Computer Networks 56 (2012) 1723-1730

Contents lists available at SciVerse ScienceDirect

2 |

Mputer
Computer Networks L".-:.»if}rks

journal homepage: www.elsevier.com/locate/comnet

A secure cookie scheme

Alex X. Liu®*, Jason M. Kovacs ™!, Mohamed G. Gouda ?

2 Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824-1266, USA

b Exis Web Solutions®

€ Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712-0233, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 13 July 2010

Received in revised form 15 October 2011
Accepted 17 January 2012

Available online 31 January 2012

Keywords:

Web cookie

Web security

HTTP authentication

1. Introduction

Cookies are the primary means for web applications to authenticate HTTP requests and to
maintain client states. Many web applications (such as those for electronic commerce)
demand a secure cookie scheme. Such a scheme needs to provide the following four
services: authentication, confidentiality, integrity, and anti-replay. Several secure cookie
schemes have been proposed in previous literature; however, none of them are completely
satisfactory. In this paper, we propose a secure cookie scheme that is effective, efficient,
and easy to deploy. In terms of effectiveness, our scheme provides all of the above four
security services. In terms of efficiency, our scheme does not involve any database lookup
or public key cryptography. In terms of deployability, our scheme can be easily deployed on
existing web services, and it does not require any change to the Internet cookie specifica-
tion. We implemented our secure cookie scheme using PHP and conducted experiments.
The experimental results show that our scheme is very efficient on both the client side
and the server side.

A notable adoption of our scheme in industry is that our cookie scheme has been used by
Wordpress since version 2.4. Wordpress is a widely used open source content management
system.

© 2012 Elsevier B.V. All rights reserved.

many web applications built on top of HTTP need to be
stateful. For example, most online shopping applications

The widely used HTTP (Hypertext Transfer Protocol)
works in a request-response fashion. First, a client sends
a request (which either asks for a file or invokes a program)
to a server. Second, the server processes the request and
sends back a response to the client. After this, the connec-
tion between the client and the server is dropped and for-
gotten. HTTP is stateless in that an HTTP server treats each
request independently of any previous requests. However,

* Corresponding author.
E-mail addresses: alexliu@cse.msu.edu (A.X. Liu), jason@exisweb.com

(J.M. Kovacs), mgouda@nsf.gov, gouda@cs.utexas.edu (M.G. Gouda).

! The work of Jason M. Kovacs was conducted while he was an
undergraduate student of The University of Texas at Austin.

2 Mohamed G. Gouda is currently a Program Manager at the National
Science Foundation.

3 www.exisweb.com.

1389-1286/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2012.01.013

need to keep track of the shopping carts of their clients.

Web applications often use cookies to maintain state. A
cookie is a piece of information that records the state of a
client. When a server needs to remember some state infor-
mation for a client, the server creates a cookie that con-
tains the state information and sends the cookie to the
client. The client then stores the cookie either in memory
or on a hard disk. The client later attaches the cookie to
every subsequent request to the server.

Many web applications (such as electronic commerce)
demand a secure cookie scheme. A secure cookie scheme
that runs between a client and a server needs to provide
the following four services: authentication, confidentiality,
integrity, and anti-replay.

1. Authentication: A secure cookie scheme should allow the
server to verify that the client has been authenticated

http://dx.doi.org/10.1016/j.comnet.2012.01.013
mailto:alexliu@cse.msu.edu
mailto:jason@exisweb.com
mailto:mgouda@nsf.gov
mailto:gouda@cs.utexas.edu
http://www.exisweb.com
http://dx.doi.org/10.1016/j.comnet.2012.01.013
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1724 AX. Liu et al. / Computer Networks 56 (2012) 1723-1730

within a certain time period. Moreover, no client should

be able to forge a valid cookie.

In secure web applications, a typical session between a

client and a server consists of two phases. The first phase

is called the login phase and the second phase is called
the subsequent-requests phase.

(a) Login phase: In this phase, the client and the server
mutually authenticate each other. On one hand, the
client authenticates the server using the server’s PKI
(Public Key Infrastructure) Certificate after they
establish an SSL (Secure Sockets Layer) connection.
On the other hand, the server authenticates the
client using the client’s user name and password,
and sends a secure cookie (which is also called an
“authentication token” or an “authenticator” in
previous literature) to the client.

(b) Subsequent-requests phase: In this phase, the client
sends the secure cookie along with every request
to the server; the server verifies whether the cookie
is valid, and if it is, services the request.

2. Confidentiality: The contents of a secure cookie is
intended only for the server to read. There are two lev-
els of confidentiality that a secure cookie scheme may
provide: low-level confidentiality and high-level
confidentiality.

(a) Low-level confidentiality: A secure cookie scheme
with low-level confidentiality prevents any parties
except the server and the client from reading the
contents of a cookie. To achieve low-level confiden-
tiality, a secure cookie scheme usually runs on top
of SSL. Note that SSL encrypts every message
between the client and the server using a session
key that only the client and the server know. In this
paper, we assume that any secure cookie scheme
runs on top of SSL.

(b) High-level confidentiality: A secure cookie scheme

with high-level confidentiality prevents any parties
except the server from reading the sensitive infor-
mation within a cookie that the server does not
want to reveal to the client [10]. For example, the
cookie’s contents may contain some client informa-
tion such as their internal rating or credit score,
which the server may not want the client to be
aware of.
Different web applications may require different
levels of confidentiality. Therefore, a secure cookie
scheme should be able to configured to support
both low-level confidentiality and high-level con-
fidentiality.

3. Integrity: A secure cookie scheme should allow a server
to detect whether a cookie has been modified.

4. Anti-replay: In the case that an attacker replays a stolen
cookie, a secure cookie scheme should be able to detect
that the cookie is invalid. Otherwise, the attacker would
be authenticated as the client that the replayed cookie
was issued to.

In designing a secure cookie scheme, besides the above
security requirements, we also need to consider the issues
of efficiency and deployability. As for efficiency concerns, a
secure cookie scheme should avoid requiring a server to do

database lookups in verifying a cookie, and should avoid
public key cryptography. Note that database lookups dra-
matically slow down the speed that a server takes to verify
a cookie. As for deployability concerns, a secure cookie
scheme should avoid requiring a client to possess a public
key and a private key, which is currently impractical to
assume.

Several cookie schemes have been proposed [5,10,16,3];
however, none of these schemes are completely satisfac-
tory. The cookie scheme proposed by Fu et al., has three
limitations: (1) it does not have a mechanism for providing
high-level confidentiality, (2) it is vulnerable to cookie re-
play attacks, and (3) it does not provide mechanisms for
key updating. The three authentication mechanisms of
the cookie scheme proposed by Park and Sandhu are either
ineffective or difficult to deploy [10]. The cookie scheme by
Blundo et al. [3] and that proposed by Xu et al. [16] are
inefficient because they require database lookups in verify-
ing a cookie.

In this paper, we propose a secure cookie scheme that is
effective, efficient, and easy to deploy. In terms of effec-
tiveness, our secure cookie scheme provides all of the
above four security services. In terms of efficiency, our se-
cure cookie scheme does not involve any database lookup
or public key cryptography. In terms of deployability, our
secure cookie scheme can be easily deployed on existing
web servers, and it does not require any change to the cur-
rent Internet cookie specification [7].

The rest of this paper proceeds as follows. In Section 2,
we present our secure cookie scheme in detail. In Section 4,
we discuss the implementation of our secure cookie
scheme and its performance. In Section 5, we review and
examine existing cookie schemes. We give concluding re-
marks in Section 6.

2. Secure cookie scheme

The state-of-the-art secure cookie schemes was de-
scribed by Fu et al. in their seminal paper [5]. In this sec-
tion, we first examine this scheme, which we refer as Fu’s
cookie scheme. We show that this scheme has three major
limitations, and we give a solution to each of them. Finally,
we present our secure cookie scheme. The notations used
in this section are listed in the following table.
| Separator
HMAC(m, k) Keyed-Hash Message Authentication Code of

message m using key k
sk Server Key
(m), Encryption of message m using key k

The keyed-hash message authentication codes used in
this paper are assumed to be verifiable and non-malleable:
given a message m and a key k, it is computationally
efficient to compute HMAC(m,k); however, given
HMAC(m, k), it is computationally infeasible to compute
the message m and the key k. Examples of such keyed-hash
message authentication codes are HMAC-MD5 and HMAC-
SHAT1 [6,2,11,4].

The server key (i.e., sk) of a server is a secret key that
only the server knows.

AX. Liu et al. / Computer Networks 56 (2012) 1723-1730 1725

2.1. Fu’s cookie scheme

Fu’s cookie scheme is shown in Fig. 1.

In this cookie scheme, a secure cookie that is issued by a
server to a client consists of the following four subfields
within the cookie value field of the HTTP cookie
specification.

1. User Name: The value of this field uniquely identifies a
user.

2. Expiration Time: The value of this field indicates when
this cookie will expire and the server should reject it
from a client. The granularity of this value needs to be
small enough for the server to distinguish the time dif-
ference of any two cookies.

3. Data: The value of this field can be anything that the
server wants to remember for the client when the coo-
kie is created. The state information, such as the con-
tents of an online shopping cart or the entry of the
state table for the client on the web server, of the com-
munication between the client and the server is usually
stored in this field.

4, Keyed-Hash Message Authentication Code (HMAC): The
value of this field is the keyed-hash message authentica-
tion code of the above three fields using the server key.

Note that separator | can be implemented in many ways
as long as we can parse each field correctly. One way is to
use a character that is not allowed to be used in any fields,
if such a character exists, to be the separator. Another way
is to prepend each field with a byte (or more) that indicates
the length of the field. We should avoid implementing | as
string concatenation because it may cause incorrect
parsing.

Using Fu’s cookie scheme as an example, we next exam-
ine the communication process between a client C and a
server S.

1. Client Cinitiates an SSL connection with server S. Client
C authenticates server S using the PKI certificate of
S. Note that all subsequent messages between C and
S are encrypted by the SSL session key.

2. Client C sends its user name and password to server
S. Server S authenticates client C by searching a data-
base that contains the user name and hashed password
of every client. Up to now, client C and server S have
mutual authenticated each other.

3. Server S creates a cookie according to Fig. 1, and sends
this cookie back to client C.

4. In every subsequent HTTP request sent from C to S, this
cookie is attached. Whenever S receives an HTTP
request together with a cookie, S verifies the cookie
by the following two steps:

user name|expiration time|data
[HMAC(user namelexpiration time|data, sk)

Fig. 1. Fu’'s cookie scheme.

(a) Verify expiration time: Server S checks whether the
cookie has expired by examining the cookie’s expi-
ration time and the server’s current time.

(b) Verify keyed-hash message authentication code:
Server S checks whether the cookie has been modi-
fied by recomputing the keyed-hash message
authentication code for the cookie. If the result
matches the keyed-hash message authentication
code in the cookie, then server S believes that the
cookie is indeed created by S.

If the cookie passes both verifications, server S services the
HTTP request. Otherwise, server S denies the HTTP request
and asks client C to send its user name and password again.

Fu’s cookie scheme has three major security limitations.
First, it does not have a mechanism for providing high-
level confidentiality. Second, it is vulnerable to cookie
replay attacks. Third, it does not provide mechanisms for
key updating. Next, we detail these three limitations and
give an efficient and secure solution to each of them.

2.2. Limitation I: cookie confidentiality

We have discussed that some web applications need
high-level confidentiality for their cookies. To provide
high-level confidentiality, a secure cookie scheme should
encrypt the data field of each cookie. Now the question is
this: which key should a server use for this encryption?.

Fu’s scheme does not provide an answer to this ques-
tion. There is only one key involved in Fu’s scheme, namely
the server key. One straightforward solution is to use this
server key to encrypt the data field of every cookie; how-
ever, this solution is not secure. An attacker can register
as a legitimate client with a server and then gather a large
number of cookies issued by the server. If the data fields of
all of these cookies are encrypted by the same server key,
the attacker could possibly discover this key using crypt-
analysis. Although such cryptanalysis is hard, it is prudent
to avoid any such possibility.

The cookie scheme proposed by Xu et al. [16] manages
cookie specific encryption keys as follows. A server main-
tains a database that stores the user name and the encryp-
tion key of every client. When a server creates a cookie for
a client, the server generates a new random key for
encrypting the cookie and replaces the old encryption
key associated with the client in the database with this
new key. When a server receives an encrypted cookie from
a client, the server uses the user name of the client to
search in the database for the corresponding encryption
key. This solution has two major disadvantages. First, it is
highly inefficient because of the overhead of database
lookups. Second, when the old encryption key of a client
is deleted, all the cookies that are encrypted by the old
encryption key become invalid. This could be very destruc-
tive. A client may attach the same encrypted cookie to
more than one request to a server. The server may create
a new cookie and a new encryption key for the client after
the server receives the first request, which results all the
other requests with the same cookie being denied by the
server.

1726 AX. Liu et al. / Computer Networks 56 (2012) 1723-1730

The cookie scheme proposed by Park and Sandhu man-
ages cookie specific encryption keys in a different way:
when a server creates a cookie of high-level confidentiality,
the server generates a random key, encrypts the key with
the server’s public key, and stores the encrypted key in the
cookie itself rather than a database on the server side [10].
The downside of this solution is the verification of every
cookie involves public key cryptography, which makes the
cookie scheme complex and inefficient.

Our solution to this problem is simple and efficient. We
propose to use HMAC (user name|expiration time, sk) as
the encryption key. This solution has the following three
good properties. First, the encryption key is unique for each
different cookie because of the user name and expiration
time. Note that whenever a new cookie is created, a new
expiration time is included in the cookie. Second, the
encryption key is unforgeable because the server key is
kept secret. Third, the encryption key of each cookie does
not require any storage on the server side or within the
cookie, rather, it is computed by a server dynamically.

2.3. Limitation II: replay attacks

Fu’s cookie scheme is vulnerable to replay attacks,
which could be launched in the following two steps. The
first step is to steal a cookie that a server issued to another
client. An attacker may have several ways to steal a cookie
from someone else. For example, if a client stores a cookie
in their hard disk, an attacker may steal it using Trojans,
worms, or viruses. In the second step of a replay attack,
the attacker initiates an SSL connection with the server
and replays a stolen cookie that has not yet expired. Conse-
quently, the server incorrectly authenticates the attacker
as the spoofed client, and allows the attacker to access
the spoofed client’s account.

To counter replay attacks, we propose to add the SSL
session ID into the keyed-hash message authentication
code of a cookie, i.e., to use HMAC (user name|expiration
name|datajession ID, sk) as the keyed-hash message
authentication code of each cookie. SSL session ID is a
random number generated by the server to identify a
session with a client. By including SSL session ID in the
keyed-hash message authentication code of a cookie, the
cookie becomes session specific. Even if an attacker steals
a cookie, he cannot successfully replay it because the SSL
session ID that the server creates for the attacker is differ-
ent from the SSL session ID that the server creates for the
victim client.

In the preliminary version of this protocol, we proposed
to add SSL session key into the keyed-hash message
authentication code of a cookie [8]. There are two main
advantages to use SSL session IDs, instead of SSL session
keys. First, using SSL session IDs leads to one client authen-
tication per SSL session while using SSL session keys leads
to one client authentication per SSL connection. Note that
one SSL session corresponds to multiple SSL connections
and one SSL connection corresponds to one SSL session.
In SSL, a session is used to describe an ongoing relationship
between a client and a server. A server allows a client to
have multiple connections based on the same SSL session.
The session ID is a random number generated by the server

to uniquely identify a session with a client and it is sent to
the client in the SSL handshake protocol. Second, in terms
of implementation effort, SSL session IDs are easier to ob-
tain than SSL session keys. There are built in functions in
many web programming languages to obtain SSL session
IDs. For example, in javex.net.ssl package, the function
getID () returns the SSL session ID. In SSL, a session, iden-
tified by a session ID, is relatively long-lived and it can
drive many connections between the client and the server.
Servers can expire or preserve client sessions at will within
a server-defined timeout period.

To our best knowledge, except the preliminary version
of this paper, neither the cookie schemes proposed in prior
literature (such as Fu’s scheme [5]) nor the cookie schemes
used in industry (such as Microsoft ASP.NET authentication
scheme [9]) uses SSL session information in forming
cookies.

2.4. Limitation III: key updating

Using Fu'’s cookie scheme, a server uses the same server
key in computing the HMAC of every cookie. This server
key needs to be periodically changed due to the potential
of attackers obtaining the server key by volume attacks
or bruthe force key attacks, as stated by Fu et al. [5].
However, periodically changing the server key is problem-
atic. Each time the server key is changed, the server needs
to use both the original key and the new key to verify cook-
ies for a certain period. Let t denote the time that the server
key is changed from k to k', and A denote the largest expi-
ration time that the server has issued for a cookie before
time t. Thus, in the time interval [t,t + A], the server may
receive legitimate cookies that are created using either
the old key k or the new key k’; therefore, if the cookie
has not expired and the cookie failed to be verified by
the new key K/, the server has to use the old key k to verify
the cookie. Clearly, verifying cookies twice using two dif-
ferent keys is inefficient.

In our cookie scheme, we propose to use the encryption
key, namely HMAC (user name|expiration time, sk), as the
key in computing the keyed-hash message authentication
code of each cookie. This solution has the following three
good properties. First, as discussed in Section 2.2, this
key is unique for each new cookie because of the user
name and expiration time. Second, this key is unforgeable
because of the server key. Third, because this key is the
same as the encryption, the computation of HMAC (user
name|expiration time, sk) only needs to be done once.
Thus, our scheme essentially eliminates the need of updat-
ing the key for computing HMAC.

2.5. Our secure cookie scheme

Our secure cookie scheme is shown in Fig. 2. Recall that
(data), denotes the encryption of the data using key k, and
sk denotes the server key of a server.

Note that all of the four fields of user name, expiration
time, (data)y, and HMAC (user name|expiration time|data|
session ID, k) are within the cookie value field of the HTTP
cookie specification [7]. The two fields of user name and
expiration time are in plain text because the server needs

AX. Liu et al./ Computer Networks 56 (2012) 1723-1730 1727

user name|expiration time|(data)y
[HMAC(user namel|expiration time|data|session 1D, k)
where k=HMAC (user namelexpiration time, sk)

Fig. 2. Our secure cookie scheme.

to use them to compute HMAC (user name|expiration time,
sk). Note that the field HMAC (user name|expiration
time|data|session ID, k) is used by our scheme to provide
authentication, integrity, and anti-replay.

Our secure cookie scheme can be configured to provide
either high-level or low-level confidentiality. The one
shown in Fig. 2 provides high-level confidentiality. If
low-level cookie confidentiality is desired, one can simply
leave the data field unencrypted, i.e., replace (data), by
the data in plain text.

The process for verifying a cookie created using our
scheme is shown in Figs. 3 and 4. Note that if FALSE is re-
turned, the cookie is deemed invalid and the client must
login in again using their user name and password.

2.6. Security analysis

Next, we prove that our cookie scheme is secure. First,
our cookie scheme achieves authentication. A cookie cre-
ated using our scheme can be used as an authentication to-
ken because no one can forge a cookie without knowing
the server key sk, which is only known to the server. Note
that HMAC is a one-way collision resistant hash function.
Second, our cookie scheme achieves high-level confidenti-
ality. No one can obtain the key k for decrypting (data),
without knowing the server key sk. Third, our cookie
scheme is secure against replaying attacks. Even an attack-
er steals a cookie, the attacker cannot establish an SSL ses-
sion with the same SSL session ID with the server because

user name|expiration time
|[HMAC(user name|expiration time, k)
where k=HMAC (user namel|expiration time, sk)

Fig. 4. Our secure cookie scheme adopted by Wordpress.

each SSL session ID is uniquely generated by a server; thus,
the stolen cookie in one SSL session is invalid in another
SSL session as the session IDs are different. Fourth, for
the user who receives a cookie from a server, from the hash
HMAC (user name|expiration time|data|session ID, k), they
cannot infer any information about the data and the server
key k because HMAC is a one-way collision resistant hash
function. In other words, the user will not be able to choose
a user name and even data that will allow them to infer the
server key k. Note that SSL session ID is sent in clear and
there is no need to keep it confidential. Last, our cookie
scheme is secure against volume attacks because the data
encryption key is used only in one SSL session.

2.7. User experience

There is always tension and tradeoff between security
and user experience. Using our cookie scheme with SSL
session IDs embedded, if a user closes their web browser
and later opens their web browser to access the same
web site, the cookie will be invalid due to the change of
SSL session IDs and the user needs to be authenticated
with their credentials again. In fact currently for many se-
cure web sites, such as Chase.com, if a user closes their
web browser and even immediately later opens their
web browser to access the same web site, the user needs
to be authenticated with their credentials again. Also,
using our cookie scheme with SSL session IDs embedded,

Cookie Verification
Input : A cookie

Output: TRUE if the cookie is valid; FALSE otherwise

1. Compare the cookie’s expiration time and the server’s current
time. If the cookie has expired, then return FALSE.

2. Compute the encryption key as follows:
kE=HMAC (user name|expiration time, sk)

3. Decrypt the encrypted data using k.

4. Compute HMAC(user name|expiration time|data|session ID, k),
and compare it with the keyed-hash message authentication code
of the cookie. If they match, then return TRUE;

otherwise return FALSE.

Fig. 3. Cookie verification.

1728 AX. Liu et al. / Computer Networks 56 (2012) 1723-1730

when the server expires the SSL session, the user needs to
be authenticated with their credentials again because the
cookie becomes invalid. Nevertheless, for web applications
that such user experience is undesirable, we can exclude
the SSL session ID from our cookie scheme, although this
sacrifices security to a certain degree.

3. Wordpress usage

Our secure cookie protocol has been used by Wordpress
since version 2.4 [12]. Wordpress is a widely used open
source content management system [15]. It is the largest
self-hosted blogging tool in the world and it has been used
on millions of sites and seen by tens of millions of people
every day. Since version 2.4, Wordpress adopted our cookie
scheme as follows:

Wordpress made two modifications to our secure coo-
kie scheme. First, Wordpress eliminates data in their coo-
kie scheme. This is because they only use cookies for
authentication. They do not use cookies to track states.
Second, Wordpress did not incorporate an SSL session ID
(or key) in computing the HMAC. This is because Word-
press installations mostly run on non-SSL hosts [13].

4. Implementation and performance evaluation

In this section, we discuss the implementation and per-
formance evaluation of our secure cookie scheme.

4.1. Implementation details

To evaluate the performance of our secure cookie
scheme, we implemented the following five schemes in
PHP:

1. The insecure cookie scheme: In this scheme, no cookie
has any message authentication code or has any
encryption, i.e., each cookie contains only the following
three fields in plain text: user name, expiration time,
and data. The purpose of implementing this is to pro-
vide a baseline for performance comparison.

2. Fu’s cookie scheme with low-level confidentiality: The
scheme has been seen in Fig. 1.

3. Our cookie scheme with low-level confidentiality: This
scheme is basically the one in Fig. 2 except that the field
(data)y is replaced by plain text (data).

4. Fu’s cookie scheme with high-level confidentiality: Since
Fu’s cookie scheme does not provide high-level confi-
dentiality, for performance evaluation purposes, we
assume that the data field of a cookie is encrypted by
the server key, although this is not a good idea in pre-
venting the server key from being cracked, as we have
discussed previously.

5. Our cookie scheme with high-level confidentiality: This
scheme has been seen in Fig. 2.

Here we discuss some details of the implementation of
the above cookie schemes. We use HMAC-SHA1 (in the
Crypt_HMAC package of the PEAR PHP library) as the
keyed-hash message authentication code function. We

use the Rijndael-256 algorithm (in the mcrypt library)
through ECB (Electronic Code Book) mode as the encryp-
tion algorithm. The server key consists of 256 bits.

4.2. Performance evaluation

The goal of our performance evaluation is to compare
the performance of our cookie scheme with other cookie
schemes on both the client and server sides. Our test envi-
ronment consists of a medium-loaded commercial web
server, which uses a 2.4 GHz Celeron processor, 512 MB
RAM, and runs Microsoft Windows 2003 Standard Edition,
IIS 6.0, PHP 4.3.10 and MySQL 3.23; and a client, which
uses a 2.8 GHz Pentium 4, 512 MB RAM, and runs Red
Hat 3.0. The server and the client are connected by a ded-
icated Gigabit link with a 0.9 ms round-trip time.

We run each of the five cookie schemes over SSL con-
nections between the client and the server. For each
scheme, the client makes 10,000 successive requests to
the server, where each request has an attached cookie.
We measure the performance on both the client side and
the server side.

4.3. Client side performance

On the client side, we measure the average latency from
when a request (with a cookie) is sent out to when a re-
sponse (with a new cookie) is received. In our implementa-
tions, the server creates a new cookie after it receives a
valid cookie. In other words, the client side latency that
we measured consists of:

1. the time for transferring a request with a cookie from
the client to the server, and

2. the time for the server to verify the cookie in the
request, and

3. the time for the server to create a new cookie, and

4. the time for transferring a response with a new cookie
from the server to the client.

The overall size of each request including HTTP headers
is on average 1 KB. The experimental results for the client
side performance are shown in Fig. 5.

From the data in Fig. 5, we can see that the performance
of our secure cookie scheme is very close to that of Fu's
cookie scheme, while our secure cookie scheme provides
much better security.

4.4. Server side performance

On the server side, we measure the average processing
time for verifying a cookie (that was sent along a request
from the client to the server) and creating a new cookie
(that will be sent along a response from the server to the
client).

Similarly, the overall size of each request including
HTTP headers is on average 1 KB. The experimental results
for the server side performance are shown in Fig. 5.

Similarly, from the data in Fig. 6, we can see that the
performance of our secure cookie scheme is very close to
that of Fu’s cookie scheme.

AX. Liu et al./ Computer Networks 56 (2012) 1723-1730 1729

70 - @ Insecure Cookie Protocol

B Fu's Cookie Protocol with Low-level Confidentiality

O Our Cookie Protocol with Low-level Confidentiality
'|m Fu's Cookie Protocol with High-level Confidentiality
@ Our Cookie Protocol with High-level Confidentiality

60

Client: average latency over SSL (ms)

Fig. 5. Client side performance comparison.

O Insecure Cookie Protocol
B Fu's Cookie Protocol with Low-level Confidentiality
'| @ Our Cookie Protocol with Low-level Confidentiality

é B Fu's Cookie Protocol with High-level Confidentiality
g é 5 - B Our Cookie Protocol with High-level Confidentiality
S 3
@ g 4.24
i 3.99
g £ e R | B
o @
&35
§ +
B8 34
23
%38
g«
2R 2 M -
“g
)
>
14 075--- N 42 .
0

Fig. 6. Server side performance comparison.

5. Related work

In this section, we examine previous secure cookie
schemes and compare them with our secure cookie scheme.

Fu et al. investigated several home-brew cookie
schemes and demonstrated their vulnerabilities, leading
to Fu's more secure cookie scheme [5]. As discussed in
Section 2, Fu’s cookie scheme has three major limitations.
First, it does not have a mechanism for providing high-
level confidentiality. Second, it is vulnerable to cookie re-
play attacks. Third, it does not provide mechanisms for
key updating.

Park and Sandhu proposed a cookie scheme that uses a
set of inter-dependent cookies such as a name cookie, a life
cookie, a password cookie, a seal cookie, etc. [10]. As dis-
cussed in Section 2.2, the mechanism for providing confi-

dentiality in this scheme is inefficient. Next, we examine
the following three authentication mechanisms proposed
by Park and Sandhu [10]: address-based authentication,
password-based authentication, and digital-signature-
based authentication. Using address-based authentication,
each cookie set has an IP cookie that contains the IP
address of the client. A server authenticates a received
cookie set by verifying whether the cookie set is from the
IP address in the IP cookie. This authentication mechanism
has three problems. First, it is vulnerable to IP spoofing.
Second, a client’s IP address may be dynamically changing.
Third, a client may use a NAT (Network Address Translator)
or a proxy server and therefore may share the same (glo-
bal) IP address with other clients in the same domain.
Using the password-based authentication, each cookie set
has a password cookie that contains the message digest
of the client’s password. A server authenticates a received
cookie set by verifying whether the value of the password
cookie is correct, which requires database lookups. Using
the digital-signature-based authentication, each time a cli-
ent wants to make an HTTP request to a server, the client
first generates a signature cookie that contains a time
stamp and the client’s signature of the time stamp. Sec-
ondly, the client sends the HTTP request together with
the cookie set issued by the server to the client and the sig-
nature cookie created by the client. The server authenti-
cates a received cookie set by verifying the signature
cookie. This authentication mechanism is difficult to de-
ploy because it assumes every client has a public key and
a private key. Moreover, this authentication mechanism
is expensive because it requires both database lookups
(for a client’s public key) and public key cryptography.

Xu et al. presented a cookie scheme that is used by a
server to store the credit card information of every client
[16]. As discussed in Section 2.2, this scheme could not cor-
rectly verify multiple simultaneous requests with the same
cookie. In addition, this scheme is inefficient because of the
overhead of database lookups and updates for verifying
each cookie.

Blundo et al. proposed a web authentication scheme
that uses encrypted cookies [3]. A downside of this cookie
scheme is that it requires a server to do database lookups
in verifying every received cookie.

We have presented a preliminary version of our secure
cookie scheme [8]. However, Wordpress usage and the
experimental results on the server side was not presented
in [8].

Akhawe et al. recently proposed a formal model of web
security based on an abstraction of the web platform and
use this model to analyze the security of several sample
web mechanisms and applications including those that
use cookies [1].

Tappenden and Miller proposed an EBNF grammatical
definition and a three-tiered testing strategy for web cook-
ies [14].

Yue et al. proposed a system that can automatically val-
idate the usefulness of cookies from a Web site and set the
cookie usage permission on behalf of users [17]. This sys-
tem helps users achieve the maximumbenefit brought by
cookies, while minimizing the possible privacy and secu-
rity risks.

1730 AX. Liu et al. / Computer Networks 56 (2012) 1723-1730

6. Conclusions

Our contributions in this paper are threefold. First, we
discover that the state-of-the-art cookie scheme by Fu
et al. has the following three major problems: it does not
have a mechanism for providing high-level confidentiality,
it is vulnerable to cookie replay attacks, and it does not
provide convenient mechanisms for key updating. Second,
we present a solution to each of these problems and we
present a new secure cookie scheme. Third, we conduct
performance evaluation of our secure cookie scheme. The
experiments show that our scheme and Fu’s scheme are
very close in terms of efficiency.

Acknowledgement

The authors thank the editor Dr. Marco Gruteser and
the anonymous reviewers for their constructive comments
and useful suggestions on improving the presentation of
this work. The authors also would like to thank Jeremy
Brotherton and Kiyoshi Shikuma for suggesting to replace
the SSL session key by the SSL session ID in our cookie
scheme.

References

[1] D. Akhawe, A. Barth, P.E. Lam, J. Mitchell, D. Song, Towards a formal
foundation of web security, in: Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, 2010.

[2] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for
message authentication, in: Proceedings of CRYPTO’96, LNCS, vol.
1109, 1996, pp. 1-15.

[3] C. Blundo, S. Cimato, R.D. Prisco, A lightweight approach to
authenticated web caching, in: Proceedings of IEEE 2005
International Symposium on Applications and the Internet (SAINT
2005), 2005, pp. 157-163.

[4] D. Eastlake, P. Jones, Us secure hash Algorithm 1 (shal), RFC 3174
(2001).

[5] K. Fu, E. Sit, K. Smith, and N. Feamster, Dos and don’ts of client
authentication on the web. In Proceedings of the 10th USENIX
Security Symposium, August 2001.

[6] H. Krawczyk, M. Bellare, and R. Canetti, Hmac: Keyed-hashing for
message authentication, RFC 2104 (1997).

[7] D. Kristol and L. Montulli, Http state management mechanism, RFC
2965 (2000).

[8] AX. Liu, J.M. Kovacs, C.-T. Huang, and M.G. Gouda, A secure cookie
protocol, in: Proceedings of the 14th IEEE International Conference
on Computer Communications and Networks, pp. 333-338, October
2005.

[9] Microsoft ASP.NET Authentication, http://msdn.microsoft.com/en-
us/library/aa291347(v=vs.71).aspx. 2004.

[10] J.S. Park and R.S. Sandhu, Secure cookies on the web, IEEE Internet
Computing 4(4) (2000) 36-44.

[11] R. Rivest, The md5 message-digest algorithm, RFC 1321 (1992).

[12] Secure Cookies and Passwords, http://ryan.boren.me/2007/12/17/
secure-cookies-and-passwords/. 2011.

[13] Secure/bullet proof cookies, http://www.arthurkoziel.com/2008/05/
17/securebullet-proof-cookies/. 2011.

[14] A. Tappenden and]. Miller, A three-tiered testing strategy for
cookies, in: Proceedings of the 1st International Conference on
Software Testing, Verification, and Validation, 2008.

[15] Wordpress, http://wordpress.org/. 2011.

[16] D. Xu, C. Lu, and A.D. Santos, Protecting web usage of credit cards
using one-time pad cookie encryption, in: Proceedings of the 18th
Annual Computer Security Applications Conference, pp. 51-58,
December 2002.

[17] C. Yue, M. Xie, and H. Wang, Automatic cookie usage setting with
cookiepicker, in: Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks,
2007.

Alex X. Liu received his Ph.D. degree in com-
puter science from the University of Texas at
Austin in 2006. He is currently an assistant
professor in the Department of Computer
Science and Engineering at Michigan State
University. He received the IEEE and IFIP
William C. Carter Award in 2004 and an NSF
CAREER award in 2009. He received the MSU
College of Engineering Withrow Distinguished
Scholar Award in 2011. His research interests
focus on networking, security, and depend-
able systems.

Jason M. Kovacs received his B.S. degree in
computer science from the University of Texas
at Austin in 2005. He is a professional web
developer with many years of experience on
creating robust back-end web applications,
databases and user interfaces for businesses
and organizations. He is also experienced in
systems architecture within multiple indus-
tries, including manufacturing, insurance,
education, media and social networking.

Mohamed G. Gouda obtained his Ph.D. in
Computer Science from the University of
Waterloo. He worked for the Honeywell Cor-
porate Technology Center in Minneapolis
from 1977 to 1980. In 1980, he joined the
University of Texas at Austin where he cur-
rently holds the Mike A. Myers Centennial
Professorship in Computer Sciences. He was
the founding Editor-in-Chief of the Springer-
Verlag journal Distributed Computing 1985-
1989. His research areas are distributed and
concurrent computing and network schemes.

	A secure cookie scheme
	1 Introduction
	2 Secure cookie scheme
	2.1 Fu’s cookie scheme
	2.2 Limitation I: cookie confidentiality
	2.3 Limitation II: replay attacks
	2.4 Limitation III: key updating
	2.5 Our secure cookie scheme
	2.6 Security analysis
	2.7 User experience

	3 Wordpress usage
	4 Implementation and performance evaluation
	4.1 Implementation details
	4.2 Performance evaluation
	4.3 Client side performance
	4.4 Server side performance

	5 Related work
	6 Conclusions
	Acknowledgement
	References

