Adaptive Sparse Recovery with Limited Adaptivity

Akshay Kamath Eric Price

UT Austin

2018-11-27

Outline

(1) Introduction
(2) Analysis for $k=1$
(3) General k: lower bound
(4) General k : upper bound

Outline

(1) Introduction

(2) Analysis for $k=1$

(3) General k: lower bound
(4) General k: upper bound

Sparsity

- An n-dimensional vector x is " k-sparse" if only k non-zero coefficients.

Sparsity

- An n-dimensional vector x is " k-sparse" if only k non-zero coefficients.
- "Approximate sparsity:" vector "close" to a sparse vector

Sparsity

- An n-dimensional vector x is " k-sparse" if only k non-zero coefficients.
- "Approximate sparsity:" vector "close" to a sparse vector
- Approximate sparsity is a common form of structure.

Sparsity

- An n-dimensional vector x is " k-sparse" if only k non-zero coefficients.
- "Approximate sparsity:" vector "close" to a sparse vector
- Approximate sparsity is a common form of structure.

Sparsity

- An n-dimensional vector x is " k-sparse" if only k non-zero coefficients.
- "Approximate sparsity:" vector "close" to a sparse vector
- Approximate sparsity is a common form of structure.
- Images sparse in wavelet basis

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.
- Why linear? Many applications:

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.
- Why linear? Many applications:
- Genetic testing: mixing blood samples.

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.
- Why linear? Many applications:
- Genetic testing: mixing blood samples.
- Streaming updates: $A(x+\Delta)=A x+A \Delta$.

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.
- Why linear? Many applications:
- Genetic testing: mixing blood samples.
- Streaming updates: $A(x+\Delta)=A x+A \Delta$.
- Camera optics: filter in front of lens.

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.
- Why linear? Many applications:
- Genetic testing: mixing blood samples.
- Streaming updates: $A(x+\Delta)=A x+A \Delta$.
- Camera optics: filter in front of lens.
- Goal is to robustly recover x from $A x$.
- Informally: get close to x if x is close to k-sparse.

Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams

- Suppose an n-dimensional vector x is k-sparse in known basis.
- Observe $A x$, a set of $m \ll n$ linear products.
- Why linear? Many applications:
- Genetic testing: mixing blood samples.
- Streaming updates: $A(x+\Delta)=A x+A \Delta$.
- Camera optics: filter in front of lens.
- Goal is to robustly recover x from $A x$.
- Informally: get close to x if x is close to k-sparse.
- Extremely well studied: thousands of papers.

Standard Sparse Recovery Framework

- Specify distribution on $m \times n$ matrices A (independent of x).
- Given linear sketch $A x$, recover \widehat{x}.
- Satisfying the recovery guarantee:

$$
\|\widehat{x}-x\|_{2} \leqslant C \min _{k \text {-sparse } x_{k}}\left\|x-x_{k}\right\|_{2}
$$

with probability $2 / 3$.

Standard Sparse Recovery Framework

- Specify distribution on $m \times n$ matrices A (independent of x).
- Given linear sketch $A x$, recover \widehat{x}.
- Satisfying the recovery guarantee:

$$
\|\widehat{x}-x\|_{2} \leqslant C \min _{k \text {-sparse } x_{k}}\left\|x-x_{k}\right\|_{2}
$$

with probability $2 / 3$.

- Solvable with $\Theta\left(k \log \frac{n}{k}\right)$ measurements [Càndes-Romberg-Tao '06].

Standard Sparse Recovery Framework

- Specify distribution on $m \times n$ matrices A (independent of x).
- Choose matrix A_{i} based on previous observations (possibly randomized).
- Observe $A_{i x}$.
- Number of measurements m is total number of rows in all A_{i}.
- Number of rounds is R.
- Given linear sketch $A x$, recover \widehat{x}.
- Satisfying the recovery guarantee:

$$
\|\widehat{x}-x\|_{2} \leqslant C \min _{k \text {-sparse } x_{k}}\left\|x-x_{k}\right\|_{2}
$$

with probability $2 / 3$.

- Solvable with $\Theta\left(k \log \frac{n}{k}\right)$ measurements [Càndes-Romberg-Tao '06].

Standard Sparse Recovery Framework

- Specify distribution on $m \times n$ matrices A (independent of x).
- Choose matrix A_{i} based on previous observations (possibly randomized).
- Observe $A_{i x}$.
- Number of measurements m is total number of rows in all A_{i}.
- Number of rounds is R.
- Given linear sketch $A x$, recover \widehat{x}.
- Satisfying the recovery guarantee:

$$
\|\widehat{x}-x\|_{2} \leqslant C \min _{k \text {-sparse } x_{k}}\left\|x-x_{k}\right\|_{2}
$$

with probability $2 / 3$.

- Solvable with $\Theta\left(k \log \frac{n}{k}\right)$ measurements [Càndes-Romberg-Tao '06].
- Solvable in $O\left(k \log \log \frac{n}{k}\right)$ [Indyk-Price-Woodruff '11].

Prior Work

- Nonadaptively: $m \approx \frac{1}{\varepsilon} k \log n$ for $C=1+\varepsilon$.

Prior Work

- Nonadaptively: $m \approx \frac{1}{\varepsilon} k \log n$ for $C=1+\varepsilon$.
- One line of work: $\varepsilon=o(1)$ for $m \approx k \log n$.
- [Malioutov, Sanghavi, Willski '08], [Castro, Haupt, Nowak, Raz '08], [Haupt, Castro, Nowak '11], [Haupt, Baraniuk, Castro, Nowak '12]

Prior Work

- Nonadaptively: $m \approx \frac{1}{\varepsilon} k \log n$ for $C=1+\varepsilon$.
- One line of work: $\varepsilon=o(1)$ for $m \approx k \log n$.
- [Malioutov, Sanghavi, Willski '08], [Castro, Haupt, Nowak, Raz '08], [Haupt, Castro, Nowak '11], [Haupt, Baraniuk, Castro, Nowak '12]
- Another line: also allows $m \ll k \log n$.
- [Indyk-Price-Woodruff '11], [Nakos, Shi, Woodruff, Zhang '18]

$$
m \lesssim \frac{\log \log (1 / \varepsilon)}{\varepsilon} k+k \log \log n
$$

Prior Work

- Nonadaptively: $m \approx \frac{1}{\varepsilon} k \log n$ for $C=1+\varepsilon$.
- One line of work: $\varepsilon=o(1)$ for $m \approx k \log n$.
- [Malioutov, Sanghavi, Willski '08], [Castro, Haupt, Nowak, Raz '08], [Haupt, Castro, Nowak '11], [Haupt, Baraniuk, Castro, Nowak '12]
- Another line: also allows $m \ll k \log n$.
- [Indyk-Price-Woodruff '11], [Nakos, Shi, Woodruff, Zhang '18]

$$
m \lesssim \frac{\log \log (1 / \varepsilon)}{\varepsilon} k+k \log \log n
$$

- Lower bounds:
- [Arias-Castro, Candès, Davenport '13]: $m \gtrsim \frac{1}{\varepsilon} k$
- [Price, Woodruff '13]: $m \gtrsim \log \log n$.

Results in adaptive sparse recovery, $C=O(1)$

- Unlimited adaptivity: with unlimited rounds,

$$
k+\log \log n \lesssim m^{*} \lesssim k \cdot \log \log n
$$

Results in adaptive sparse recovery, $C=O(1)$

- Unlimited adaptivity: with unlimited rounds,

$$
k+\log \log n \lesssim m^{*} \lesssim k \cdot \log \log n
$$

- Limited adaptivity: with $R=O(1)$ rounds,

$$
k+\log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 /(R-3)} n
$$

Results in adaptive sparse recovery, $C=O(1)$

- Unlimited adaptivity: with unlimited rounds,

$$
k+\log \log n \lesssim m^{*} \lesssim k \cdot \log \log n
$$

- Limited adaptivity: with $R=O(1)$ rounds,

$$
k+\log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 /(R-3)} n
$$

- New results: with $R=O(1)$ rounds,

$$
k \cdot \log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 / R} n \log ^{*} k
$$

With caveat:

Results in adaptive sparse recovery, $C=O(1)$

- Unlimited adaptivity: with unlimited rounds,

$$
k+\log \log n \lesssim m^{*} \lesssim k \cdot \log \log n
$$

- Limited adaptivity: with $R=O(1)$ rounds,

$$
k+\log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 /(R-3)} n
$$

- New results: with $R=O(1)$ rounds,

$$
k \cdot \log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 / R} n \log ^{*} k
$$

With caveat: the lower bound only applies for $k<2^{\log ^{1 / R} n}$ $\Longleftrightarrow m^{*}>k \log k$.

Results in adaptive sparse recovery, $C=O(1)$

- Unlimited adaptivity: with unlimited rounds,

$$
k+\log \log n \lesssim m^{*} \lesssim k \cdot \log \log n
$$

- Limited adaptivity: with $R=O(1)$ rounds,

$$
k+\log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 /(R-3)} n
$$

- New results: with $R=O(1)$ rounds,

$$
k \cdot \log ^{1 / R} n \lesssim m^{*} \lesssim k \cdot \log ^{1 / R} n \log ^{*} k
$$

With caveat: the lower bound only applies for $k<2^{\log ^{1 / R} n}$ $\Longleftrightarrow m^{*}>k \log k$.
For $k<n^{o(1)}, m^{*}=\omega(k)$.

Outline

(1) Introduction

(2) Analysis for $k=1$

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:
- $R=1$ lower bound: $\Omega(\log n)$.

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:
- $R=1$ lower bound: $\Omega(\log n)$.
- Adaptive upper bound: $O(\log \log n)$.

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:
- $R=1$ lower bound: $\Omega(\log n)$.
- Adaptive upper bound: $O(\log \log n)$.
- Adaptive lower bound: $\Omega(\log \log n)$.

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:
- $R=1$ lower bound: $\Omega(\log n)$.
- Adaptive upper bound: $O(\log \log n)$.
- Adaptive lower bound: $\Omega(\log \log n)$.
- Hard case: x is random e_{z} plus Gaussian noise w with $\|w\|_{2} \approx 1$.

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:
- $R=1$ lower bound: $\Omega(\log n)$.
- Adaptive upper bound: $O(\log \log n)$.
- Adaptive lower bound: $\Omega(\log \log n)$.
- Hard case: x is random e_{z} plus Gaussian noise w with $\|w\|_{2} \approx 1$.

- Robust recovery must locate z.

Well-understood setting: $k=1$

Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13)
R-round 1-sparse recovery requires $\Theta\left(R \log ^{1 / R} n\right)$ measurements.

- Outline of this section:
- $R=1$ lower bound: $\Omega(\log n)$.
- Adaptive upper bound: $O(\log \log n)$.
- Adaptive lower bound: $\Omega(\log \log n)$.
- Hard case: x is random e_{z} plus Gaussian noise w with $\|w\|_{2} \approx 1$.

- Robust recovery must locate z.
- Observations $\langle v, x\rangle=v_{z}+\langle v, w\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, for $z \sim N(0,1)$.

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

- Shannon-Hartley theorem: AWGN channel capacity is

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\mathrm{SNR})
$$

where SNR denotes the "signal-to-noise ratio,"

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

- Shannon-Hartley theorem: AWGN channel capacity is

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\mathrm{SNR})
$$

where SNR denotes the "signal-to-noise ratio,"

$$
S N R=\frac{\mathbb{E}\left[\text { signal }^{2}\right]}{\mathbb{E}\left[\text { noise }^{2}\right]} \approx \frac{\mathbb{E}\left[v_{z}^{2}\right]}{\|v\|_{2}^{2} / n}
$$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

- Shannon-Hartley theorem: AWGN channel capacity is

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\text { SNR })
$$

where SNR denotes the "signal-to-noise ratio,"

$$
S N R=\frac{\mathbb{E}\left[\text { signal }^{2}\right]}{\mathbb{E}\left[\text { noise }^{2}\right]} \approx \frac{\mathbb{E}\left[v_{z}^{2}\right]}{\|v\|_{2}^{2} / n}=1
$$

1-sparse recovery: non-adaptive lower bound

- Observe $\langle v, x\rangle=v_{z}+\frac{\|v\|_{2}}{\sqrt{n}} z$, where $z \sim N(0, \Theta(1))$

- Shannon-Hartley theorem: AWGN channel capacity is

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\mathrm{SNR})
$$

where SNR denotes the "signal-to-noise ratio,"

$$
S N R=\frac{\mathbb{E}\left[\text { signal }^{2}\right]}{\mathbb{E}\left[\text { noise }^{2}\right]} \approx \frac{\mathbb{E}\left[v_{z}^{2}\right]}{\|v\|_{2}^{2} / n}=1
$$

- Finding z needs $\Omega(\log n)$ non-adaptive measurements.

1-sparse recovery: changes in adaptive setting

- Information capacity

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\mathrm{SNR}) .
$$

where $S N R$ denotes the "signal-to-noise ratio,"

$$
S N R=\frac{\mathbb{E}\left[v_{z}^{2}\right]}{\|v\|_{2}^{2} / n}
$$

1-sparse recovery: changes in adaptive setting

- Information capacity

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\mathrm{SNR})
$$

where SNR denotes the "signal-to-noise ratio,"

$$
S N R=\frac{\mathbb{E}\left[v_{z}^{2}\right]}{\|v\|_{2}^{2} / n}
$$

- If z is independent of v, this is 1 .

1-sparse recovery: changes in adaptive setting

- Information capacity

$$
I(z,\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+\mathrm{SNR}) .
$$

where SNR denotes the "signal-to-noise ratio,"

$$
S N R=\frac{\mathbb{E}\left[v_{z}^{2}\right]}{\|v\|_{2}^{2} / n}
$$

- If z is independent of v, this is 1 .
- As we learn about z, we can increase the SNR.

1-sparse recovery: adaptive upper bound

$$
x=e_{z}+w
$$

Signal \square Candidate set
0 bits

$$
\langle v, x\rangle=v_{z}+\langle v, w\rangle \quad I(z,\langle v, x\rangle) \leqslant \log S N R=1
$$

$S N R=2$

1-sparse recovery: adaptive upper bound

$$
x=e_{z}+w
$$

Signal \square Candidate set
0 bits

1 bit

$S N R=2^{2}$

$$
I(z,\langle v, x\rangle) \leqslant \log S N R=2
$$

$$
\langle v, x\rangle=v_{z}+\langle v, w\rangle
$$

1 -sparse recovery: adaptive upper bound

$$
x=e_{z}+w
$$

Signal \square Candidate set
0 bits

1 bit
2 bits

v

$S N R=2^{4}$

$$
I(z,\langle v, x\rangle) \leqslant \log S N R=4
$$

$$
\langle v, x\rangle=v_{z}+\langle v, w\rangle
$$

1-sparse recovery: adaptive upper bound

$$
x=e_{z}+w
$$

1-sparse recovery: adaptive upper bound

$$
x=e_{z}+w
$$

Signal \square Candidate set
0 bits

2 bits

4 bits

8 bits

V

$S N R=2^{16}$
$I(z,\langle v, x\rangle) \leqslant \log S N R=16$

$$
\langle v, x\rangle=v_{z}+\langle v, w\rangle
$$

1-sparse recovery: adaptive lower bound

- Review of upper bound:
- Given b bits of information about z.
- Identifies z to set of size $n / 2^{b}$.
- Increases $S N R, \mathbb{E}\left[v_{z}^{2}\right]$, by 2^{b}.
- Recover b bits of information in one measurement.
- $1 \rightarrow 2 \rightarrow \cdots \rightarrow \log n$ in $\log \log n$ measurements.
- $R=2: 1 \rightarrow \sqrt{\log n} \rightarrow \log n$ in $\sqrt{\log n}$ measurements/round.

1-sparse recovery: adaptive lower bound

- Review of upper bound:
- Given b bits of information about z.
- Identifies z to set of size $n / 2^{b}$.
- Increases $S N R, \mathbb{E}\left[v_{z}^{2}\right]$, by 2^{b}.
- Recover b bits of information in one measurement.
- $1 \rightarrow 2 \rightarrow \cdots \rightarrow \log n$ in $\log \log n$ measurements.
- $R=2: 1 \rightarrow \sqrt{\log n} \rightarrow \log n$ in $\sqrt{\log n}$ measurements/round.
- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.

1-sparse recovery: adaptive lower bound

- Review of upper bound:
- Given b bits of information about z.
- Identifies z to set of size $n / 2^{b}$.
- Increases $S N R, \mathbb{E}\left[v_{z}^{2}\right]$, by 2^{b}.
- Recover b bits of information in one measurement.
- $1 \rightarrow 2 \rightarrow \cdots \rightarrow \log n$ in $\log \log n$ measurements.
- $R=2: 1 \rightarrow \sqrt{\log n} \rightarrow \log n$ in $\sqrt{\log n}$ measurements/round.
- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.

Lemma (Key lemma for $k=1$)
For any measurement vector v,

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Shannon-Hartley:

$$
I(z ;\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+S N R) \lesssim 1+\log \frac{\sum v_{z}^{2} p_{z}}{\sum v_{z}^{2} / n}
$$

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Shannon-Hartley:

$$
I(z ;\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+S N R) \lesssim 1+\log \frac{\sum v_{z}^{2} p_{z}}{\sum v_{z}^{2} / n} \lesssim 1+n\|p\|_{\infty}
$$

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Shannon-Hartley:

$$
I(z ;\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+S N R) \lesssim 1+\log \frac{\sum v_{z}^{2} p_{z}}{\sum v_{z}^{2} / n} \lesssim 1+n\|p\|_{\infty}
$$

- Bound is good $\left(S N R \approx 2^{b}\right)$ when nonzero p_{z} are similar.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Shannon-Hartley:

$$
I(z ;\langle v, x\rangle) \leqslant \frac{1}{2} \log (1+S N R) \lesssim 1+\log \frac{\sum v_{z}^{2} p_{z}}{\sum v_{z}^{2} / n} \lesssim 1+n\|p\|_{\infty}
$$

- Bound is good $\left(S N R \approx 2^{b}\right)$ when nonzero p_{z} are similar.
- Can be terrible in general: $b=1$ but $S N R=n / \log n$.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :
- $S_{J}=\left\{z \mid p_{z} \in\left[2^{J} / n, 2^{J+1} / n\right]\right\}$

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :
- $S_{J}=\left\{z \mid p_{z} \in\left[2^{J} / n, 2^{J+1} / n\right]\right\}$
- $\mathbb{E}[J] \leqslant b$.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :
- $S_{J}=\left\{z \mid p_{z} \in\left[2^{J} / n, 2^{J+1} / n\right]\right\}$
- $\mathbb{E}[J] \leqslant b$.
- $I(z ;\langle v, x\rangle) \leqslant I(z ;\langle v, x\rangle \mid J)+H(J)$.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :
- $S_{J}=\left\{z \mid p_{z} \in\left[2^{J} / n, 2^{J+1} / n\right]\right\}$
- $\mathbb{E}[J] \leqslant b$.
- $I(z ;\langle v, x\rangle) \leqslant I(z ;\langle v, x\rangle \mid J)+H(J)$.
- Shannon-Hartley: $I(z ;\langle v, x\rangle \mid J=j) \lesssim j+1$.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :
- $S_{J}=\left\{z \mid p_{z} \in\left[2^{J} / n, 2^{J+1} / n\right]\right\}$
- $\mathbb{E}[J] \leqslant b$.
- $I(z ;\langle v, x\rangle) \leqslant I(z ;\langle v, x\rangle \mid J)+H(J)$.
- Shannon-Hartley: $I(z ;\langle v, x\rangle \mid J=j) \lesssim j+1$.

1-sparse recovery: adaptive lower bound

- Lower bound outline:
- At each stage, have posterior distribution p on z.
- $b=\log n-H(p)=\sum p_{z} \log n p_{z}$ bits known.
- Show any measurement gives $O(b+1)$ bits of information.
- Partition indices into "level sets" $S_{0}, S_{1}, \ldots \subseteq[n]$ of p :
- $S_{J}=\left\{z \mid p_{z} \in\left[2^{J} / n, 2^{J+1} / n\right]\right\}$
- $\mathbb{E}[J] \leqslant b$.
- $I(z ;\langle v, x\rangle) \leqslant I(z ;\langle v, x\rangle \mid J)+H(J)$.
- Shannon-Hartley: $I(z ;\langle v, x\rangle \mid J=j) \lesssim j+1$.

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Suppose two rounds with m measurements each.

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Suppose two rounds with m measurements each.
- $O(m)$ bits learned in first round.

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Suppose two rounds with m measurements each.
- $O(m)$ bits learned in first round.
- $O\left(\mathrm{~m}^{2}\right)$ bits in second round.

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Suppose two rounds with m measurements each.
- $O(m)$ bits learned in first round.
- $O\left(m^{2}\right)$ bits in second round.
- Hence $m \gtrsim \sqrt{\log n}$.

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Suppose two rounds with m measurements each.
- $O(m)$ bits learned in first round.
- $O\left(m^{2}\right)$ bits in second round.
- Hence $m \gtrsim \sqrt{\log n}$.
- In general: $\Omega\left(R \log ^{1 / R} n\right)$ bits

1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Suppose two rounds with m measurements each.
- $O(m)$ bits learned in first round.
- $O\left(m^{2}\right)$ bits in second round.
- Hence $m \gtrsim \sqrt{\log n}$.
- In general: $\Omega\left(R \log ^{1 / R} n\right)$ bits
- $\Omega(\log \log n)$ for unlimited R.

Outline

(3) General k: lower bound

Recall the $k=1$ proof outline

- Setting: $x=e_{z}+w$ for $z \sim p$.
- p is posterior on z from previous measurements.
- Previous measurements had information content

$$
b:=\log n-H(p)
$$

Recall the $k=1$ proof outline

- Setting: $x=e_{z}+w$ for $z \sim p$.
- p is posterior on z from previous measurements.
- Previous measurements had information content

$$
b:=\log n-H(p)
$$

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

Recall the $k=1$ proof outline

- Setting: $x=e_{z}+w$ for $z \sim p$.
- p is posterior on z from previous measurements.
- Previous measurements had information content

$$
b:=\log n-H(p)
$$

Lemma (Key lemma for $k=1$)

$$
I(z ;\langle v, x\rangle) \lesssim b+1
$$

- Question: How to extend this to $k>1$?

Extending to general k

- Create k independent copies over domain $N=n k$.

Extending to general k

- Create k independent copies over domain $N=n k$.
- Formally: $x=\sum_{i=1}^{k} e_{n i+Z_{i}}+w$ for $Z \in[n]^{k}, Z \sim p$.

Extending to general k

- Create k independent copies over domain $N=n k$.
- Formally: $x=\sum_{i=1}^{k} e_{n i+Z_{i}}+w$ for $Z \in[n]^{k}, Z \sim p$.
- p is posterior from previous measurements.

Extending to general k

- Create k independent copies over domain $N=n k$.
- Formally: $x=\sum_{i=1}^{k} e_{n i+Z_{i}}+w$ for $Z \in[n]^{k}, Z \sim p$.
- p is posterior from previous measurements.
- Previous measurements have information content

$$
b:=k \log n-H(p)
$$

Extending to general k

- Create k independent copies over domain $N=n k$.
- Formally: $x=\sum_{i=1}^{k} e_{n i+Z_{i}}+w$ for $Z \in[n]^{k}, Z \sim p$.
- p is posterior from previous measurements.
- Previous measurements have information content

$$
b:=k \log n-H(p)
$$

Lemma (Key lemma for general k)

$$
H(Z ;(v, x)) \lesssim b+1 \text { ???? }
$$

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.
- Strong enough, at least for constant R.

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.
- Strong enough, at least for constant R.
- True for product distributions p...

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.
- Strong enough, at least for constant R.
- True for product distributions p...
- but correlated p can make this false.

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.
- Strong enough, at least for constant R.
- True for product distributions p...
- but correlated p can make this false.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k$

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.
- Strong enough, at least for constant R.
- True for product distributions p...
- but correlated p can make this false.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k$
- True!

What lemma do we want for general k ?

- $I(Z ;\langle v, x\rangle) \lesssim b+1$

- True but too weak: would get $\Omega(\sqrt{k \log n})$ not $k \sqrt{\log n}$.
- $I(Z ;\langle v, x\rangle) \lesssim b / k+1$
- Strong but false: if algorithm does 1-sparse recovery on first block, it really can learn $\Theta(b+1)$ bits.
- But the learned bits are only about that first block.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+1$ for $|W|>0.99 k$.
- Strong enough, at least for constant R.
- True for product distributions p...
- but correlated p can make this false.
- $I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k$
- True!
- Strong enough if $b>k \log k$ after the first round.

Approach

$$
I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k .
$$

Approach

$$
I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k .
$$

- Data processing and Shannon-Hartley:

$$
\begin{aligned}
I\left(Z_{W} ;\langle v, x\rangle\right) & \leqslant I\left(\sum_{i \in W} v_{Z_{i}} ;\left(\sum_{i \in W} v_{Z_{i}}\right)+\langle v, w\rangle\right) \\
& \leqslant \frac{1}{2} \log (1+S N R)
\end{aligned}
$$

Approach

$$
I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k
$$

- Data processing and Shannon-Hartley:

$$
\begin{aligned}
I\left(Z_{W} ;\langle v, x\rangle\right) & \leqslant I\left(\sum_{i \in W} v_{Z_{i}} ;\left(\sum_{i \in W} v_{Z_{i}}\right)+\langle v, w\rangle\right) \\
& \leqslant \frac{1}{2} \log (1+S N R)
\end{aligned}
$$

where

$$
S N R:=\frac{\mathbb{E}_{Z \sim p}\left[\left(\sum_{i \in W} v_{Z_{i}}\right)^{2}\right]}{\|v\|_{2}^{2} / n} \leqslant k \frac{\mathbb{E}_{Z \sim p}\left[\sum_{i \in W} v_{Z_{i}}^{2}\right]}{\|v\|_{2}^{2} / n}
$$

Approach

$$
I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k
$$

- Data processing and Shannon-Hartley:

$$
\begin{aligned}
I\left(Z_{W} ;\langle v, x\rangle\right) & \leqslant I\left(\sum_{i \in W} v_{Z_{i}} ;\left(\sum_{i \in W} v_{Z_{i}}\right)+\langle v, w\rangle\right) \\
& \leqslant \frac{1}{2} \log (1+S N R)
\end{aligned}
$$

where

$$
\begin{aligned}
S N R & :=\frac{\mathbb{E}_{Z \sim p}\left[\left(\sum_{i \in W} v_{Z_{i}}\right)^{2}\right]}{\|v\|_{2}^{2} / n} \leqslant k \frac{\mathbb{E}_{Z \sim p}\left[\sum_{i \in W} v_{Z_{i}}^{2}\right]}{\|v\|_{2}^{2} / n} \\
& \leqslant k \max _{i \in W} \operatorname{SNR}(i) .
\end{aligned}
$$

Approach

$$
I\left(Z_{W} ;\langle v, x\rangle\right) \lesssim b / k+\log k
$$

- Data processing and Shannon-Hartley:

$$
\begin{aligned}
I\left(Z_{W} ;\langle v, x\rangle\right) & \leqslant I\left(\sum_{i \in W} v_{Z_{i}} ;\left(\sum_{i \in W} v_{Z_{i}}\right)+\langle v, w\rangle\right) \\
& \leqslant \frac{1}{2} \log (1+S N R)
\end{aligned}
$$

where

$$
\begin{aligned}
S N R & :=\frac{\mathbb{E}_{Z \sim p}\left[\left(\sum_{i \in W} v_{Z_{i}}\right)^{2}\right]}{\|v\|_{2}^{2} / n} \leqslant k \frac{\mathbb{E}_{Z \sim p}\left[\sum_{i \in W} v_{Z_{i}}^{2}\right]}{\|v\|_{2}^{2} / n} \\
& \leqslant k \max _{i \in W} \operatorname{SNR}(i) .
\end{aligned}
$$

- So we just need
$\max _{i \in W} \log (1+S N R(i)) \lesssim b / k$.

Approach

- Would like to find a set W such that:

$$
\max _{i \in W} \log (1+S N R(i)) \lesssim b / k .
$$

Approach

- Would like to find a set W such that:

$$
\max _{i \in W} \log (1+S N R(i)) \lesssim b / k .
$$

- What's actually true:

$$
\underset{i}{\mathbb{E}} \mathbb{E}[\log (1+(S N R(i) \mid J))] \lesssim b / k
$$

Approach

- Would like to find a set W such that:

$$
\max _{i \in W} \log (1+S N R(i)) \lesssim b / k .
$$

- What's actually true:

$$
\underset{i}{\mathbb{E}} \underset{J}{\mathbb{E}}[\log (1+(S N R(i) \mid J))] \lesssim b / k
$$

Approach

- Would like to find a set W such that:

$$
\max _{i \in W} \log (1+S N R(i)) \lesssim b / k
$$

- What's actually true:

$$
\underset{i}{\mathbb{E}} \underset{J}{\mathbb{E}}[\log (1+(S N R(i) \mid J))] \lesssim b / k
$$

- Find $W=W(J)$ so that

$$
\max _{i \in W} \mathbb{E} \log (1+(S N R(i) \mid J)) \lesssim b / k
$$

and $|W| \geqslant 0.99 k$ with 99% probability.

Goal for general k

Lemma (Key lemma for general k)
One can choose a set $W=W(J) \subset[k]$ of expected size $0.99 k$ so that

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

for any $A \in \mathbb{R}^{m \times N}$.

Goal for general k

Lemma (Key lemma for general k)
One can choose a set $W=W(J) \subset[k]$ of expected size $0.99 k$ so that

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

for any $A \in \mathbb{R}^{m \times N}$.

- Recall $k=1$ approach:

$$
\begin{aligned}
I(Z ; A x) & =I(Z ; A x \mid J)+H(J) \\
& \leqslant m \cdot \underset{J}{\mathbb{E}}\left[\frac{1}{2} \log (1+(S N R \mid J))\right]+O(b+1) \\
& \lesssim m(b+1)+(b+1)
\end{aligned}
$$

Goal for general k

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

$$
\begin{gathered}
k=1 \\
\\
I(Z ; A x) \\
=I(Z ; A x \mid J)+H(J) \\
\lesssim m \cdot \underset{J}{\mathbb{E}}[\log (S N R \mid J)] \\
+b+1 \\
\\
\lesssim m(b+1)+(b+1)
\end{gathered}
$$

$$
\text { General } k
$$

Goal for general k

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

$$
\begin{gathered}
k=1 \\
\\
I(Z ; A x) \\
=I(Z ; A x \mid J)+H(J) \\
\lesssim m \cdot \underset{J}{\mathbb{E}}[\log (S N R \mid J)] \\
+b+1 \\
\\
\lesssim m(b+1)+(b+1)
\end{gathered}
$$

Goal for general k

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

\[

\]

Goal for general k

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

$$
\begin{aligned}
& k=1 \\
& \text { General } k \\
& I(Z ; A x) \\
& =I(Z ; A x \mid J)+H(J) \\
& \lesssim m \cdot \underset{J}{\mathbb{E}}[\log (S N R \mid J)] \\
& +b+1 \\
& \lesssim m(b+1)+(b+1) \\
& I\left(Z_{W} ; A x\right) \\
& =I\left(Z_{W} ; A x \mid J\right)+H(J) \\
& \lesssim m \cdot \underset{J}{\mathbb{E}}\left[\log \left(S N R\left(\bigcup_{i \in W} Z_{i}\right) \mid J\right)\right] \\
& +b+k
\end{aligned}
$$

Goal for general k

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

\[

\]

Goal for general k

$$
I\left(Z_{W} ; A x\right) \lesssim m(b / k+\log k)+(b+k)
$$

\[

\]

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.
- Second round, learn

$$
m(b / k+\log k)+(b+k)=O\left(m^{2} / k\right)
$$

bits.

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.
- Second round, learn

$$
m(b / k+\log k)+(b+k)=O\left(m^{2} / k\right)
$$

bits.

- But need to learn $|W| \log n \approx k \log n$ bits.

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.
- Second round, learn

$$
m(b / k+\log k)+(b+k)=O\left(m^{2} / k\right)
$$

bits.

- But need to learn $|W| \log n \approx k \log n$ bits.
- Hence $m \gtrsim k \sqrt{\log n}$ (if this is more than $k \log k$).

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.
- Second round, learn

$$
m(b / k+\log k)+(b+k)=O\left(m^{2} / k\right)
$$

bits.

- But need to learn $|W| \log n \approx k \log n$ bits.
- Hence $m \gtrsim k \sqrt{\log n}$ (if this is more than $k \log k$).
- Open questions:

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.
- Second round, learn

$$
m(b / k+\log k)+(b+k)=O\left(m^{2} / k\right)
$$

bits.

- But need to learn $|W| \log n \approx k \log n$ bits.
- Hence $m \gtrsim k \sqrt{\log n}$ (if this is more than $k \log k$).
- Open questions:
- Less restriction on k ? Conjecture:

$$
I\left(Z_{W} ; A x \mid Z_{\bar{W}}\right) \lesssim b / k+1
$$

Wrapping up the lower bound for $R=2$

- Suppose $m>k \log k$ measurements per round.
- First round is nonadaptive: learn $b=O(m)$ bits.
- Second round, learn

$$
m(b / k+\log k)+(b+k)=O\left(m^{2} / k\right)
$$

bits.

- But need to learn $|W| \log n \approx k \log n$ bits.
- Hence $m \gtrsim k \sqrt{\log n}$ (if this is more than $k \log k$).
- Open questions:
- Less restriction on k ? Conjecture:

$$
I\left(Z_{W} ; A x \mid Z_{\bar{W}}\right) \lesssim b / k+1
$$

- Better dependence on R ?

Outline

(1) Introduction
(2) Analysis for $k=1$
(3) General k: lower bound
(4) General k: upper bound

Standard sparse recovery approach

- We have an optimal adaptive 1-sparse recovery algorithm.

Standard sparse recovery approach

- We have an optimal adaptive 1-sparse recovery algorithm.
- Standard technique:
(1) Throw coordinates into buckets.
(2) 1-sparse recovery within each bucket.
(3) Clean up mistakes.

Standard sparse recovery approach

- We have an optimal adaptive 1-sparse recovery algorithm.
- Standard technique:
(1) Throw coordinates into buckets.
(2) 1-sparse recovery within each bucket.
(3) Clean up mistakes.
- Problem: surrounding steps add rounds.
- [IPW '11]: cleanup is recursive, multiplying rounds by $O\left(\log ^{*} k\right)$.
- [NSZW '18]: 1 round setup, 2 rounds cleanup.

Standard sparse recovery approach

- We have an optimal adaptive 1-sparse recovery algorithm.
- Standard technique:
(1) Throw coordinates into buckets.
(2) 1-sparse recovery within each bucket.
(3) Clean up mistakes.
- Problem: surrounding steps add rounds.
- [IPW '11]: cleanup is recursive, multiplying rounds by $O\left(\log ^{*} k\right)$.
- [NSZW '18]: 1 round setup, 2 rounds cleanup.
- Our approach: avoid reduction to $k=1$.

Standard sparse recovery approach

- We have an optimal adaptive 1-sparse recovery algorithm.
- Standard technique:
(1) Throw coordinates into buckets.
(2) 1-sparse recovery within each bucket.
(3) Clean up mistakes.
- Problem: surrounding steps add rounds.
- [IPW '11]: cleanup is recursive, multiplying rounds by $O\left(\log ^{*} k\right)$.
- [NSZW '18]: 1 round setup, 2 rounds cleanup.
- Our approach: avoid reduction to $k=1$.
- Instead, reduce to C-approximate k-sparse recovery for $C \gg 1$.

Standard sparse recovery approach

- We have an optimal adaptive 1-sparse recovery algorithm.
- Standard technique:
(1) Throw coordinates into buckets.
(2) 1-sparse recovery within each bucket.
(3) Clean up mistakes.
- Problem: surrounding steps add rounds.
- [IPW '11]: cleanup is recursive, multiplying rounds by $O\left(\log ^{*} k\right)$.
- [NSZW '18]: 1 round setup, 2 rounds cleanup.
- Our approach: avoid reduction to $k=1$.
- Instead, reduce to C-approximate k-sparse recovery for $C \gg 1$.
- This is solvable nonadaptively in $O\left(k \log _{C}(n / k) \cdot \log ^{*} k\right)$ measurements. [Price-Woodruff '12]

Basic approach: $R=2$

(1) Throw the coordinates into $B=k \cdot 2^{\sqrt{\log n}}$ buckets, and nonadaptively apply k-sparse $O(1)$-approximate recovery.

- $k \log (B / k)=k \sqrt{\log n}$ measurements.

Basic approach: $R=2$

(1) Throw the coordinates into $B=k \cdot 2^{\sqrt{\log n}}$ buckets, and nonadaptively apply k-sparse $O(1)$-approximate recovery.

- $k \log (B / k)=k \sqrt{\log n}$ measurements.
(2) Apply k-sparse $2^{\sqrt{\log n}}$-approximate recovery to the preimage.
- $k \log _{C} n=k \sqrt{\log n}$ measurements.

Basic approach: $R=2$

(1) Throw the coordinates into $B=k \cdot 2^{\sqrt{\log n}}$ buckets, and nonadaptively apply k-sparse $O(1)$-approximate recovery.

- $k \log (B / k)=k \sqrt{\log n}$ measurements.
(2) Apply k-sparse $2^{\sqrt{\log n}}$-approximate recovery to the preimage.
- $k \log _{C} n=k \sqrt{\log n}$ measurements.
- Key problem: can't miss anything important in the first round.

Basic approach: $R=2$

(1) Throw the coordinates into $B=k \cdot 2^{\sqrt{\log n}}$ buckets, and nonadaptively apply k-sparse $O(1)$-approximate recovery.

- $k \log (B / k)=k \sqrt{\log n}$ measurements.
(2) Apply k-sparse $2^{\sqrt{\log n}}$-approximate recovery to the preimage.
- $k \log _{C} n=k \sqrt{\log n}$ measurements.
- Key problem: can't miss anything important in the first round.
- There will be collisions.

Basic approach: $R=2$

(1) Throw the coordinates into $B=k \cdot 2^{\sqrt{\log n}}$ buckets, and nonadaptively apply k-sparse $O(1)$-approximate recovery.

- $k \log (B / k)=k \sqrt{\log n}$ measurements.
(2) Apply k-sparse $2^{\sqrt{\log n}}$-approximate recovery to the preimage.
- $k \log _{C} n=k \sqrt{\log n}$ measurements.
- Key problem: can't miss anything important in the first round.
- There will be collisions.
- Yet if x has no noise, must find every entry.

Basic approach: $R=2$

(1) Throw the coordinates into $B=k \cdot 2^{\sqrt{\log n}}$ buckets, and nonadaptively apply k-sparse $O(1)$-approximate recovery.

- $k \log (B / k)=k \sqrt{\log n}$ measurements.
(2) Apply k-sparse $2^{\sqrt{\log n}}$-approximate recovery to the preimage.
- $k \log _{C} n=k \sqrt{\log n}$ measurements.
- Key problem: can't miss anything important in the first round.
- There will be collisions.
- Yet if x has no noise, must find every entry.
- Solution: triple Gaussian hashing.

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.
- Successful recovery must find all but $O(1)$ binary entries of x.

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.
- Successful recovery must find all but $O(1)$ binary entries of x.
- Given partition $h:[n] \rightarrow[B]$, how to condense $x \in \mathbb{R}^{n}$ into $y \in \mathbb{R}^{B}$?

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.
- Successful recovery must find all but $O(1)$ binary entries of x.
- Given partition $h:[n] \rightarrow[B]$, how to condense $x \in \mathbb{R}^{n}$ into $y \in \mathbb{R}^{B}$?
- Goal: preimage of k-sparse recovery on y includes large entries in x.

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.
- Successful recovery must find all but $O(1)$ binary entries of x.
- Given partition $h:[n] \rightarrow[B]$, how to condense $x \in \mathbb{R}^{n}$ into $y \in \mathbb{R}^{B}$?
- Goal: preimage of k-sparse recovery on y includes large entries in x.
- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i) .
$$

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.
- Successful recovery must find all but $O(1)$ binary entries of x.
- Given partition $h:[n] \rightarrow[B]$, how to condense $x \in \mathbb{R}^{n}$ into $y \in \mathbb{R}^{B}$?
- Goal: preimage of k-sparse recovery on y includes large entries in x.
- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i) .
$$

Without noise

Hashing

- For intuition, consider x being
 k-sparse binary + Gaussian with norm 1.
- Successful recovery must find all but $O(1)$ binary entries of x.
- Given partition $h:[n] \rightarrow[B]$, how to condense $x \in \mathbb{R}^{n}$ into $y \in \mathbb{R}^{B}$?
- Goal: preimage of k-sparse recovery on y includes large entries in x.
- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i) .
$$

Without noise

With noise

Gaussian hashing

- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i)
$$

Without noise

With noise

Gaussian hashing

- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i)
$$

Without noise

With noise

- Gaussian hashing: $g \sim N\left(I_{n}\right)$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot g(i) .
$$

Gaussian hashing

- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i)
$$

Without noise

With noise

- Gaussian hashing: $g \sim N\left(I_{n}\right)$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot g(i)
$$

Without noise

Gaussian hashing

- Random signs: $s:[n] \rightarrow\{ \pm 1\}$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot s(i)
$$

Without noise

With noise

- Gaussian hashing: $g \sim N\left(I_{n}\right)$ and

$$
y_{u}=\sum_{i: h(i)=u} x_{i} \cdot g(i)
$$

Without noise

With noise

Triple Gaussian hashing

- Triple Gaussian hashing: $g^{1}, g^{2}, g^{3} \sim N\left(0, I_{n}\right)$;

$$
y_{u}^{j}=\sum_{i: h(i)=u} x_{i} \cdot g^{j}(i)
$$

Try 1

Triple Gaussian hashing

- Triple Gaussian hashing: $g^{1}, g^{2}, g^{3} \sim N\left(0, I_{n}\right)$;

$$
y_{u}^{j}=\sum_{i: h(i)=u} x_{i} \cdot g^{j}(i) .
$$

Try 1

Try 2

Triple Gaussian hashing

- Triple Gaussian hashing: $g^{1}, g^{2}, g^{3} \sim N\left(0, I_{n}\right)$;

$$
y_{u}^{j}=\sum_{i: h(i)=u} x_{i} \cdot g^{j}(i)
$$

Try 1

Try 2

Triple Gaussian hashing

- Triple Gaussian hashing: $g^{1}, g^{2}, g^{3} \sim N\left(0, I_{n}\right)$;

$$
y_{u}^{j}=\sum_{i: h(i)=u} x_{i} \cdot g^{j}(i)
$$

Try 1

Try 2

- Take union of three independent sparse recovery attempts.

Triple Gaussian hashing

- Triple Gaussian hashing: $g^{1}, g^{2}, g^{3} \sim N\left(0, I_{n}\right)$;

$$
y_{u}^{j}=\sum_{i: h(i)=u} x_{i} \cdot g^{j}(i)
$$

Try 1

Try 2

- Take union of three independent sparse recovery attempts.
- Expected false negatives are O (noise), so can be skipped.

Triple Gaussian hashing

- Triple Gaussian hashing: $g^{1}, g^{2}, g^{3} \sim N\left(0, I_{n}\right)$;

$$
y_{u}^{j}=\sum_{i: h(i)=u} x_{i} \cdot g^{j}(i)
$$

Try 1

Try 2

- Take union of three independent sparse recovery attempts.
- Expected false negatives are O (noise), so can be skipped.
- Avoids the cleanup rounds, getting

$$
O\left(k \log ^{1 / R} n \cdot \log ^{*} k\right)
$$

measurements.

Results

- Previously:

$$
k+\log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 /(R-3)} n
$$

Results

- Previously:

$$
k+\log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 /(R-3)} n
$$

- Now:

$$
k \cdot \log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 / R} n \cdot \log ^{*} k
$$

where the lower bound applies if this is above $k \log k$.

Results

- Previously:

$$
k+\log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 /(R-3)} n
$$

- Now:

$$
k \cdot \log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 / R} n \cdot \log ^{*} k
$$

where the lower bound applies if this is above $k \log k$.

- Biggest question:
- Are $\omega(k)$ measurements necessary for unlimited R ?

Results

- Previously:

$$
k+\log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 /(R-3)} n
$$

- Now:

$$
k \cdot \log ^{1 / R} n \lesssim m \lesssim k \cdot \log ^{1 / R} n \cdot \log ^{*} k
$$

where the lower bound applies if this is above $k \log k$.

- Biggest question:
- Are $\omega(k)$ measurements necessary for unlimited R ?

Thank You

