The Noisy Power Method

Moritz Hardt Eric Price
IBM \quad IBM \rightarrow UT Austin

2014-10-31

Problem

- Common problem: find low rank approximation to a matrix A
- PCA: apply to covariance matrix
- Spectral analysis: PageRank, Cheever's inequality for cuts, etc.

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.
- Repeat:

$$
\begin{aligned}
& Y_{t+1}=A X_{t} \\
& X_{t+1}=\operatorname{orthonormalize}\left(Y_{t+1}\right)
\end{aligned}
$$

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.
- Repeat:

$$
\begin{aligned}
Y_{t+1} & =A X_{t} \\
X_{t+1} & =\operatorname{orthonormalize}\left(Y_{t+1}\right)
\end{aligned}
$$

- Converges towards U, the space of the top k eigenvalues.

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.
- Repeat:

$$
\begin{aligned}
& Y_{t+1}=A X_{t} \\
& X_{t+1}=\operatorname{orthonormalize}\left(Y_{t+1}\right)
\end{aligned}
$$

- Converges towards U, the space of the top k eigenvalues.
- Question 1: how quickly?

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.
- Repeat:

$$
\begin{aligned}
& Y_{t+1}=A X_{t} \\
& X_{t+1}=\operatorname{orthonormalize}\left(Y_{t+1}\right)
\end{aligned}
$$

- Converges towards U, the space of the top k eigenvalues.
- Question 1: how quickly?
- [Stewart '69, ..., Halko-Martinsson-Tropp '10]

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.
- Repeat:

$$
\begin{aligned}
Y_{t+1} & =A X_{t}+G \\
X_{t+1} & =\operatorname{orthonormalize}\left(Y_{t+1}\right)
\end{aligned}
$$

- Converges towards U, the space of the top k eigenvalues.
- Question 1: how quickly?
- [Stewart '69, ..., Halko-Martinsson-Tropp '10]
- Question 2: how robust to noise?

Simple algorithm: the power method

AKA subspace iteration, subspace power iteration

- Choose random $X_{0} \in \mathbb{R}^{n \times k}$.
- Repeat:

$$
\begin{aligned}
& Y_{t+1}=A X_{t}+G \\
& X_{t+1}=\operatorname{orthonormalize}\left(Y_{t+1}\right)
\end{aligned}
$$

- Converges towards U, the space of the top k eigenvalues.
- Question 1: how quickly?
- [Stewart '69, ..., Halko-Martinsson-Tropp '10]
- Question 2: how robust to noise?
- Application-specific bounds: [Hardt-Roth '13, Mitliagkas-Caramanis-Jain '13, Jain-Netrapalli-Sanghavi '13]

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x_{x}$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.
- $x_{t+1}=A x_{t} /\left\|A x_{t}\right\|$ for $t=0, \ldots, q-1$.
- Suppose A has eigenvectors v_{1}, \ldots, v_{n}, eigenvalues $\lambda_{1}>\lambda_{2} \geq \cdots \lambda_{n} \geq 0$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.

$$
x_{t+1}=A x_{t} /\left\|A x_{t}\right\| \text { for } t=0, \ldots, q-1
$$

- Suppose A has eigenvectors v_{1}, \ldots, v_{n}, eigenvalues $\lambda_{1}>\lambda_{2} \geq \cdots \lambda_{n} \geq 0$.
- Start with $x_{0}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.

$$
x_{t+1}=A x_{t} /\left\|A x_{t}\right\| \text { for } t=0, \ldots, q-1
$$

- Suppose A has eigenvectors v_{1}, \ldots, v_{n}, eigenvalues $\lambda_{1}>\lambda_{2} \geq \cdots \lambda_{n} \geq 0$.
- Start with $x_{0}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$.
- After q iterations,

$$
A^{q} x_{0}=\sum_{i} \lambda_{i}^{q} \alpha_{i} v_{i}
$$

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.

$$
x_{t+1}=A x_{t} /\left\|A x_{t}\right\| \text { for } t=0, \ldots, q-1
$$

- Suppose A has eigenvectors v_{1}, \ldots, v_{n}, eigenvalues $\lambda_{1}>\lambda_{2} \geq \cdots \lambda_{n} \geq 0$.
- Start with $x_{0}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$.
- After q iterations,

$$
A^{q} x_{0}=\sum_{i} \lambda_{i}^{q} \alpha_{i} v_{i} \propto v_{1}+\sum_{i \geq 2}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{q} \frac{\alpha_{i}}{\alpha_{1}} v_{i}
$$

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.

$$
x_{t+1}=A x_{t} /\left\|A x_{t}\right\| \text { for } t=0, \ldots, q-1
$$

- Suppose A has eigenvectors v_{1}, \ldots, v_{n}, eigenvalues $\lambda_{1}>\lambda_{2} \geq \cdots \lambda_{n} \geq 0$.
- Start with $x_{0}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$.
- After q iterations,

$$
A^{q} x_{0}=\sum_{i} \lambda_{i}^{q} \alpha_{i} v_{i} \propto v_{1}+\sum_{i \geq 2}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{q} \frac{\alpha_{i}}{\alpha_{1}} v_{i}
$$

- For $q \geq \log _{\lambda_{1} / \lambda_{2}} \frac{d}{\epsilon \alpha_{1}}$, have $A^{q} x$ proportional to $v_{1} \pm O(\epsilon)$.

Basic power method, $k=1$

- Choose a random unit vector $x \in \mathbb{R}^{n}$.
- Output $A^{q} x$, renormalized to unit vector.

$$
x_{t+1}=A x_{t} /\left\|A x_{t}\right\| \text { for } t=0, \ldots, q-1
$$

- Suppose A has eigenvectors v_{1}, \ldots, v_{n}, eigenvalues $\lambda_{1}>\lambda_{2} \geq \cdots \lambda_{n} \geq 0$.
- Start with $x_{0}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$.
- After q iterations,

$$
A^{q} x_{0}=\sum_{i} \lambda_{i}^{q} \alpha_{i} v_{i} \propto v_{1}+\sum_{i \geq 2}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{q} \frac{\alpha_{i}}{\alpha_{1}} v_{i}
$$

- For $q \geq \log _{\lambda_{1} / \lambda_{2}} \frac{d}{\epsilon \alpha_{1}}$, have $A^{q} X$ proportional to $v_{1} \pm O(\epsilon)$.

$$
q=O\left(\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}} \log n\right)
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

- What conditions on G will cause this to converge to within ϵ ?

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

- What conditions on G will cause this to converge to within ϵ ?
- G must make progress at the beginning

$$
\left|G_{1}\right| \leq\left(\lambda_{1}-\lambda_{2}\right) \frac{1}{\sqrt{d}}
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

- What conditions on G will cause this to converge to within ϵ ?
- G must make progress at the beginning
- G must not perturb by ϵ at the end.

$$
\left|G_{1}\right| \leq\left(\lambda_{1}-\lambda_{2}\right) \frac{1}{\sqrt{d}} \quad\|G\| \leq \epsilon\left(\lambda_{1}-\lambda_{2}\right)
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

- What conditions on G will cause this to converge to within ϵ ?
- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.

$$
\left|G_{1}\right| \leq\left(\lambda_{1}-\lambda_{2}\right) \frac{1}{\sqrt{d}}
$$

$$
\|G\| \leq \epsilon\left(\lambda_{1}-\lambda_{2}\right)
$$

Handling noise, $k=1$

- Consider the iteration

$$
\begin{array}{r}
y_{t+1}=A x_{t}+G \\
x_{t+1}=y_{t+1} /\left\|y_{t+1}\right\|
\end{array}
$$

- What conditions on G will cause this to converge to within ϵ ?
- G must make progress at the beginning
- G must not perturb by ϵ at the end.
- Looser requirements in the middle.
- Theorem: Converges to $v_{1} \pm O(\epsilon)$ if all the G satisfy

$$
\left|G_{1}\right| \leq\left(\lambda_{1}-\lambda_{2}\right) \frac{1}{\sqrt{d}} \quad\|G\| \leq \epsilon\left(\lambda_{1}-\lambda_{2}\right)
$$

in $O\left(\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \log (d / \epsilon)\right)$ iterations.

Noisy convergence proof ($k=1$)

- Use a potential-based argument to show progress at each step. Potential:

$$
\tan \theta=\frac{\sqrt{\sum_{j>1} \alpha_{j}^{2}}}{\alpha_{1}}
$$

Noisy convergence proof ($k=1$)

- Use a potential-based argument to show progress at each step. Potential:

$$
\tan \theta=\frac{\sqrt{\sum_{j>1} \alpha_{j}^{2}}}{\alpha_{1}}
$$

- With no noise:

$$
\tan \theta_{t+1}=\frac{\sqrt{\sum_{j>1} \lambda_{j}^{2} \alpha_{j}^{2}}}{\lambda_{1} \alpha_{1}} \leq \frac{\lambda_{2}}{\lambda_{1}} \tan \theta_{t}
$$

Noisy convergence proof ($k=1$)

- Use a potential-based argument to show progress at each step. Potential:

$$
\tan \theta=\frac{\sqrt{\sum_{j>1} \alpha_{j}^{2}}}{\alpha_{1}}
$$

- With no noise:

$$
\tan \theta_{t+1}=\frac{\sqrt{\sum_{j>1} \lambda_{j}^{2} \alpha_{j}^{2}}}{\lambda_{1} \alpha_{1}} \leq \frac{\lambda_{2}}{\lambda_{1}} \tan \theta_{t}
$$

- With noise G satisfying the conditions $\left(\left|G_{1}\right|,\|G\|\right.$ small enough),

$$
\tan \theta_{t+1} \leq \frac{\lambda_{2} \sqrt{\sum_{j>1} \alpha_{j}^{2}}+\|G\|}{\lambda_{1} \alpha_{1}-\left|G_{1}\right|}
$$

Noisy convergence proof ($k=1$)

- Use a potential-based argument to show progress at each step. Potential:

$$
\tan \theta=\frac{\sqrt{\sum_{j>1} \alpha_{j}^{2}}}{\alpha_{1}}
$$

- With no noise:

$$
\tan \theta_{t+1}=\frac{\sqrt{\sum_{j>1} \lambda_{j}^{2} \alpha_{j}^{2}}}{\lambda_{1} \alpha_{1}} \leq \frac{\lambda_{2}}{\lambda_{1}} \tan \theta_{t}
$$

- With noise G satisfying the conditions $\left(\left|G_{1}\right|,\|G\|\right.$ small enough),

$$
\tan \theta_{t+1} \leq \frac{\lambda_{2} \sqrt{\sum_{j>1} \alpha_{j}^{2}}+\|G\|}{\lambda_{1} \alpha_{1}-\left|G_{1}\right|} \leq \epsilon+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / 4} \tan \theta_{t}
$$

Noisy convergence proof (general k)

Noisy convergence proof (general k)

- With no noise:

$$
\tan \theta_{t+1}=\sqrt{\frac{\sum_{j>k} \lambda_{j}^{2} \alpha_{j}^{2}}{\sum_{j \leq k} \lambda_{j}^{2} \alpha_{j}^{2}}}
$$

Noisy convergence proof (general k)

- Use "principal angle" θ from X to U let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors, $V=U^{\perp}$.

$$
\tan \theta:=\frac{\left\|V^{\top} X\right\|}{\left\|U^{\top} X\right\|}=\sqrt{\frac{\sum_{j>k} \alpha_{j}^{2}}{\sum_{j \leq k} \alpha_{j}^{2}}}
$$

- With no noise:

$$
\tan \theta_{t+1}=\sqrt{\frac{\sum_{j>k} \lambda_{j}^{2} \alpha_{j}^{2}}{\sum_{j \leq k} \lambda_{j}^{2} \alpha_{j}^{2}}} \leq \frac{\lambda_{k+1}}{\lambda_{k}} \tan \theta_{t}
$$

Noisy convergence proof (general k)

- Use "principal angle" θ from X to U let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors, $V=U^{\perp}$.

$$
\tan \theta:=\frac{\left\|V^{\top} X\right\|}{\left\|U^{\top} X\right\|}=\sqrt{\frac{\sum_{j>k} \alpha_{j}^{2}}{\sum_{j \leq k} \alpha_{j}^{2}}}
$$

- With no noise:

$$
\tan \theta_{t+1}=\sqrt{\frac{\sum_{j>k} \lambda_{j}^{2} \alpha_{j}^{2}}{\sum_{j \leq k} \lambda_{j}^{2} \alpha_{j}^{2}}} \leq \frac{\lambda_{k+1}}{\lambda_{k}} \tan \theta_{t}
$$

- With noise G "small enough" we will have

$$
\tan \theta_{t+1} \leq \frac{\lambda_{k+1}\left\|V^{\top} X\right\|+\|G\|}{\lambda_{k}\left\|U^{T} X\right\|-\left\|U^{T} G\right\|}
$$

Noisy convergence proof (general k)

- With no noise:

$$
\tan \theta_{t+1}=\sqrt{\frac{\sum_{j>k} \lambda_{j}^{2} \alpha_{j}^{2}}{\sum_{j \leq k} \lambda_{j}^{2} \alpha_{j}^{2}}} \leq \frac{\lambda_{k+1}}{\lambda_{k}} \tan \theta_{t}
$$

- With noise G "small enough" we will have

$$
\tan \theta_{t+1} \leq \frac{\lambda_{k+1}\left\|V^{\top} X\right\|+\|G\|}{\lambda_{k}\left\|U^{\top} X\right\|-\left\|U^{\top} G\right\|} \leq \epsilon+\left(\frac{\lambda_{k+1}}{\lambda_{k}}\right)^{1 / 4} \tan \theta_{t}
$$

Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{\top} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \frac{1}{\sqrt{k d}}
$$

then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{\top} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \frac{1}{\sqrt{k d}}
$$

then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- Can also iterate on a $p>k$ dimensional subspace.

Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times p}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \frac{\sqrt{p}-\sqrt{k-1}}{\sqrt{d}}
$$

then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- Can also iterate on a $p>k$ dimensional subspace.
- k th singular value of X is typically $\frac{\sqrt{\bar{p}}-\sqrt{k-1}}{\sqrt{d}}$.

Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- Can also iterate on a $p>k$ dimensional subspace.
- k th singular value of X is typically $\frac{\sqrt{\bar{p}}-\sqrt{k-1}}{\sqrt{d}}$.

Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- Can also iterate on a $p>k$ dimensional subspace.
- k th singular value of X is typically $\frac{\sqrt{\bar{p}}-\sqrt{k-1}}{\sqrt{d}}$.
- If G is fairly uniform, expect $\left\|U^{T} G\right\| \approx\|G\| \sqrt{\frac{k}{d}}$

Noisy power method lemma

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- Can also iterate on a $p>k$ dimensional subspace.
- k th singular value of X is typically $\frac{\sqrt{\bar{p}}-\sqrt{k-1}}{\sqrt{d}}$.
- If G is fairly uniform, expect $\left\|U^{T} G\right\| \approx\|G\| \sqrt{\frac{k}{d}}$

- First condition is the main one, iteration will converge to to $\frac{\|G\|}{\lambda_{k}-\lambda_{k+1}}$.

Conjectures to remove eigengap

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

at each iteration then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- If $\lambda_{k}=\lambda_{k+1}$, our theorem is useless.

Conjectures to remove eigengap

Conjecture (Can depend on $\lambda_{k}-\lambda_{2 k+1}$ eigengap)

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{2 k+1}\right) \quad 5\left\|U^{\top} G\right\| \leq\left(\lambda_{k}-\lambda_{2 k+1}\right) \sqrt{\frac{k}{d}}
$$

at each iteration then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{2 k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- If $\lambda_{k}=\lambda_{k+1}$, our theorem is useless.
- If X is $n \times p$, maybe the relevant eigengap is $\lambda_{k}-\lambda_{p+1}$?

Conjectures to remove eigengap

Conjecture (Can depend on $\lambda_{k}-\lambda_{2 k+1}$ eigengap)

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{2 k+1}\right) \quad 5\left\|U^{\top} G\right\| \leq\left(\lambda_{k}-\lambda_{2 k+1}\right) \sqrt{\frac{k}{d}}
$$

at each iteration then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{2 k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- If $\lambda_{k}=\lambda_{k+1}$, our theorem is useless.
- If X is $n \times p$, maybe the relevant eigengap is $\lambda_{k}-\lambda_{p+1}$?
- But do we need any eigengap at all?

Conjectures to remove eigengap

- Do we need any eigengap at all?

Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U :

$$
\left\|\left(I-X X^{T}\right) U\right\| \leq \epsilon
$$

Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U : $\quad\left\|\left(I-X X^{T}\right) U\right\| \leq \epsilon$.
- Not clear for X to approximate $A:\left\|\left(I-X X^{\top}\right) A\right\| \leq \lambda_{k+1}+\epsilon$.

Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U : $\quad\left\|\left(I-X X^{T}\right) U\right\| \leq \epsilon$.
- Not clear for X to approximate $A:\left\|\left(I-X X^{T}\right) A\right\| \leq \lambda_{k+1}+\epsilon$.
- This is weaker: doesn't imply Frobenius approximation.

Conjectures to remove eigengap

- Do we need any eigengap at all?
- Yes for X to approximate U : $\quad\left\|\left(I-X X^{\top}\right) U\right\| \leq \epsilon$.
- Not clear for X to approximate A : $\left\|\left(I-X X^{T}\right) A\right\| \leq \lambda_{k+1}+\epsilon$.
- This is weaker: doesn't imply Frobenius approximation.

Conjecture

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have top k eigenvectors of A. If

$$
\|G\| \leq \epsilon \quad\left\|U^{\top} G\right\| \leq \epsilon \sqrt{\frac{k}{d}}
$$

at each iteration then after $L=O\left(\frac{\lambda_{k+1}}{\epsilon} \log (d / \epsilon)\right)$ iterations,

$$
\left\|\left(I-X_{L} X_{L}^{T}\right) A\right\| \leq \lambda_{k+1}+O(\epsilon)
$$

Review of our theorem

Theorem

Consider running the noisy power method on a random starting space $X_{0} \in \mathbb{R}^{d \times 2 k}$. Let $U \in \mathbb{R}^{d \times k}$ have the top k eigenvectors of A. If

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{\top} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

at each iteration then after $L=O\left(\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k+1}} \log (d / \epsilon)\right)$ iterations,

$$
\tan \Theta\left(X_{L}, U\right) \lesssim \epsilon \Longleftrightarrow\left\|\left(I-X_{L} X_{L}^{T}\right) U\right\| \lesssim \epsilon
$$

- Gaussian G : if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ then $\|G\| \lesssim \sqrt{d} \sigma,\left\|U^{T} G\right\| \lesssim \sqrt{k} \sigma$ with high probability. Hence $\sigma=\epsilon\left(\lambda_{k}-\lambda_{k+1}\right) / \sqrt{d}$ is tolerable.

Outline

(1) Applications

Applications of the Noisy Power Method

- Will discuss two applications of our theorem:
- Privacy-preserving spectral analysis [Hardt-Roth '13]
- Streaming PCA [Mitliagkas-Caramanis-Jain '13]
- Both cases, get improved bound.

Privacy-preserving spectral analysis

- Can we find differentially private approximations to the top eigenvectors?

Privacy-preserving spectral analysis

- Can we find differentially private approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)

Privacy-preserving spectral analysis

- Can we find differentially private approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
- Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)

Privacy-preserving spectral analysis

- Can we find differentially private approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
- Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)
- Don't want to reveal whether x and y are friends.

Privacy-preserving spectral analysis

- Can we find differentially private approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
- Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)
- Don't want to reveal whether x and y are friends.
- Randomized algorithm f is (ϵ, δ) differentially private if: for any A, A^{\prime} with $\left\|A-A^{\prime}\right\| \leq 1$, and for any subset S of the range,

$$
\operatorname{Pr}[f(A) \in S] \leq e^{\epsilon} \operatorname{Pr}\left[f\left(A^{\prime}\right) \in S\right]+\delta
$$

Privacy-preserving spectral analysis

- Can we find differentially private approximations to the top eigenvectors?
- Think of A as related to adjacency matrix for graph (web links, social network, etc.)
- Top eigenvectors are useful to study and reveal (e.g. PageRank, Cheever cuts)
- Don't want to reveal whether x and y are friends.
- Randomized algorithm f is (ϵ, δ) differentially private if: for any A, A^{\prime} with $\left\|A-A^{\prime}\right\| \leq 1$, and for any subset S of the range,

$$
\operatorname{Pr}[f(A) \in S] \leq e^{\epsilon} \operatorname{Pr}\left[f\left(A^{\prime}\right) \in S\right]+\delta
$$

- Typical dependence is $\operatorname{poly}\left(\frac{1}{\epsilon} \log (1 / \delta)\right)$.

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:
- Suppose A represents random graph with a planted sparse cut.

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:
- Suppose A represents random graph with a planted sparse cut.
- Then the (ϵ, δ)-differentially private result is very close to U.

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:
- Suppose A represents random graph with a planted sparse cut.
- Then the (ϵ, δ)-differentially private result is very close to U.
- [Hardt-Roth: $k=1$ case.]

Privacy-preserving spectral analysis

- Hardt-Roth '12: Noisy power method $X \rightarrow A X+G$ preserves privacy if $G_{i, j} \sim N\left(0, \sigma^{2}\right)$ for large enough σ at each stage.
- Apply our theorem to see how well the result approximates U.
- Complicated expression, but for example:
- Suppose A represents random graph with a planted sparse cut.
- Then the (ϵ, δ)-differentially private result is very close to U.
- [Hardt-Roth: $k=1$ case.]
- Added bonus: algorithm uses sparsity of A.

Streaming PCA

- Can take samples $x_{1}, x_{2}, \ldots \sim \mathcal{D}$ in \mathbb{R}^{d}.

Streaming PCA

- Can take samples $x_{1}, x_{2}, \ldots \sim \mathcal{D}$ in \mathbb{R}^{d}.
- Want to estimate covariance matrix $\Sigma=\mathbb{E}\left[x x^{\top}\right]$.

Streaming PCA

- Can take samples $x_{1}, x_{2}, \ldots \sim \mathcal{D}$ in \mathbb{R}^{d}.
- Want to estimate covariance matrix $\Sigma=\mathbb{E}\left[x x^{\top}\right]$.
- Easy answer is the empirical covariance:

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

Streaming PCA

- Can take samples $x_{1}, x_{2}, \ldots \sim \mathcal{D}$ in \mathbb{R}^{d}.
- Want to estimate covariance matrix $\Sigma=\mathbb{E}\left[x x^{\top}\right]$.
- Easy answer is the empirical covariance:

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

- But uses n^{2} space. Can we use $O(n k)$ space if Σ is nearly low rank?

Streaming PCA

- Can take samples $x_{1}, x_{2}, \ldots \sim \mathcal{D}$ in \mathbb{R}^{d}.
- Want to estimate covariance matrix $\Sigma=\mathbb{E}\left[x x^{\top}\right]$.
- Easy answer is the empirical covariance:

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

- But uses n^{2} space. Can we use $O(n k)$ space if Σ is nearly low rank?
- [Mitliagkas-Caramanis-Jain '13] Yes, using more samples. Can do one iteration of the power method in small space:

$$
X_{t+1}=\widehat{\Sigma} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} X
$$

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model
- Gaussian, where Σ has k eigenvalues $\lambda_{1}, \ldots, \lambda_{k}=\Theta(1)$ perturbed by Gaussian noise $N\left(0, \sigma^{2}\right)$ in each coordinate.

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model
- Gaussian, where Σ has k eigenvalues $\lambda_{1}, \ldots, \lambda_{k}=\Theta(1)$ perturbed by Gaussian noise $N\left(0, \sigma^{2}\right)$ in each coordinate.
- $\widetilde{O}\left(\frac{1+\sigma^{6}}{\epsilon^{2}} d k\right)$ samples suffice.

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model
- Gaussian, where Σ has k eigenvalues $\lambda_{1}, \ldots, \lambda_{k}=\Theta(1)$ perturbed by Gaussian noise $N\left(0, \sigma^{2}\right)$ in each coordinate.
- $\widetilde{O}\left(\frac{1+\sigma^{6}}{\epsilon^{2}} d k\right)$ samples suffice.
- Factor k improvement on [Mitliagkas-Caramanis-Jain '13]

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model
- Gaussian, where Σ has k eigenvalues $\lambda_{1}, \ldots, \lambda_{k}=\Theta(1)$ perturbed by Gaussian noise $N\left(0, \sigma^{2}\right)$ in each coordinate.
- $\widetilde{O}\left(\frac{1+\sigma^{6}}{\epsilon^{2}} d k\right)$ samples suffice.
- Factor k improvement on [Mitliagkas-Caramanis-Jain '13]
- But also applies to less nice cases:

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model
- Gaussian, where Σ has k eigenvalues $\lambda_{1}, \ldots, \lambda_{k}=\Theta(1)$ perturbed by Gaussian noise $N\left(0, \sigma^{2}\right)$ in each coordinate.
- $\widetilde{O}\left(\frac{1+\sigma^{6}}{\epsilon^{2}} d k\right)$ samples suffice.
- Factor k improvement on [Mitliagkas-Caramanis-Jain '13]
- But also applies to less nice cases:
- Strong whenever \mathcal{D} has exponential concentration.

Streaming PCA

- Algorithm is: in every iteration, take a bunch of samples to move in correct direction.
- How many iterations, and how many samples per iteration?
- This is then a noisy power method problem:

$$
X_{t+1}=\Sigma x+(\widehat{\Sigma}-\Sigma) X
$$

- Just need to bound norm of $(\widehat{\Sigma}-\Sigma) X$ in each iteration.
- Nice case: spiked covariance model
- Gaussian, where Σ has k eigenvalues $\lambda_{1}, \ldots, \lambda_{k}=\Theta(1)$ perturbed by Gaussian noise $N\left(0, \sigma^{2}\right)$ in each coordinate.
- $\widetilde{O}\left(\frac{1+\sigma^{6}}{\epsilon^{2}} d k\right)$ samples suffice.
- Factor k improvement on [Mitliagkas-Caramanis-Jain '13]
- But also applies to less nice cases:
- Strong whenever \mathcal{D} has exponential concentration.
- Nontrivial result for general distributions.

Recap and open questions

- Noisy power method is a useful tool.

Recap and open questions

- Noisy power method is a useful tool.
- Can show $\tan \Theta\left(X_{L}, U\right) \leq \epsilon$ if

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

Recap and open questions

- Noisy power method is a useful tool.
- Can show $\tan \Theta\left(X_{L}, U\right) \leq \epsilon$ if

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

- Can we apply it to more problems?

Recap and open questions

- Noisy power method is a useful tool.
- Can show $\tan \Theta\left(X_{L}, U\right) \leq \epsilon$ if

$$
5\|G\| \leq \epsilon\left(\lambda_{k}-\lambda_{k+1}\right) \quad 5\left\|U^{T} G\right\| \leq\left(\lambda_{k}-\lambda_{k+1}\right) \sqrt{\frac{k}{d}}
$$

- Can we apply it to more problems?
- Can we prove a theorem without the eigengap?

