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The Dicrete Fourier Transform

@ Discrete Fourier transform: given x € C”, find

?j = Zijij

@ Fundamental tool

Compression (audio, image, video)
Signal processing

Data analysis

v

v vy

@ FFT: O(nlog n) time.

— Sampled Sound Data
— FFT Magnitude
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Sparse Fourier Transform

— Sampled Sound Data
— FFT Magnitude
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@ Often the Fourier transform is dominated by a small number of
“peaks”

» Precisely the reason to use for compression.
@ If most of mass in k locations, can we compute FFT faster?
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Previous work

@ Boolean cube: [KM92], [GL89]. What about C?
@ [Mansour-92]: k¢log® n.
@ Long list of other work [GGIMS02, AGS03, Iwen10, Aka10]

@ Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log* .

» All have poor constants, many logs.

» Need n/k > 40,000 or w(log® n) to beat FFTW.

» Our goal: beat FFTW for smaller n/k in theory and practice.
» Result: n/k > 2,000 or w(log n) to beat FFTW.

Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform Sk P20k 5 ) 6/19



Our result

Simple, practical algorithm with good constants.
Compute the k-sparse Fourier transform in O(v/knlog®2 n) time.
Get x’ with approximation error

~ 1
=12 = o2
IX" = X% = 11X = Xdll2

If X is sparse, recover it exactly.
Caveats:

» Additional || x||2/n®") error.
» nmust be a power of 2.
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Structure of this section

o If X is k-sparse with known support S, find Xs exactly in
O(klog? n) time.

@ In general, estimate x approximately in (N)(\/ nk) time.
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Intuition

Original sign:

Original signal (freq)

Cutof signal (time)

Cutoff signa (frea)

Cutof signal (time)

Cutoff signal, subsampled (freq)

NN

n-dimensional DFT

n-dimensional DFT
of first B terms.

B-dimensional DFT
of first B terms.
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Framework

Cutof signal (time) Cutoff subsampled signals (frea)

@ “Hashes” into B buckets in Blog B time.
@ Issues:
» “Hashing” needs a random hash function
* Access X = w % Xyt, 50 X't = X, —1,,, [GMS-05]
» Collisions
* Have B > 4k, repeat O(log n) times and take median. [Count-Sketch,
CCF02]
» Leakage
» Finding the support. [Porat-Strauss-12], talk at 9:45am.
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Leakage

Cutoff signal (time) Cutoff, signals (freq)

1 i<B
o LetF _{ 0 otherwise
[GGIMS02,GMS05])

@ Observe

be the “boxcar” filter. (Used in

DFT(F-x, B) = subsample(DFT(F-x,n), B) = subsample(lt'*?, B).

@ DFT F of boxcar filter is sinc, decays as 1/i.
@ Need a better filter F!
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Filters

Filter (time) Filter (freq)

20 0 0 0 00 B

@ Observe subsample(F « X, B) in O(Blog B) time.
@ Needs for F:

> supp(F) € [0, B]

» |F| <6 =1/n°" except “near” 0.

» F~1over [-n/2B, n/28B].
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Filters

Filter (time) Filter (freq)

!
LJ LJJ

@ Observe subsample(F « X, B) in O(Blog B) time.
@ Needs for F:

> supp(F) € [0, B]

» |F| <6 =1/n°" except “near” 0.

» F~1over [-n/2B, n/28B]|.
@ Gaussians:

» Standard deviation o = B/+/logn

» DFT has o = (n/B)+/logn

» Nontrivial leakage into O(log n) buckets.

» But likely trivial contribution to correct bucket.
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Filters

Filter (time) Filter (freq)

@ Observe subsample(F « X, B) in O(Blog B) time.
@ Needs for F:

> supp(F) € [0, Blog n

> |F| < 6 =1/n°) except “near” 0.

> Frt over [-n/2B,n/28B.

° Gaussians:

» Standard deviation ¢ = B/ /togn B - /logn

> DFT has & = (n/B)y/og n (n/B)//log n

» Nontrivial leakage into 0 buckets.

» But likely trivial contribution to correct bucket.
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Filters

Filter (time) Filter (freq)

. " il - 1 wJIIIIIII
@ Let G be Gaussian with o = By/logn

H be box-car filter of length n/B.
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Filters

Filter (time) N Filter (freq)

1L I Y B |

@ Let G be Gaussian with o = By/logn
@ H be box-car filter of length n/B.
eUseF=G * H.
» F=G-H,so supp(F) c [0, Blog n.
> |F| < 1/n°() outside —n/B, n/B.
» |F| =1+1/n°" within n/2B, n/B.
@ Hashes correctly to one bucket, leaks to at most 1 bucket.

@ Replace Gaussians with “Dolph-Chebyshev window functions”:
factor 2 improvement.
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Algorithm to estimate Xs

@ For O(log n) different permutations of X, compute

~

subsample(F x X, B).
@ Estimate each x; as median of values it maps to.
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Algorithm to estimate Xs
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@ For O(log n) different permutations of X, compute

~

subsample(F x X, B).
@ Estimate each x; as median of values it maps to.
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Algorithm to estimate Xs
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@ For O(log n) different permutations of X, compute
subsample(F x X, B).
@ Estimate each x; as median of values it maps to.
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Algorithm to estimate Xs

@ For O(log n) different permutations of X, compute

~

subsample(F x X, B).
@ Estimate each x; as median of values it maps to.
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Algorithm in general

@ For O(log n) different permutations of X, compute

~

subsample(F x X, B).
@ Estimate each x; as median of values it maps to.
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Algorithm in general

@ For O(log n) different permutations of X, compute
subsample(F x X, B).

@ Estimate each x; as median of values it maps to.

@ To find S: choose all that map to the top 2k values.
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Algorithm in general

@ For O(log n) different permutations of X, compute
subsample(F x X, B).

@ Estimate each x; as median of values it maps to.

@ To find S: choose all that map to the top 2k values.

@ nk/B candidates to update at each iteration: total

1

(n—Bk-i-BIogn)Iogn: Vnklog®/? n

time.

Hassanieh, Indyk, Katabi, and Price (MIT) Simple and Practical Algorithm for the Sparse Fourier Transform S} Xk ) 15/19



Empirical Performance: runtime

Run Time vs Signal Size (k=50) Run Time vs Signal Sparsity (n=2?)
10 SFFT1.0 -
sFFT 2.0 10
i R
1 [ FrTWoPT
-~ AAFFT 0.9 o
] H
2 2 1
g o1 e
e = : — .
c c N
2o £ o1 b SFFT1.0
sFFT 2.0
i R
0.001 FFTW OPT
AAFFT 09
001 . . . . . . .
S g5 16 g7 S 18 W g gm ,m g g5 g6 » o » 2 10 o o
Signal Size (n) Sparsity (K)

@ Compare to FFTW, previous best sublinear algorithm (AAFFT).

e Offer a heuristic that improves time to O(n'/3k%/3).

» Filter from [Mansour '92].
» Can’t rerandomize, might miss elements.

@ Faster than FFTW for n/k > 2,000.
@ Faster than AAFFT for n/k < 1,000,000.
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Empirical Performance: noise

vs SNR (n=2%, k=50)
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@ Just like in Count-Sketch, algorithm is noise tolerant.
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Conclusions

@ Roughly: fastest algorithm for n/k € [2 x 103, 10°].
@ Recent improvements [HIKP12b?]

» O(klog n) for exactly sparse x

» O(klog % log n) for approximation.

» Beats FFTW for n/k > 400 (in the exact case).
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