Adaptive Sparse Recovery with Limited Adaptivity

Akshay Kamath  Eric Price
UT Austin

2018-11-27

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 1/33



Outline

@ Introduction

@ Analysis for k =1

@ General k: lower bound

@ General k: upper bound

Akshay Kamath, Eric Price (UT Austin)

Adaptive Sparse Recovery with Limited Adaptivity

2/33



Outline

@ Introduction

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 3/33



Sparsity
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Sparsity

o An n-dimensional vector x is “k-sparse” if only k non-zero
coefficients.

o “Approximate sparsity:” vector “close” to a sparse vector
o Approximate sparsity is a common form of structure.

o Images sparse in wavelet basis
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Sparse Recovery / Compressive Sensing

AKA heavy hitters/frequency estimation in turnstile streams
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Extremely well studied: thousands of papers.
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Standard Sparse Recovery Framework

o Specify distribution on m x n matrices A (independent of x).

o Given linear sketch Ax, recover X.

o Satisfying the recovery guarantee:

IX—x[2 < C min |[x—xk||2
k-sparse xj

with probability 2/3.
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o Specify distribution on m x n matrices A (independent of x).

» Choose matrix A; based on previous observations (possibly
randomized).

> Observe A;x.

» Number of measurements m is total number of rows in all A;.

» Number of rounds is R.

o Given linear sketch Ax, recover X.

o Satisfying the recovery guarantee:

IR—xll2< € min [x—xl2
k-sparse xj

with probability 2/3.
o Solvable with @(k log {) measurements [Candes-Romberg-Tao '06].
o Solvable in O(kloglog #) [Indyk-Price-Woodruff '11].
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o Lower bounds:
> [Arias-Castro, Candes, Davenport '13]: m > 1k
> [Price, Woodruff '13]: m 2 loglog n.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 7 /33



Results in adaptive sparse recovery, C = O(1)

o Unlimited adaptivity: with unlimited rounds,

k +loglogn < m" < k-loglogn
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o New results: with R = O(1) rounds,
k-logRn < m* < k-logRnlog* k

With caveat: the lower bound only applies for k < 2'°g""n
< m* > klog k.
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Well-understood setting: k =1
Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13) J

R-round 1-sparse recovery requires ©(R Iogl/ R n) measurements.
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Well-understood setting: k =1
Theorem (Indyk-Price-Woodruff '11, Price-Woodruff '13) J

R-round 1-sparse recovery requires ©(R log*/R n) measurements.

o Outline of this section:
» R =1 lower bound: Q(logn).
» Adaptive upper bound: O(loglog n).
» Adaptive lower bound: Q(loglog n).

o Hard case: x is random e, plus Gaussian noise w with ||w||2 ~ 1.

o Robust recovery must locate z.
o Observations (v, x) = v, + (v, w) = v, + %z, for z~ N(0, 1).
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1-sparse recovery: non-adaptive lower bound

o Observe (v, x) = v, + %z, where z ~ N(0,0(1))
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1-sparse recovery: non-adaptive lower bound

o Observe (v, x) = v, + %z where z ~ N(0,0(1))

IR
0‘0,0‘0.0
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1-sparse recovery: non-adaptive lower bound
o Observe (v, x) = v, + %z, where z ~ N(0,0(1))

PR
IS
3K

o Shannon-Hartley theorem: AWGN channel capacity is
1
I(z,(v,x)) < 5 log(1+ SNR)

where SNR denotes the “signal-to-noise ratio,”
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1-sparse recovery: non-adaptive lower bound
o Observe (v, x) = v, + %z, where z ~ N(0,©(1))
SISO SESESE
3

’0’\‘0

o‘:‘:‘o
X0
>

o Shannon-Hartley theorem: AWGN channel capacity is
1
I(z,(v,x)) < 5 log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”

Elsignal’]  E[v2]

Elnoise’] ~ [lv[|3/n

1

o Finding z needs Q(log n) non-adaptive measurements.
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1-sparse recovery: changes in adaptive setting

o Information capacity
1
I(z,(v,x)) < 5 log(1 4 SNR).

where SNR denotes the “signal-to-noise ratio,”

E[v?]
Ivii5/n

SNR <
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1-sparse recovery: changes in adaptive setting

o Information capacity
1
I(z,(v,x)) < 5 log(1 4 SNR).

where SNR denotes the “signal-to-noise ratio,”

E[v?]
Ivii5/n

SNR <

o If z is independent of v, this is 1.
o As we learn about z, we can increase the SNR.
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1-sparse recovery: adaptive upper bound

X=e€e,+w

Signal l [ Candidate set
Obits

SNR =2 I(z,{v,x)) <log SNR =1
(v,x) = vz + (v, w)
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1-sparse recovery: adaptive upper bound
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1-sparse recovery: adaptive upper bound
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1-sparse recovery: adaptive upper bound

X =€, +w
Signal l [ Candidate set
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1-sparse recovery: adaptive lower bound

o Review of upper bound:

» Given b bits of information about z.

> |dentifies z to set of size n/2°.

> Increases SNR, E[v2], by 2°.

> Recover b bits of information in one measurement.

» 1—2—---—lognin loglogn measurements.

» R=2:1— /logn — logn in \/log n measurements/round.
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v

Given b bits of information about z.

> |dentifies z to set of size n/2°.

> Increases SNR, E[v2], by 2°.

» Recover b bits of information in one measurement.
» 1—2—---—lognin loglogn measurements.

|

R =2:1— +/logn— logn in v/log n measurements/round.
o Lower bound outline:

> At each stage, have posterior distribution p on z.
» b=logn— H(p) bits known.

Lemma (Key lemma for k = 1)

For any measurement vector v,

I{z;{v,x)) Sb+1
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1-sparse recovery: adaptive lower bound

o Lower bound outline:

> At each stage, have posterior distribution p on z.
» b =logn— H(p) bits known.
» Show any measurement gives O(b + 1) bits of information.
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o Lower bound outline:
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» Show any measurement gives O(b + 1) bits of information.

o Shannon-Hartley:

1 2p:
I(zi (v,x)) < ; log(1+ SNR) £ 1+ log Z VP 4 il
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o Bound is good (SNR ~ 2°) when nonzero p, are similar.
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1-sparse recovery: adaptive lower bound

o Lower bound outline:

> At each stage, have posterior distribution p on z.
» b=logn— H(p) bits known.
» Show any measurement gives O(b + 1) bits of information.

o Shannon-Hartley:

1 V2pz
I(z; {v,x)) < 5 log(1+ SNR) < 1+ log %VE/H,S 1+ n||plleo

| —

o Bound is good (SNR ~ 2°) when nonzero p, are similar.
o Can be terrible in general: b =1 but SNR = n/ log n.
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o Lower bound outline:
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1-sparse recovery: adaptive lower bound: finishing up

Lemma (Key lemma for k = 1)

I(z;(v,x)) Sb+1

o Suppose two rounds with m measurements each.

» O(m) bits learned in first round.
» O(m?) bits in second round.

» Hence m 2 +/log n.
o In general: Q(Rlog'/® n) bits
» Q(loglog n) for unlimited R.
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Outline

@ General k: lower bound
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Recall the k =1 proof outline

o Setting: x = e, + w for z~ p.
o p is posterior on z from previous measurements.

o Previous measurements had information content

b:=logn— H(p)
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Recall the k =1 proof outline

o Setting: x = e, + w for z~ p.
o p is posterior on z from previous measurements.

o Previous measurements had information content

b:=logn— H(p)

Lemma (Key lemma for k = 1)

I(z;{v,x)) Sb+1

o Question: How to extend this to k > 17
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Extending to general k

o Create k independent copies over domain N = nk.
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Extending to general k

©

Create k independent copies over domain N = nk.
Formally: x = Zf-;l enivz, +w for Z € [k, Z ~ p.

p is posterior from previous measurements.

© © o

Previous measurements have information content

b:= klogn— H(p)
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Extending to general k

©

Create k independent copies over domain N = nk.
Formally: x = Zf-;l enivz, +w for Z € [k, Z ~ p.

p is posterior from previous measurements.

© © o

Previous measurements have information content

b:= klogn— H(p)

Lemma (Key lemma for general k)

HE A <b+1 7777
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What lemma do we want for general k?

o I(Z;{v,x)) <b+1
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What lemma do we want for general k?

©

I(Z;{v,x)) Sb+1 '
» True but too weak: would get Q(y/klog n) not k+/log n.
I(Z;{v,x)) Sb/k+1
» Strong but false: if algorithm does 1-sparse recovery on first block, it
really can learn ©(b + 1) bits.
> But the learned bits are only about that first block.
I(Zw; (v, x)) < b/k +1 for |W| > 0.99k.
» Strong enough, at least for constant R.

» True for product distributions p...
> but correlated p can make this false.

1{(Zw; (v, x)) S b/k + log k
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What lemma do we want for general k?

©

I(Z;{v,x)) Sb+1 '
» True but too weak: would get Q(y/klog n) not k+/log n.
I(Z;{v,x)) Sb/k+1
» Strong but false: if algorithm does 1-sparse recovery on first block, it
really can learn ©(b + 1) bits.
> But the learned bits are only about that first block.
I(Zw; (v, x)) < b/k +1 for |W| > 0.99k.
» Strong enough, at least for constant R.

» True for product distributions p...
> but correlated p can make this false.

I(Zw; (v, x)) < b/k + log k
> True!
» Strong enough if b > klog k after the first round.

©

(]

©
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Approach

1(Zw; (v, x)) < b/k + log k. J
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Approach

1(Zw; (v, x)) < b/k + log k.

o Data processing and Shannon-Hartley:

1(Zw; (v, x)) < /(Z vz (Z vz,) + (v, w))

ieWw iew

1
< 5 log(1 + SNR)
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Approach

1(Zw; (v, x)) < b/k + log k.

o Data processing and Shannon-Hartley:

1(Zw; (v, x)) < /(Z vz (Z vz,) + (v, w))

ieWw iew

1
< 5 log(1 + SNR)

where
2
SNR = EZNP[(Z'EW vz,)?] < EZW[Z;eW vz
[v]|3/n Iv]2/n
< kmax SNR(i).

iew
o So we just need

max log(1 4+ SNR(i)) < b/k.
iew
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o Would like to find a set W such that:

max log(1 4+ SNR(i)) < b/k.
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Approach

o Would like to find a set W such that:

maxlog(l + SNR(i)) < b/k.
iew

Level set J (random)

o What's actually true:

EEllog(1 + (SNR(i) [ )] < b/k
o Find W = W(J) so that

max E log(1+ (SNR(7)J)) < b/k

and |W| > 0.99k with 99% probability.
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Goal for general k

Lemma (Key lemma for general k)
One can choose a set W = W(J) C [k] of expected size 0.99k so that

1(Zw; Ax) < m(b/k + log k) + (b + k)

for any A € RmM*N.
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Goal for general k

Lemma (Key lemma for general k)
One can choose a set W = W(J) C [k] of expected size 0.99k so that

1(Zw; Ax) < m(b/k + log k) + (b + k)

for any A € RmM*N.

o Recall k =1 approach:
1(Z;Ax) = 1(Z; Ax | J) + H(J)
<mE %Iog(1+(SNR|J)) +O(b+1)

Smb+1)+(b+1)
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k=1

General k

1(Z; Ax)
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Wrapping up the lower bound for R =2

o Suppose m > klog k measurements per round.
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Wrapping up the lower bound for R =2

o Suppose m > klog k measurements per round.
o First round is nonadaptive: learn b = O(m) bits.

o Second round, learn
m(b/k + log k) + (b+ k) = O(m?/k)

bits.
But need to learn |W/|log n ~ k log n bits.

Hence m 2 k+/log n (if this is more than k log k).
Open questions:
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o Suppose m > klog k measurements per round.
o First round is nonadaptive: learn b = O(m) bits.

o Second round, learn
m(b/k + log k) + (b+ k) = O(m?/k)

bits.
But need to learn |W/|log n ~ k log n bits.

Hence m 2 k+/log n (if this is more than k log k).
Open questions:
> Less restriction on k7 Conjecture:

©

©

©

1(Zw; Ax | Zyw) < b/k +1
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Wrapping up the lower bound for R =2

o Suppose m > klog k measurements per round.
o First round is nonadaptive: learn b = O(m) bits.

o Second round, learn
m(b/k + log k) + (b+ k) = O(m?/k)

bits.
But need to learn |W/|log n ~ k log n bits.

Hence m 2 k+/log n (if this is more than k log k).
Open questions:
> Less restriction on k7 Conjecture:

©

©

©

1(Zw; Ax | Zyw) < b/k +1

» Better dependence on R?
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Outline

@ General k: upper bound
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Standard sparse recovery approach

o We have an optimal adaptive 1-sparse recovery algorithm.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity 28 /33



Standard sparse recovery approach

o We have an optimal adaptive 1-sparse recovery algorithm.
o Standard technique:

@ Throw coordinates into buckets.
@ 1-sparse recovery within each bucket.
@ Clean up mistakes.

Akshay Kamath, Eric Price (UT Austin) Adaptive Sparse Recovery with Limited Adaptivity

28 / 33



Standard sparse recovery approach

o We have an optimal adaptive 1-sparse recovery algorithm.
o Standard technique:

@ Throw coordinates into buckets.
@ 1-sparse recovery within each bucket.
@ Clean up mistakes.

o Problem: surrounding steps add rounds.

> [IPW '11]: cleanup is recursive, multiplying rounds by O(log* k).
» [NSZW '18]: 1 round setup, 2 rounds cleanup.
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Standard sparse recovery approach

©

We have an optimal adaptive 1-sparse recovery algorithm.

(*]
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Standard sparse recovery approach

o We have an optimal adaptive 1-sparse recovery algorithm.
o Standard technique:

@ Throw coordinates into buckets.
@ 1-sparse recovery within each bucket.
@ Clean up mistakes.

o Problem: surrounding steps add rounds.

> [IPW '11]: cleanup is recursive, multiplying rounds by O(log* k).
» [NSZW '18]: 1 round setup, 2 rounds cleanup.

o Our approach: avoid reduction to kK = 1.

> Instead, reduce to C-approximate k-sparse recovery for C > 1.
» This is solvable nonadaptively in O(klog-(n/k) - log™ k)
measurements. [Price-Woodruff '12]
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Basic approach: R =2

@ Throw the coordinates into B = k - 2V'°8" buckets, and nonadaptively
apply k-sparse O(1)-approximate recovery.
» klog(B/k) = k+/log n measurements.
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Basic approach: R =2

@ Throw the coordinates into B = k - 2V'°8" buckets, and nonadaptively
apply k-sparse O(1)-approximate recovery.
» klog(B/k) = k+/log n measurements.
@ Apply k-sparse 2V'°8 "_approximate recovery to the preimage.
> klogc n = k+/log n measurements.

o Key problem: can’t miss anything important in the first round.
> There will be collisions.
> Yet if x has no noise, must find every entry.

o Solution: triple Gaussian hashing.
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Gaussian hashing

o Random signs: s: [n] — {£1} and

Yu= Z X 5(/)

ith(i)=u

Without noise With noise
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Triple Gaussian hashing

o Triple Gaussian hashing: g!, g2, g3~ N(0, I,);

vi= > x-gli

ith(i)=u
Try 1
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Triple Gaussian hashing

o Triple Gaussian hashing: g!, g2, g3~ N(0, I,);

vi= > x-gli

ith(i)=u
Try 1 Try 2 Try 3

» Take union of three independent sparse recovery attempts.
» Expected false negatives are O(noise), so can be skipped.

o Avoids the cleanup rounds, getting
O(klog R n-log* k)

measurements.
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Results

o Previously:
k+log”Rn<m<k-logt/ =3 p
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Results

o Previously:
k+log”Rn<m<k-logt/ =3 p

o Now:
k-log"’Rn<m<k-logRn-log* k

where the lower bound applies if this is above k log k.
o Biggest question:
» Are w(k) measurements necessary for unlimited R?

Thank You
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