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The Dicrete Fourier Transform

Discrete Fourier transform: given x ∈ Cn, find

x̂i =
∑

xjω
ij

Fundamental tool
I Compression (audio, image, video)
I Signal processing
I Data analysis
I ...

FFT: O(n log n) time.
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Sparse Fourier Transform

Often the Fourier transform is dominated by a small number of
“peaks”

I Precisely the reason to use for compression.

If most of mass in k locations, can we compute FFT faster?
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Previous work

Boolean cube: [KM92], [GL89]. What about C?
[Mansour-92]: kc logc n.
Long list of other work [GGIMS02, AGS03, Iwen10, Aka10]
Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log4 n.

I All have poor constants, many logs.
I Need n/k > 40,000 or ω(log3 n) to beat FFTW.
I Our goal: beat FFTW for smaller n/k in theory and practice.
I Result: n/k > 2,000 or ω(log n) to beat FFTW.
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Our result

Simple, practical algorithm with good constants.
Compute the k -sparse Fourier transform in O(

√
kn log3/2 n) time.

Get x̂ ′ with approximation error

‖x̂ ′ − x̂‖2∞ ≤
1
k
‖x̂ − x̂k‖22

If x̂ is sparse, recover it exactly.
Caveats:

I Additional ‖x‖2/nΘ(1) error.
I n must be a power of 2.
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Structure of this section

If x̂ is k -sparse with known support S, find x̂S exactly in
O(k log2 n) time.

In general, estimate x̂ approximately in Õ(
√

nk) time.
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Intuition
Original signal (time) Original signal (freq)

Cutoff signal (time) Cutoff signal (freq)

Cutoff signal (time) Cutoff signal, subsampled (freq)
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n-dimensional DFT

n-dimensional DFT
of first B terms.

B-dimensional DFT
of first B terms.



Framework
Cutoff signal (time) Cutoff subsampled signals (freq)

“Hashes” into B buckets in B log B time.
Issues:

I “Hashing” needs a random hash function
F Access x ′t = ω−atxσt , so x̂ ′t = x̂σ−1t+a [GMS-05]

I Collisions
F Have B > 4k , repeat O(log n) times and take median. [Count-Sketch,

CCF02]
I Leakage
I Finding the support. [Porat-Strauss-12], talk at 9:45am.
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Leakage
Cutoff signal (time) Cutoff, subsampled signals (freq)

Let Fi =

{
1 i < B
0 otherwise

be the “boxcar” filter. (Used in

[GGIMS02,GMS05])
Observe

DFT(F ·x ,B) = subsample(DFT(F ·x ,n),B) = subsample(F̂∗x̂ ,B).

DFT F̂ of boxcar filter is sinc, decays as 1/i .
Need a better filter F !
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Filters
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Observe subsample(F̂ ∗ x̂ ,B) in O(B log B) time.
Needs for F :

I supp(F ) ∈ [0,B]
I |F̂ | < δ = 1/nΘ(1) except “near” 0.
I F̂ ≈ 1 over [−n/2B,n/2B].

Gaussians:
I Standard deviation σ = B/

√
log n

B ·
√

log n

I DFT has σ̂ = (n/B)
√

log n

(n/B)/
√

log n

I Nontrivial leakage into O(log n) buckets.
I But likely trivial contribution to correct bucket.
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Filters
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Observe subsample(F̂ ∗ x̂ ,B) in O(B log B) time.
Needs for F :

I supp(F ) ∈ [0,B log n]
I |F̂ | < δ = 1/nΘ(1) except “near” 0.
I F̂ ≈ 1 over [−n/2B,n/2B].

Gaussians:
I Standard deviation σ =�����B/

√
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I Nontrivial leakage into 0 buckets.
I But likely trivial contribution to correct bucket.
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Filters
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Let G be Gaussian with σ = B
√

log n
H be box-car filter of length n/B.

Use F̂ = Ĝ ∗ H.
I F = G · Ĥ, so supp(F ) ⊂ [0,B log n].
I |F̂ | < 1/nΘ(1) outside −n/B,n/B.
I |F̂ | = 1± 1/nΘ(1) within n/2B,n/B.

Hashes correctly to one bucket, leaks to at most 1 bucket.
Replace Gaussians with “Dolph-Chebyshev window functions”:
factor 2 improvement.
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Filters
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Algorithm to estimate x̂S

For O(log n) different permutations of x̂ , compute
subsample(F̂ ∗ x̂ ,B).
Estimate each xi as median of values it maps to.

To find S: choose all that map to the top 2k values.
nk/B candidates to update at each iteration: total

(
nk
B

+ B log n) log n =
√

nk log3/2 n

time.
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Algorithm in general
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Empirical Performance: runtime
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Compare to FFTW, previous best sublinear algorithm (AAFFT).

Offer a heuristic that improves time to Õ(n1/3k2/3).
I Filter from [Mansour ’92].
I Can’t rerandomize, might miss elements.

Faster than FFTW for n/k > 2,000.
Faster than AAFFT for n/k < 1,000,000.
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Empirical Performance: noise
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Just like in Count-Sketch, algorithm is noise tolerant.
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Conclusions

Roughly: fastest algorithm for n/k ∈ [2× 103,106].
Recent improvements [HIKP12b?]

I O(k log n) for exactly sparse x̂
I O(k log n

k log n) for approximation.
I Beats FFTW for n/k > 400 (in the exact case).

Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform 2012-01-19 19 / 19



Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform 2012-01-19 20 / 19


	Introduction
	Algorithm
	Experiments
	Appendix

