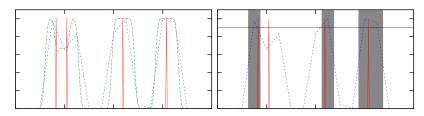
Simple and Practical Algorithm for the Sparse **Fourier Transform**

Haitham Hassanieh Piotr Indyk Dina Katabi **Eric Price** MIT

2012-01-19



Outline

Introduction

2 Algorithm

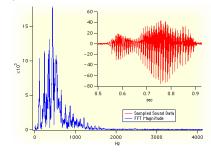
3 Experiments

The Dicrete Fourier Transform

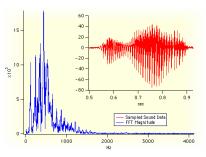
Discrete Fourier transform: given $x \in \mathbb{C}^n$, find

$$\widehat{x}_i = \sum x_j \omega^{ij}$$

- Fundamental tool
 - Compression (audio, image, video)
 - Signal processing
 - Data analysis
- FFT: *O*(*n* log *n*) time.



Sparse Fourier Transform



- Often the Fourier transform is dominated by a small number of "peaks"
 - Precisely the reason to use for compression.
- If most of mass in k locations, can we compute FFT faster?

Previous work

- Boolean cube: [KM92], [GL89]. What about C?
- [Mansour-92]: k^c log^c n.
- Long list of other work [GGIMS02, AGS03, Iwen10, Aka10]
- Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log⁴ n.
 - All have poor constants, many logs.
 - ▶ Need n/k > 40,000 or $\omega(\log^3 n)$ to beat FFTW.
 - ▶ Our goal: beat FFTW for smaller n/k in theory and practice.
 - ▶ Result: n/k > 2,000 or $\omega(\log n)$ to beat FFTW.

Our result

- Simple, practical algorithm with good constants.
- Compute the k-sparse Fourier transform in $O(\sqrt{kn}\log^{3/2} n)$ time.
- Get $\widehat{x'}$ with approximation error

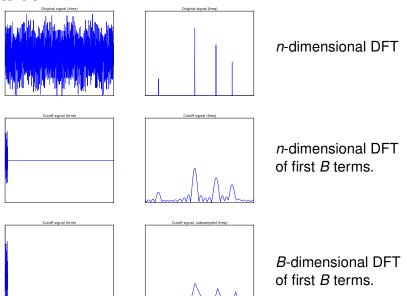
$$\|\widehat{x'} - \widehat{x}\|_{\infty}^2 \le \frac{1}{k} \|\widehat{x} - \widehat{x_k}\|_2^2$$

- If \hat{x} is sparse, recover it exactly.
- Caveats:
 - ▶ Additional $||x||_2/n^{\Theta(1)}$ error.
 - n must be a power of 2.

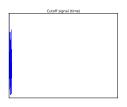
Structure of this section

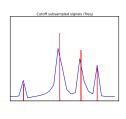
- If \hat{x} is k-sparse with known support S, find \hat{x}_S exactly in $O(k \log^2 n)$ time.
- In general, estimate \hat{x} approximately in $\tilde{O}(\sqrt{nk})$ time.

Intuition



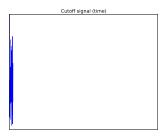
Framework

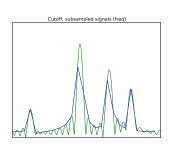




- "Hashes" into B buckets in B log B time.
- Issues:
 - "Hashing" needs a random hash function
 - * Access $x'_t = \omega^{-at} x_{\sigma t}$, so $\widehat{x'}_t = \widehat{x}_{\sigma^{-1}t+a}$ [GMS-05]
 - Collisions
 - ★ Have B > 4k, repeat $O(\log n)$ times and take median. [Count-Sketch, CCF02]
 - Leakage
 - Finding the support. [Porat-Strauss-12], talk at 9:45am.

Leakage



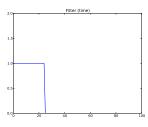


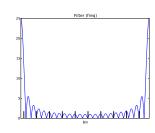
- Let $F_i = \begin{cases} 1 & i < B \\ 0 & \text{otherwise} \end{cases}$ [GGIMS02,GMS05])
 - be the "boxcar" filter. (Used in

Observe

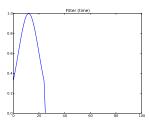
$$\mathsf{DFT}(F \cdot x, B) = \mathsf{subsample}(\mathsf{DFT}(F \cdot x, n), B) = \mathsf{subsample}(\widehat{F} * \widehat{x}, B).$$

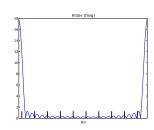
- DFT \hat{F} of boxcar filter is sinc, decays as 1/i.
- Need a better filter F!



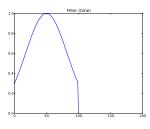


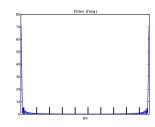
- Observe subsample($\widehat{F} * \widehat{x}, B$) in $O(B \log B)$ time.
- Needs for F:
 - supp(F) ∈ [0, B]
 - $|\widehat{F}| < \delta = 1/n^{\Theta(1)}$ except "near" 0.
 - $\widehat{F} \approx 1 \text{ over } [-n/2B, n/2B].$



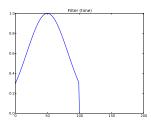


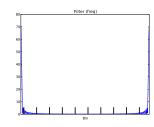
- Observe subsample($\widehat{F} * \widehat{x}, B$) in $O(B \log B)$ time.
- Needs for F:
 - supp(F) ∈ [0, B]
 - $|\widehat{F}| < \delta = 1/n^{\Theta(1)}$ except "near" 0.
 - $\widehat{F} \approx 1 \text{ over } [-n/2B, n/2B].$
- Gaussians:
 - Standard deviation $\sigma = B/\sqrt{\log n}$
 - ▶ DFT has $\hat{\sigma} = (n/B) \sqrt{\log n}$
 - Nontrivial leakage into O(log n) buckets.
 - But likely trivial contribution to correct bucket.



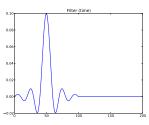


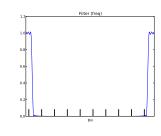
- Observe subsample($\widehat{F} * \widehat{x}, B$) in $O(B \log B)$ time.
- Needs for F:
 - supp(F) ∈ [0, B log n]
 - $|\hat{F}| < \delta = 1/n^{\Theta(1)}$ except "near" 0.
 - $ightharpoonup \vec{F} \approx 1 \text{ over } [-n/2B, n/2B].$
- Gaussians:
 - ► Standard deviation $\sigma = B/\sqrt{\log n} B \cdot \sqrt{\log n}$
 - ▶ DFT has $\hat{\sigma} = (n/B) \sqrt{\log n} (n/B) / \sqrt{\log n}$
 - Nontrivial leakage into 0 buckets.
 - But likely trivial contribution to correct bucket.



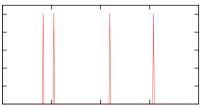


- Let G be Gaussian with $\sigma = B\sqrt{\log n}$
- H be box-car filter of length n/B.

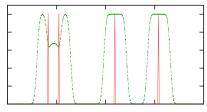




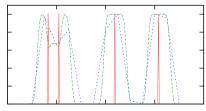
- Let G be Gaussian with $\sigma = B\sqrt{\log n}$
- H be box-car filter of length n/B.
- Use $\widehat{F} = \widehat{G} * H$.
 - ▶ $F = G \cdot \widehat{H}$, so supp $(F) \subset [0, B \log n]$.
 - $|\widehat{F}| < 1/n^{\Theta(1)}$ outside -n/B, n/B.
 - $|\hat{F}| = 1 \pm 1/n^{\Theta(1)}$ within n/2B, n/B.
- Hashes correctly to one bucket, leaks to at most 1 bucket.
- Replace Gaussians with "Dolph-Chebyshev window functions": factor 2 improvement.



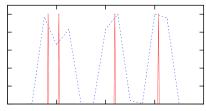
- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.



- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.

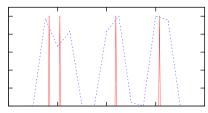


- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.



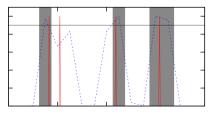
- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.

Algorithm in general



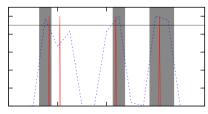
- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.

Algorithm in general



- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.
- To find S: choose all that map to the top 2k values.

Algorithm in general

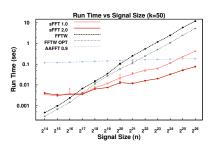


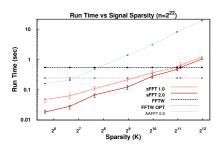
- For $O(\log n)$ different permutations of \hat{x} , compute subsample($\widehat{F} * \widehat{x}, B$).
- Estimate each x_i as median of values it maps to.
- To find S: choose all that map to the top 2k values.
- nk/B candidates to update at each iteration: total

$$(\frac{nk}{B} + B\log n)\log n = \sqrt{nk}\log^{3/2} n$$

time.

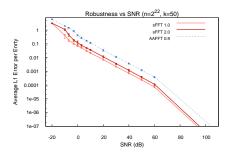
Empirical Performance: runtime





- Compare to FFTW, previous best sublinear algorithm (AAFFT).
- Offer a heuristic that improves time to $O(n^{1/3}k^{2/3})$.
 - Filter from [Mansour '92].
 - Can't rerandomize, might miss elements.
- Faster than FFTW for n/k > 2,000.
- Faster than AAFFT for n/k < 1,000,000.

Empirical Performance: noise



• Just like in Count-Sketch, algorithm is noise tolerant.

Conclusions

- Roughly: fastest algorithm for $n/k \in [2 \times 10^3, 10^6]$.
- Recent improvements [HIKP12b?]
 - $O(k \log n)$ for exactly sparse \hat{x}
 - ▶ $O(k \log \frac{n}{k} \log n)$ for approximation.
 - ▶ Beats FFTW for n/k > 400 (in the exact case).