: x =
∑k

i=1 eni+Zi
+ w for Z ∈ [n]k , Z ∼ p.

p is posterior from previous measurements.

Previous measurements have information content

b := k log n − H(p)

Lemma (Key lemma for general k)

I (Z ; 〈v , x〉) . b + 1 ????

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 20 / 33



Extending to general k

Create k independent copies over domain N = nk.

Formally: x =
∑k

i=1 eni+Zi
+ w for Z ∈ [n]k , Z ∼ p.

p is posterior from previous measurements.

Previous measurements have information content

b := k log n − H(p)

Lemma (Key lemma for general k)

I (Z ; 〈v , x〉) . b + 1 ????

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 20 / 33



Extending to general k

Create k independent copies over domain N = nk.

Formally: x =
∑k

i=1 eni+Zi
+ w for Z ∈ [n]k , Z ∼ p.

p is posterior from previous measurements.

Previous measurements have information content

b := k log n − H(p)

Lemma (Key lemma for general k)

I (Z ; 〈v , x〉) . b + 1 ????

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 20 / 33



What lemma do we want for general k?

I (Z ; 〈v , x〉) . b + 1

I True but too weak: would get Ω(
√
k log n) not k

√
log n.

I (Z ; 〈v , x〉) . b/k + 1

I Strong but false: if algorithm does 1-sparse recovery on first block, it
really can learn Θ(b + 1) bits.

I But the learned bits are only about that first block.

I (ZW ; 〈v , x〉) . b/k + 1 for |W | > 0.99k.

I Strong enough, at least for constant R.
I True for product distributions p...
I but correlated p can make this false.

I (ZW ; 〈v , x〉) . b/k + log k

I True!
I Strong enough if b > k log k after the first round.
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I but correlated p can make this false.
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I True!
I Strong enough if b > k log k after the first round.
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Approach

I (ZW ; 〈v , x〉) . b/k + log k .

Data processing and Shannon-Hartley:

I (ZW ; 〈v , x〉) 6 I (
∑
i∈W

vZi
; (
∑
i∈W

vZi
) + 〈v ,w〉)

6
1

2
log(1 + SNR)

where

SNR :=
EZ∼p[(

∑
i∈W vZi

)2]

‖v‖22/n
6 k

EZ∼p[
∑

i∈W v2Zi
]

‖v‖22/n
6 k max

i∈W
SNR(i).

So we just need
max
i∈W

log(1 + SNR(i)) . b/k.
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Approach
k

L
ev

el
se

t
J

(r
an

d
om

)

Would like to find a set W such that:

max
i∈W

log(1 + SNR(i)) . b/k .

What’s actually true:

E
i
E
J
[log(1 + (SNR(i) | J))] . b/k

Find W = W (J) so that

max
i∈W

E
J

log(1 + (SNR(i)|J)) . b/k

and |W | > 0.99k with 99% probability.
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Goal for general k

Lemma (Key lemma for general k)

One can choose a set W = W (J) ⊂ [k ] of expected size 0.99k so that

I (ZW ;Ax) . m(b/k + log k) + (b + k)

for any A ∈ Rm×N .

Recall k = 1 approach:

I (Z ;Ax) = I (Z ;Ax | J) + H(J)

6 m · E
J

[
1

2
log(1 + (SNR | J))

]
+ O(b + 1)

. m(b + 1) + (b + 1)
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k = 1 General k

I (Z ;Ax) I (ZW ;Ax)

= I (Z ;Ax | J) + H(J) = I (ZW ;Ax | J) + H(J)

. m · E
J
[log(SNR | J)] . m · E

J

[
log(SNR(

⋃
i∈W

Zi ) | J)

]
+ b + 1 + b + k

. m · E
J

[
log(k ·max

i∈W
SNR(Zi ) | J)

]
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Wrapping up the lower bound for R = 2

Suppose m > k log k measurements per round.

First round is nonadaptive: learn b = O(m) bits.

Second round, learn

m(b/k + log k) + (b + k) = O(m2/k)

bits.

But need to learn |W | log n ≈ k log n bits.

Hence m & k
√

log n (if this is more than k log k).

Open questions:

I Less restriction on k? Conjecture:

I (ZW ;Ax | ZW ) . b/k + 1

I Better dependence on R?
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Standard sparse recovery approach

We have an optimal adaptive 1-sparse recovery algorithm.

Standard technique:

1 Throw coordinates into buckets.
2 1-sparse recovery within each bucket.
3 Clean up mistakes.

Problem: surrounding steps add rounds.

I [IPW ’11]: cleanup is recursive, multiplying rounds by O(log∗ k).
I [NSZW ’18]: 1 round setup, 2 rounds cleanup.

Our approach: avoid reduction to k = 1.

I Instead, reduce to C -approximate k-sparse recovery for C � 1.
I This is solvable nonadaptively in O(k logC (n/k) · log∗ k)

measurements. [Price-Woodruff ’12]
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Basic approach: R = 2

1 Throw the coordinates into B = k · 2
√
log n buckets, and nonadaptively

apply k-sparse O(1)-approximate recovery.
I k log(B/k) = k

√
log n measurements.

2 Apply k-sparse 2
√
log n-approximate recovery to the preimage.

I k logC n = k
√

log n measurements.

Key problem: can’t miss anything important in the first round.

I There will be collisions.
I Yet if x has no noise, must find every entry.

Solution: triple Gaussian hashing.
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Hashing
x

For intuition, consider x being
k-sparse binary + Gaussian with norm 1.

I Successful recovery must find all but O(1) binary entries of x .

Given partition h : [n]→ [B], how to condense x ∈ Rn into y ∈ RB?

I Goal: preimage of k-sparse recovery on y includes large entries in x .

Random signs: s : [n]→ {±1} and

yu =
∑

i :h(i)=u

xi · s(i).

Without noise With noise
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Gaussian hashing
x

Random signs: s : [n]→ {±1} and

yu =
∑

i :h(i)=u

xi · s(i).

Without noise With noise

Gaussian hashing: g ∼ N(In) and

yu =
∑

i :h(i)=u

xi · g(i).

Without noise With noise
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Triple Gaussian hashing
x

Triple Gaussian hashing: g1, g2, g3 ∼ N(0, In);

y ju =
∑

i :h(i)=u

xi · g j(i).

Try 1 Try 2 Try 3

I Take union of three independent sparse recovery attempts.
I Expected false negatives are O(noise), so can be skipped.

Avoids the cleanup rounds, getting

O(k log1/R n · log∗ k)

measurements.
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Results

Previously:
k + log1/R n . m . k · log1/(R−3) n

Now:
k · log1/R n . m . k · log1/R n · log∗ k

where the lower bound applies if this is above k log k .

Biggest question:

I Are ω(k) measurements necessary for unlimited R?

Thank You
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