Systems |

Linking |

Topics
m Assembly and symbol resolution
m Static linking

A Simplistic Program Translation
Scheme

m.c .
¢ ASCII source file

Translator Compiler

v
L

Translator Assembler

¢ Binary executable object file
P (memory image on disk)

Problems:

- Efficiency: small change requires complete recompilation

- Modularity: hard to share common functions (e.g. printf)
Solution:

- Static linker (or linker)

A Better Scheme Using a Linker

m.cC a.c
Translators Translators | Compiler
m.s a.s
Translators Translators | Assembler
m {) jo Separately compiled
l ¢ relocatable object files
Linker (Id)

¢ Executable object file (contains code
P and data for all functions defined inm. c

anda.c)

Translating the Example Program

Compiler driver coordinates all steps in the translation
and linking process.

m Typically included with each compilation system (e.g., gcc)

m Invokes preprocessor (cpp), compiler (ccl), assembler (as),
and linker (14).

m Passes command line arguments to appropriate phases

Example: create executable p fromm.c and a.c:

bass> gcc -02 -v -o p m.c a.c

cpp [args] m.c /tmp/ccal07630.1i

ccl /tmp/cca07630.i m.c -02 [args] -o /tmp/cca07630.s
as [args] -o /tmp/ccal076301.0 /tmp/cca07630.s
<similar process for a.c>

1d -o p [system obj files] /tmp/cca076301.0 /tmp/ccal076302.0
bass>

Compiling/Assembling

C Code Generated Assembly

double sum loop(int val) { sum_loop:

. —] pushl %ebp
int sum = 0; movl %esp, %ebp

double pi = 3.14; movl 8 (%ebp) , %ecx
int i; movl $0, %edx
cmpl $2, %ecx
jle .L4
for (i=3; i<=val; i++) { Tl S o
sum = sum + i; movl $3, %eax
} .L5:
£ Lo o addl %$eax, %edx
recurn sumrpil, addl $1, %eax
} cmpl %eax, %ecx
jge .L5
.L4:
Obtain with command pushl %edx
fildl (3esp)
gcc -0 -S sum loop.c leal 4 (%esp) , %esp
faddl .LCO
Produces file code. s popl %ebp
ret
.LCO:

.long 1374389535
.long 1074339512

Role of the Assembler

Translate assembly code into machine code
m Compiled or hand-generated

Translate data into binary codes (using directives)

Resolve symbols
m Translate into relocatable offsets

Error check
m Syntax checking
m Ensure that constants are not too large for fields

Where did the labels go?

Disassembled Object Code

08048334 <sum loop>:

8048334: 55 push %ebp

8048335: 89 e5 mov %esp, $ebp

8048337 8b 4d 08 mov 0x8 (%ebp) , $ecx

804833a: ba 00 00 00 0O mov $0x0, $edx

804833f: 83 £9 02 cmp $0x2, %ecx

8048342: 7e 13 jle 8048357 <sum loop+0x23>
8048344: ba 00 00 00 0O mov $0x0, $edx

8048349: b8 03 00 00 00 mov $0x3, Seax

804834e: 01 c2 add %eax, $edx

8048350: 83 c0 01 add $0x1, %eax

8048353: 39 c1 cmp %eax, secx

8048355: 7d £7 jge 804834e <sum loop+0xla>
8048357: 52 push $edx

8048358 db 04 24 £fildl (%esp)

804835b: 8d 64 24 04 lea 0x4 (%esp) , %esp

804835f: dc 05 50 84 04 08 faddl 0x8048450

8048365: 5d pop %ebp

8048366 c3 ret

Label Resolution

Disassembled Object Code

8048342: 7e 13 jle 8048357 <sum loop+0x23>
8048355: 7d £7 jge 804834e <sum loop+0xla>
804835f: dc 05 50 84 04 08 faddl 0x8048450

Byte relative offsets for jle and jge
m jle: 13 bytes forward
m jge: 9 bytes bytes backward (two’s comp. of xf7)

Relocatable absolute address
m faddl x8048450

How does the assembler work

One pass
m Record label definitions
m When use is found, compute offset

Two pass
m Pass 1: scan for label instantiations - creates symbol table
m Pass 2: compute offsets from label use/def

m Can detect if computed offset is too large for assembly
instruction

Symbol Table

00000000 g F .text 00000033 sum loop
/ N\
symbol type offset from symbol
(global) segment segment start name

Tracks location of symbols in object file
m Symbols that can be resolved need not be included

= Symbols that may be needed during linking must be
included

10

What Does a Linker Do?

Merges object files

m Merges multiple relocatable (.o) object files into a single executable
object file that can loaded and executed by the loader.

Resolves external references

m As part of the merging process, resolves external references.
e External reference: reference to a symbol defined in another object file.

Relocates symbols

m Relocates symbols from their relative locations in the . o files to
new absolute positions in the executable.

m Updates all references to these symbols to reflect their new

positions.
® References can be in either code or data
» code: a() ; /* reference to symbol a */

» data: int *xp=&x; /* reference to symbol x */

11

Why Linkers?

Modularity

m Program can be written as a collection of smaller source
files, rather than one monolithic mass.
m Can build libraries of common functions (more on this later)
® e.g., Math library, standard C library

Efficiency

m Time:
e Change one source file, compile, and then relink.
® No need to recompile other source files.

m Space:
e Libraries of common functions can be aggregated into a single
file...

® Yet executable files and running memory images contain only
code for the functions they actually use.

12

Executable and Linkable Format
(ELF)

Standard binary format for object files

Derives from AT&T System V Unix
m Later adopted by BSD Unix variants and Linux

One unified format for
m Relocatable object files (. o),

m Executable object files
m Shared object files (.so)

Generic name: ELF binaries

Better support for shared libraries than old a . out formats.

13

ELF Object File Format

Elf header
m Magic number, type (.0, exec, .s0),
machine, byte ordering, etc.
Program header table
m Page size, virtual addresses memory
segments (sections), segment sizes.
. text section
m Code

.data section
m Initialized (static) data

.bss section
m Uninitialized (static) data
m “Block Started by Symbol”
m “Better Save Space”
m Has section header but occupies no space

ELF header

Program header table
(required for executables)

. text section

.data section

.bss section

.symtab

.rel. text

.rel .data

.debug

Section header table
(required for relocatables)

14

ELF Object File Format (cont)

.symtab section

Symbol table
Procedure and static variable names
Section names and locations

. text section

Relocation info for . text section

Addresses of instructions that will need to
be modified in the executable

Instructions for modifying.

.data section

Relocation info for .data section

Addresses of pointer data that will need to
be modified in the merged executable

.debug section
m Info for symbolic debugging (gcc -g)

ELF header

Program header table
(required for executables)

. text section

.data section

.bss section

.symtab

.rel. text

.rel .data

.debug

Section header table
(required for relocatables)

15

Example C Program

16

Merging Relocatable Object Files
into an Executable Object File

Relocatable Object Files Executable Object File
. text 0
system code headers)
system data__| -data

system code

\ main () > . text

a()
main () . text

m.o ﬁ
- more system code

int e = 7 .data

AN

system data

int e = 7
a() text / int *ep = &e | [data
' int x = 15 | |

a.o| int *ep = & | 4ata uninitialized data .bss
int x = 1
int y .bss - symtab

.debug

17

Summary

Today
m Compilation/Assembly/Linking
= Symbol resolution and symbol tables

Next Time
m Code and data relocation
= Loading
m Libraries
= Dynamically linked libraries

18

