Available online at www.sciencedirect.com

ScienceDirect Computer
Networks

www.elsevier.com/locate/comnet

E;,

S

" el
ELSEVIER Computer Networks xxx (2007) XXX—XXX

SPP: An anti-phishing single password protocol ™

Mohamed G. Gouda ?, Alex X. Liu ®*, Lok M. Leung !, Mohamed A. Alam *'

& Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712-0233, USA
b Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824-1266, USA

Received 20 August 2006; received in revised form 19 March 2007; accepted 24 March 2007

Responsible Editor: D. Frincke

Abstract

Most users have multiple accounts on the Internet where each account is protected by a password. To avoid the head-
ache in remembering and managing a long list of different and unrelated passwords, most users simply use the same pass-
word for multiple accounts. Unfortunately, the predominant HTTP basic authentication protocol (even over SSL) makes
this common practice remarkably dangerous: an attacker can effectively steal users’ passwords for high-security servers
(such as an online banking website) by setting up a malicious server or breaking into a low-security server (such as a
high-school alumni website). Furthermore, the HTTP basic authentication protocol is vulnerable to phishing attacks
because a client needs to reveal his password to the server that the client wants to login.

In this paper, we propose a protocol that allows a client to securely use a single password across multiple servers, and
also prevents phishing attacks. Our protocol achieves client authentication without the client revealing his password to the
server at any point. Therefore, a compromised server cannot steal a client’s password and replay it to another server.

Our protocol is simple, secure, efficient and user-friendly. In terms of simplicity, it only involves three messages. In terms
of security, the protocol is secure against the attacks that have been discovered so far including the ones that are difficult to
defend, such as the malicious server attacks described above and the recent phishing attacks. Essentially our protocol is an
anti-phishing password protocol. In terms of efficiency, each run of our protocol only involves a total of four computations
of a one-way hash function. In terms of usability, the protocol requires a user to remember only one password consisting of
eight (or more) random characters, and this password can be used for all of his accounts.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Password protocols; Network security; Protocol design; Authentication; Phishing attacks

* This material is based upon work supported by the National
Science Foundation under Grant No. 0520250.

* Corresponding author. Tel.: +1 517 353 5152; fax: +1 517 432 1. Introduction
1061.
E-mail addresses: gouda@cs.utexas.edu (M.G. Gouda), alex- Authentication of an entity is usually done by

liu@cse.msu.edu (A.X. Liu), raymondl@cs.utexas.edu (L.M.
Leung), malam@cs.utexas.edu (M.A. Alam).

' Lok M. Leung and Mohamed A. Alam participated in this . L . . .
work while they were undergraduate students in The University 1. Something the entity is (by biometric techniques,
of Texas at Austin. such as fingerprint or voiceprint identification).

verifying one or more of the followings:

1389-1286/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.
(2007), doi:10.1016/j.comnet.2007.03.007

mailto:gouda@cs.utexas.edu
mailto:alexliu@cse.msu.edu
mailto:alexliu@cse.msu.edu
mailto:raymond1@cs.utexas.edu
mailto:malam@cs.utexas.edu

2 M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx

2. Something the entity has (by PKI certificate, ID
cards, smart cards).

3. Something the entity knows (by passwords,
PINs).

Of these three authentication methodologies,
only the last two are suitable for remote authentica-
tion. On today’s Internet, server authentication is
usually done by SSL [5] using PKI certificates,
which is something the server has, while client
authentication is usually done using passwords,
which is something the client knows.

1.1. The problem

Many people today have multiple accounts on
the Internet. For example, one may have an
email account on www.yahoo.com, a travel account
on www.travelocity.com, a credit card account on
www.discovercard.com, a banking account on
www.chase.com, an online stock trading account
on www.fidelity.com, etc. Forrester Research
reports that a typical web user manages an average
of 15 passwords on a daily basis [10]. Most of these
accounts are protected by passwords. As more ser-
vices move to the Internet, the number of accounts
a user needs to manage is expected only to grow. If
one uses different and unrelated passwords for each
account, then remembering all these unique pass-
words is a daunting task. It has been observed in
[1] that a typical user can only remember 4 or 5
passwords effectively. Because of this, the common
practice is to use the same password for multiple
accounts. However, the predominant HTTP basic
authentication protocol (even over SSL) [4] makes
this practice remarkably dangerous because the pro-
tocol allows a server to know the password of each
of its clients.

Let us first examine how the HTTP basic authen-
tication protocol works. A client C first registers
with a server (such as a web site) S using password
P. The registration results in S storing in its pass-
word file the pair of user name C and password ver-
ification information MD(P). Here MD denotes a
message digest (one-way hash) function such as
MD5 [16] and SHA-1 [18]. Later on when C wants
to login on S, C sends his user name C and pass-
word P to S. Then S applies the message digest
function MD to the received password and com-
pares the result with the stored password verifica-
tion information MD(P). If they are equal, then
the authentication of C is successful; otherwise it

is unsuccessful. The HTTP basic authentication
protocol usually runs on top of SSL [5], which
allows the client to authenticate the server using cer-
tificate mechanisms, and provides an encrypted
channel between the client and the server.

Allowing a server to know the passwords of its
clients like the HTTP basic authentication protocol
does is incredibly dangerous because a server may
be untrustworthy. An attacker can set up a mali-
cious server (at cost as low as $100 US dollars),
and allures people to register using passwords by
offering free goods or services. The attacker can
reasonably estimate that some of his clients use
the same password for their financial accounts.
After gathering those passwords from the registered
clients, the attacker can impersonate them to login
on some financial servers such as an online banking
or stock trading server, which could cause signifi-
cant loss to the clients. Furthermore, a server may
be compromised. Instead of directly trying to break
into a high-security server such as an online finan-
cial server to gain unauthorized access, which
would be difficult, an attacker can first try to break
a low-security server such as an art bulletin board
set up by an amateur. Once a low-security server
is broken, which is relatively easy, since some cli-
ents of the broken poorly-defended server may
use the same password for their accounts on high-
security servers, the attacker can then use the cap-
tured passwords to access those high-security
servers.

Some users classify servers into high-security
servers and low-security servers, and use one pass-
word for high-security servers and another different
password for low-security servers. This practice is
remarkably insecure. First, this classification is
highly subjective and a typical user may not do it
right. This would cause the same password being
used on both a high-security server and a low-secu-
rity server. Second, the two different passwords are
possibly related, such as by being formed according
to the same pattern. Thus knowing one password
might enable an attacker to discover the other
one. Third, not every high-security server is trust-
worthy. For example, an employee of a high-secu-
rity server may be bribed to breach the passwords
of its clients to attackers. In addition, gathering a
user’s personal information from multiple low-secu-
rity servers could be helpful in discovering the other
password for high-security servers.

We call the attacks of stealing passwords by set-
ting up a malicious server or by compromising a

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

http://www.yahoo.com
http://www.travelocity.com
http://www.discovercard.com
http://www.chase.com
http://www.fidelity.com

M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx 3

benign server “malicious server attacks”. We use the
term “‘malicious servers” to denote the servers that
are either set up or compromised by an attacker.
When using the HTTP basic authentication proto-
col, a user has to use a different and unrelated pass-
word for every different server to prevent malicious
server attacks. Remembering many totally different
and unrelated passwords is certainly not viable for
most users. And writing down all the user names
and passwords on a piece of paper is certainly not
a good idea because compromising of this list could
cause serious loss.

1.2. Our solution

In this paper, we propose a new password proto-
col, named Single Password Protocol (short for
SPP), which allows a user to use one single pass-
word (and one single user name) for all of his
accounts while defeating malicious server attacks.
SPP uses two basic techniques: challenge/response
and one-time server-specific tickets.

SPP works basically as follows. Let P be the sin-
gle password that a client C remembers. When C
registers with a server S, C generates a challenge
and ticket verification information, then sends them
to S, and S stores them in its password file. Later
on, when C tries to login on S, S prompts C with
the stored challenge. Then C uses the challenge,
the server’s name S, and his password P to mint a
one-time server-specific ticket, together with a new
challenge and new ticket verification information,
and sends them to S. Then, S verifies the received
ticket using the stored ticket verification informa-
tion. If the ticket is valid, then the authentication
of C is successful, and S subsequently replaces the
stored challenge and ticket verification information
by the new challenge and new ticket verification
information that S received along with the one-time
server-specific ticket from C.

SPP allows a client to use the same user name
and password for all of his accounts while defeating
malicious server attacks because of the following
two reasons:

1. A server never knows a client’s password at any
time. In SPP, a client uses the challenge received
from a server, the server’s name, and his pass-
word, to mint a one-time server-specific ticket
using a one-way hash function, and sends the
one-time server-specific ticket, instead of his
password, to the server for authentication. The

password of a client is used for minting a one-
time server-specific ticket, and it is the ticket that
is used for authenticating the client. The server
cannot feasibly compute the user’s password
based on the one-time server-specific ticket and
the ticket verification information stored in the
server due to the use of one-way hash functions.

2. Each ticket can only be used once. At any
moment, for one client, ticket verification infor-
mation in different servers are different. There-
fore, a malicious server cannot replay a received
ticket to other servers to gain unauthorized
access. At any server, for one client, ticket verifi-
cation information are changed unpredictably
after each successful login.

The rest of this paper proceeds as follows. In Sec-
tion 2, we present the single password protocol,
while in Section 3, we give detailed security analysis
of this protocol. In Section 4, we review and exam-
ine existing password protocols and compare them
with our protocol. Section 5 concludes.

2. Single password protocol

In this section, we present our Single Password
Protocol (SPP for short). For ease of understanding,
we first present four intermediate versions of it start-
ing from the HTTP basic authentication protocol.
We show that each intermediate version is vulnera-
ble to a particular attack, and each attack is coun-
tered by the following versions.

The notations used in this section is listed in
Table 1.

Note that the message digest (one-way hash)
function MD() used in this paper is assumed to have
the property that a polynomial-bounded adversary
should not be able to gain any information about
the input by examining the output of such a func-
tion. Example viable candidates include M D5 [16]
and SHA-1 [18].

Table 1

Notations

C Client

S Server

P Password remembered by client

n, n; Random number

MD() Message digest (one-way hash) function
MD*() MD(MD())

\ Concatenation

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

4 M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx

2.1. Version 1

The first version is the HTTP basic authentica-
tion protocol, which is shown in Fig. 1. In this pro-
tocol, for each registered client C, whose password
is P, server S stores M D(P) as password verification
information in a password file. We assume server S
has some out-band means of authenticating the ini-
tial registration, discussion of which is out the scope
of this paper. Each time client C tries to login on
server S, C sends his user name C and password P
to S. Then S uses its stored password verification
information MD(P) to authenticate P. More pre-
cisely, S first computes the message digest of the
received password, and then compares the result
with its stored password verification information
MD(P). If they are equal, then the authentication
is successful.

Despite the wide use of the HTTP basic authen-
tication protocol, it suffers from malicious server
attacks. To launch this type of attack, an attacker
first sets up a malicious server and allures people
to register with him using a user name and a pass-
word. Because people often use the same user name
and password on multiple servers, the attacker is
able to henceforth impersonate such clients to other
servers such as an online banking website. Clearly,
malicious server attacks can be extremely damaging.

2.2. Version 11

To counter malicious server attacks, we use the
challenge/response technique. When client C regis-
ters with server S, he first generates a random num-
ber n, computes MD(n|P), and then sends them to S.
Server S stores n as a challenge and MD(n|P) as
password verification information in its password
file for client C. Note that the party who remembers
n is server S, not client C, although n is generated by
C. Client C still only remembers his password P.
Since C generates a random number as a challenge
independently for each registration, the possibility
that the two challenges on two different servers are
equal is negligible. Each time client C tries to login
on server S, S sends n as the challenge back to C.

C knows P
S stores MD(P)
¢ —8S: c|p

Fig. 1. Version I (vulnerable to malicious server attacks).

Then C computes the message digest of (n|P) and
sends the result as the response to S. Server S com-
pares this response with the stored password verifi-
cation information MD(n|P). If they are equal, then
the authentication is successful. Note that client C
does not send his password P to S, even in the initial
registration. Knowing MD(n|P) does not allow ser-
ver S to gain any information about the password
P, and does not allow server S to impersonate client
C to other servers. Therefore, this protocol is secure
against malicious server attacks. This password pro-
tocol as version II is shown in Fig. 2.

Compared to Version I, in Version II, the num-
ber of messages is increased by one, the computa-
tional cost of the client is increased by the cost of
computing a one-way hash function, and the com-
putational cost of the server is decreased by the cost
of computing a one-way hash function.

Unfortunately, this password protocol is vulnera-
ble to password file compromise attacks. To launch
this type of attack, an attacker first steals the pass-
word file of a server by some means such as breaking
into the server or colluding with insiders of the
server; second, the attacker tries to discover either
the password of the client or the valid response that
the client would use to login on the server using the
information in the appropriated password file.
According to the above version II protocol, stealing
the password file of server S enables the attacker to
impersonate any of its clients because the response
is the same as the password verification information.

2.3. Version II1

To counter password file compromise attacks,
the response should not be computable from the
password verification information. Accordingly,
we change the password verification information
from MD(n|P) to MD?*n|P). Note that an attacker
cannot deduce the response MD(n|P) from the
password verification information MD*(n|P) in
polynomial time. This password protocol of version
III is shown in Fig. 3.

C knows P

S stores n, MD(n|P)
C— S c

C < S: n

C— S MD(n|P)

Fig. 2. Version II (vulnerable to password file attacks).

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx 5

C knows P

S stores n, MD?(n|P)
C—S: C

C«S: n

C—S: MD(TL‘P)

Fig. 3. Version III (vulnerable to message log attacks).

Compared to Version II, in Version III, the num-
ber of messages remains the same, the computa-
tional cost of the client remains the same, but the
computational cost of the server is increased by
the cost of computing a one-way hash function.

Unfortunately, this password protocol is vulner-
able to message log compromise attacks. Some serv-
ers with stringent security requirements record every
message that they send or receive into a message log.
To launch message log compromise attacks, an
attacker first steals the message log of a server just
like stealing the password file in the password file
compromise attack; second, the attacker tries to
gain unauthorized access using the information in
the appropriated message log. In the above protocol
of version III, the response that client C uses to
authenticate himself to server S, namely MD(n|P),
may be stored in the message log of S. Stealing such
a message log of server S enables the attacker to
impersonate any of its clients because the response
that a client uses to authenticate himself to a server
is always the same.

2.4. Version IV

To counter message log compromise attacks, we
use the technique of one-time tickets. Most tickets
in real life, such as movie tickets, are one-time tick-
ets in the sense that they can only be used once.
Here, we want the response from a client to contain
a one-time ticket, which can be used to authenticate
the client only once. Therefore, the response from a
client in each login needs to be unique every time.
To achieve this uniqueness, we change the random
number n involved in the protocol accordingly.
Let n; be the challenge and MD?*(n;|P) be the ticket
verification information stored in server S for client
C. Every time when C tries to login on server S, S
sends the challenge n; back to C. Then, C first com-
putes the one-time ticket MD(n,;|P); second, C
chooses a new challenge n,;; and computes new
ticket verification information MD2(n5+1|P); third,
C sends all of them (MD(ni|P)\n,~+1|MD2(n,~+1|P))

C knows P

S stores n;, MD?(n,|P)

C—S: C

C S n;

C—8S: MD (1| P)|nisa| MD*(nsy 1| P)

Fig. 4. Version IV (vulnerable to server spoofing attacks).

to S. When S receives this message, S first verifies
the received one-time ticket MD(n;|P) using the
stored ticket verification information MD*(n,|P). If
the one-time ticket is valid, then the authentication
is successful and subsequently S replaces the stored
n; and MDz(n,;|P) by n;+1 and MDZ(n,;H\P). This
password protocol of version IV is shown in Fig. 4.
Compared to Version III, in Version IV, the
number of messages remains the same, the cost of
the client is increased by the cost of computing
two more hash functions, and the cost of the server
is increased by updating one database record.
Unfortunately, this password protocol is vulner-
able to server spoofing attacks. To launch server
spoofing attacks, a malicious server S first pretends
to be client C and tries to login on another benign
server S’, who has C as a client and stores n; as
the challenge and MD?(n/|P) as the ticket verifica-
tion information for client C. Responding to the
login request from S, S’ sends the challenge »} to
the malicious server S. After malicious server S
obtains n; from server S’, S stops communicating
with S’. Later on, when C tries to login on S, S
sends to C the stolen challenge #, instead of the
correct one n,. Since C only remembers his password
P, C assumes that this challenge is the one stored in
S. Consequently, C sends to S the response
MD(#|P) | n,,,|MD*(n,,|P), which can be used by
the malicious server S to login on S’ as client C.

2.5. Final version

To counter server spoofing attacks, we make the
one-time ticket from a client to be specific to the
server that the ticket is intended for. More precisely,
we change the one-time ticket from MD(n]|P) to
MD(n]|P|S), and accordingly change the ticket
verification information from MDz(n,-|P) to
MD?(n|P|S). In this way, when malicious server S
sends to client C the challenge n/, which he steals
from benign server S’, C will send to S the corre-
sponding response

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

6 M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx

C knows P
S stores n;, MD?(n;|P|S)

c—S: C
C—S8 n
C — S: MD(n;|P|S)|niy1| MD*(niyy | P|S)

Fig. 5. Single Password Protocol (SPP).

MD(n;|P|S)|n,,|MD? (n;,,|P|S),

which cannot be replayed as a valid response to S’.
The valid response to S’ should be

MD(n|P|S') |, |MD*(n], ,|P|S").

These modifications complete our single password
protocol, which is shown in Fig. 5.

Compared to Version IV, in this final version, the
number of messages remains the same, the cost of
the client and the server also remain the same.

Note that in this paper, we assume that SPP is
running on top of SSL. A client authenticates a ser-
ver using SSL before SPP starts. Therefore, a mali-
cious server cannot forge its identity.

3. Security analysis

In this section, we discuss the security of SPP. We
start our discussion by the assumptions we need to
make for SPP to be secure. Then we analyze the
security properties of SPP.

3.1. Assumptions

For SPP to be secure, we have two reasonable
assumptions. First, we assume that SPP is used with
the Secure Sockets Layer (SSL for short). Second,
we assume that a user is capable of remembering
one password of eight (or more) random characters
for all his accounts.

3.1.1. Using SSL

The current industry standard for securing com-
munication over the Internet is SSL, which was
developed by Netscape in 1994 [5]. SSL has been
built into all major web browsers, web servers, email
clients, email servers, etc. The SSL protocol runs
mainly in three steps:

1. Server authentication: The server sends its certifi-
cate to the client. The client authenticates the ser-
ver using the certificate. Note that the certificate
contains the public key of the server.

2. Key establishment: The client generates a session
key, encrypts it with the public key of the server,
and sends the result to the server. The server then
decrypts the message using its private key and
obtains the session key. Henceforth the session
key between the client and the server is
established.

3. Secure communication: All the subsequent
communication is encrypted with the session
key.

A higher level protocol can easily layer on top of
the SSL protocol transparently because SSL is
application protocol independent. Based on the
wide availability of SSL implementations, we
assume that SPP is layered on top of SSL. In other
words, SPP runs in the third step (secure communi-
cation) of SSL. All the messages involved in our
protocol are encrypted with a session key. Note that
the client authenticates the server using the server’s
certificate when the SSL connection is being initi-
ated and the server authenticates the client using
SPP after the SSL connection is established. In the
sense of mutual authentication, SPP is complemen-
tary to SSL.

It is worth noting that SSL only provides server
authentication if the server’s certificate is carefully
checked. This is usually done by a web browser. A
web browser, such as Internet Explorer and Net-
Scape, is usually preloaded with a list of trusted cer-
tificate authorities. When a client tries to access a
web site whose certificate has expired or is not
signed by a trusted certificate authority, the web
browser usually prompts a warning message to the
client saying that the certificate should not be
trusted. In this paper, we assume most clients will
stop accessing such web sites, or at least refrain
from giving out any confidential information to
such web sites.

3.1.2. Using strong passwords

Using SPP, a user can safely use the same pair of
user name and password for all the servers with
which he registers. We assume that the single pass-
word that a user remembers consists of eight (or
more) random characters. The characters are the
ones available on standard keyboards. Remember-
ing random characters seems intimidating, but
remembering only a single string of eight random
characters in one’s life time for all accounts does
not. How to generate random passwords, either by
software or by humans according to some high

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx 7

quality password policies, is out the scope of this
paper. Next, we will see that the above length and
randomness requirements of one’s single password
defeat brute force attacks and online/off-line dictio-
nary attacks.

3.2. Security properties

Here, we discuss a list of 16 types of attacks that
can be launched on password protocols. This list
covers all the password attacks that appeared on
previous literatures. We show that SPP is secure
against each of them.

1. Eavesdropping attacks: In this type of attack,
an attacker listens to all the communication
between a client and a server, and tries to dis-
cover the client’s password or tickets. Since
SPP runs on top of SSL and all the communi-
cation between a client and a server is
encrypted with a session key established by
SSL, an eavesdropper cannot discover the cli-
ent’s password or tickets. Note that without
SSL, an eavesdropper can discover the one-
time ticket, but still cannot discover the cli-
ent’s password due to the use of a one-way
hash function.

2. Message replay attacks: In this type of attack,
an attacker first listens to all of the communi-
cation between a client and a server, then tries
to login on the server by replaying some mes-
sages that the attacker captured previously.
SPP is secure against message replay attacks
for two reasons. First, SPP messages are
encrypted by different SSL session keys in dif-
ferent runs of SPP. Replaying a message of
one SSL session to another SSL session is use-
less. Second, even without the help of SSL,
SPP itself is secure against message replay
attacks. If an attacker replays an old challenge
to the client, the client will create the old ticket
that corresponds to the old challenge, but the
server cannot verify the old ticket because
every ticket can be used only once. Similarly,
replaying an old ticket is useless. Note that
the ticket verification information stored in
the server is modified if and only if the ticket
from the client is successfully verified. Replay-
ing any previous message cannot cause the
ticket verification information to be changed
because the replayed messages cannot be veri-
fied successfully.

3. Message loss attacks: In this type of attack, an

attacker drops some messages between a client
and a server with the hope of discovering the
client’s password or tickets. Launching this
type of attack on SPP can only cause the
authentication between the client and the ser-
ver to fail, but cannot enable an attacker to
gain any information about the client’s pass-
word or tickets.

. Message modification attacks: In this type of

attack, an attacker modifies some messages
between a client and a server on the fly with
the hope of discovering the client’s password
or tickets, or gaining unauthorized access.
Since every message in SPP is encrypted by a
session key established by SSL, launching
message modification attacks on SPP has the
same effect as launching message loss attacks
on SPP. In other words, modifying the mes-
sages in SPP can only cause the authentication
between the client and the server to fail, but
cannot enable an attacker to gain any infor-
mation about the client’s password or tickets,
or gain unauthorized access.

. Message insertion attacks: In this type of

attack, an attacker inserts some messages in
the channel between a client and a server on
the fly with the hope of discovering the
client’s password or tickets, or gaining un-
authorized access. Since every message in
SPP is encrypted by a session key established
by SSL, inserting invalid messages into SPP
can only cause the authentication between
the client and the server to fail, but cannot
enable an attacker to gain any information
about the client’s password or tickets, or gain
unauthorized access. For example, if an
attacker inserts a message in the channel
from a server to a client as the challenge,
the client will use its SSL session key to
decrypt the message and will use the result,
whatever it maybe, to generate the one-time
ticket, which consequently will fail to be ver-
ified by the server.

. Brute force attacks: To launch brute force

attacks, an attacker first obtains some
password verification information such as the
message digest of a password; second, for
every possible combination of characters, the
attacker tests whether it is the correct pass-
word according to the obtained password
verification information. In practice, a pass-

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

10.

M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx

word that consists of eight characters is long
enough to be secure against brute force
attacks because there are at least 68% combina-
tions and testing all of them takes years. Since
in SPP the single password that a user remem-
bers consists of eight (or more) characters,
SPP is secure against brute force attacks.

. Online dictionary attacks: In this type of

attack, an attacker pretends to be someone
else and attempts to login on a server by trying
every word in a dictionary which contains
commonly used passwords. Since in SPP the
single password that a user remembers con-
sists of random characters, such a password
cannot be found in password dictionaries
and cannot be derived from any word in pass-
word dictionaries. Therefore, SPP is secure
against online dictionary attacks.

. Off-line dictionary attacks: In this type of

attack, an attacker first obtains some pass-
word verification information such as the mes-
sage digest of a password, and then, for every
word in password dictionaries, the attacker
tests whether it is the correct password accord-
ing to the obtained password verification
information. Similarly, because in SPP the sin-
gle password that a user remembers consists of
random characters, SPP is secure against off-
line dictionary attacks.

. Password file compromise attacks: In this type

of attack, an attacker first steals a server’s
password file, which stores the password veri-
fication information of every client; then the
attacker tries to discover either the password
of a client using off-line dictionary attacks or
the next ticket that a client will use to login
on the server. Because SPP is secure against
off-line dictionary attacks, the attacker cannot
discover the password of any client. Because
the message digest function used in SPP is a
secure one-way hash function, from the pass-
word verification information MD?(n,|P|S)
stored in the password file, it is not computa-
tionally feasible to compute the next ticket
MD(n|P|S). So, the attacker cannot discover
the next ticket that a client will use. Therefore,
SPP is secure against password file compro-
mise attacks.

Message log compromise attacks: This type of
attack is similar to the above password file
compromise attacks except that the stolen file
is not the password file but the message log,

11.

which stores all the messages exchanged
between a client and a server. In addition,
these messages are not encrypted by the ses-
sion key established by SSL. This is a strong
attack since we assume that the attacker
could get all the messages of past sessions
in plain text. However, SPP is secure against
this type of attack for the following two
reasons:

(a) Tickets cannot be reused: In SPP, each
ticket is unique and nonpredictable,
and each ticket can only be used once.
Although an attacker can obtain the
tickets that has been used, he cannot
use any of these used tickets to gain
unauthorized access.

(b) Password cannot be computed: Simi-
larly, it is not computationally feasible
to obtain the password P from the ticket
MD(n]|P|S) and the ticket verification
information MD?*(n;4, |P|S).

Note that the ticket verification information
stored in the server is modified if and only if
the ticket from the client is successfully verified.
Any old ticket in the message log file cannot be
successfully verified. Therefore, knowing old
tickets does not enable an attacker to be able
to modify the ticket verification information
in the server.
In this paper, we assume that the ticket verifica-
tion data stored in a server is not compromised.
Otherwise, an attacker can replace the ticket
verification data stored in a server by some pre-
viously used ticket verification data, and hence-
forth the attacker can login to the server using
previously used ticket. Such attack scenarios
are very unlikely to happen. If an attacker is
capable to modify the ticket verification data
stored in a server, it means that the attacker
has gain the control over the server, and there-
fore does not need to login on the server as a
client.
Malicious server attacks: In this type of attack,
an attacker first sets up a malicious server and
allures people to register with the server;
second, tries to impersonate one of his clients
to login on another server. SPP is secure
against this type of attack because of two
reasons:

(a) A client never releases his password to a
server, and a server is never able to com-
pute a client’s password based on the

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

(2007), doi:10.1016/j.comnet.2007.03.007

M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx 9

password verification information that
the client gives to the server.

(b) Replaying a used ticket to any server
cannot be successful. Although a client
uses the same password on multiple serv-
ers, a ticket is valid for one particular
server and is valid for only one time.

12. Server spoofing attacks: Server spoofing
attacks could be launched on challenge/
response based password protocols. In this
type of attack, a malicious server S first pre-
tends to be one of its clients C and tries to
login on another benign server S’ where C also
has an account. By doing this, S steals the
challenge that C stores in S’. Later on, when
C tries to login on S, S sends the stolen chal-
lenge to C, and wishes that C would send the
ticket that S can use to login on S’. SPP is
secure against this type of attack because each
ticket is specific to the server that it is sent to.
Note that a malicious server cannot convince a
client that it is another server because SSL
handles server authentication using certificates
mechanisms.

13. Phishing attacks: In this type of attack, an
attacker sends fraudulent emails to users, pre-
tending to be the system administrator of a
benign website such as an online banking web-
site, and fools users to take login actions on a
malicious website, which looks very similar to
the benign website, but is set up by the attacker.
Once a user tries to login on such a malicious
website, his user name and password will be
recorded and possibly later will be used by the
attacker to login on the benign website. Phish-
ing attacks have skyrocketed in 2004 [2].
According to [2], on average, 5% of recipients
of such phishing emails are fooled into
responding to them. Clearly, phishing attacks
are very effective on the HTTP basic authenti-
cation protocol because users send their pass-
words to the server in each authentication.
However, such attacks cannot succeed on SPP
because what an attacker obtains is a one-time
ticket that is specific to the malicious server
(i.e., the domain hosting the malicious web
page), and this one-time server-specific ticket
cannot be successfully played anywhere else.

Here we elaborate how SPP prevents phishing
attacks using an example. Suppose you have an
account on www.chase.com. You receive a phishing

email pretending to be an authentic email from
www.chase.com telling you that you need to login
on www.chase.com. After you click the link pro-
vided in the email, which looks like www.chase.com,
your browser actually displays the web page of a
malicious website, say www.chase usa.com, which
looks exactly the same as www.chase.com. Suppose
the malicious website www.chase usa.com has
known the value of n; for your account on www.
chase.com. After you type in your password P, your
browser generates the one-time ticket

MD(n;|P|www.chase_usa.com)|n; |MD?

(n;1|P|www.chase_usa.com)

and send it to www.chase _usa.com. Note that the
malicious website www.chase _usa.com cannot login
on www.chase.com because the valid one-time ticket
for www.chase.com is

MD(n;|P|[www.chase.com)|n, | MD*

(n;1|P|www.chase.com).

In this example, we assume that your browser, the
benign website www.chase.com and the malicious
website www.chase usa.com are running SPP. If
the malicious website www.chase usa.com does
not run SPP, your browser should alert you that this
website could be malicious.

4. Related work

Many password protocols have been proposed,
especially in the past decade. In this section, we
review these password protocols and compare them
with SPP.

4.1. One-time password protocols

In one-time password protocols, a client uses a
different password for every authentication with a
server. There are mainly two such protocols: Lam-
port’s one-time password protocol [12] (which was
implemented in S/KEY [7-9] and OPIE [14]) and
Rubin’s one-time password protocol [17]. Both
one-time password protocols were designed before
the wide deployment of SSL. The motivation for
both one-time password protocols are preventing
eavesdropping attacks, which are now easily
defeated by the confidentiality provided by the
widely deployed SSL. To make either of the above
one-time password protocols secure against mali-

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

http://www.chase.com
http://www.chase.com
http://www.chase.com
http://www.chase.com
http://www.chase_usa.com
http://www.chase.com
http://www.chase_usa.com
http://www.chase.com
http://www.chase.com
http://www.chase_usa.com
http://www.chase_usa.com
http://www.chase.com
http://www.chase.com
http://www.chase.com
http://www.chase_usa.com
http://www.chase_usa.com

10 M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx

cious server attacks, a client has to remember multi-
ple “seed” passwords or multiple lists of one-time
passwords for multiple accounts. In addition, both
one-time password protocols need a client to re-
register with its server when the client uses up his
current list of one-time passwords. This re-registra-
tion requirement is extremely inconvenient for
clients because each registration costs their signi-
ficant effort, and it is extremely harmful for e-
commerce servers because it can cause annoyed
customers to leave. In contrast, SPP only requires
a user to remember one single password for all of
his accounts.

4.2. Strong password protocols

Strong password protocols often have strong
security properties, but they usually require compu-
tationally intensive operations such as modular
exponentiations, asymmetric encryptions/decryp-
tions, etc. Many such protocols have been pro-
posed, such as EKE [3] and SRP [19].

Most of these strong password protocols were
proposed before the wide deployment of SSL. They
are mostly designed to achieve the following two
goals: (1) To establish a session key between a client
and a server after the server authenticates the client
using passwords. This is not a must-have function-
ality for a password protocol any more because a
session key is established after the client authenti-
cates the server using SSL. (2) To prevent dictio-
nary attacks. This goal is always expensive to
achieve. Using SPP, dictionary attacks are not a
problem because a client is required to choose a
single strong password to protect all of his
accounts.

Those strong, and consequently heavy weight,
password protocols are not well suited for Internet
authentication because of the heavy computational
cost [6]. A password protocol that is desirable for
the Internet must be computationally efficient in
both the server side and the client side because of
two reasons. First, on the server side, a server on
the Internet (mostly a web server) often has heavy
service load and consequently cannot afford signifi-
cant computation for authenticating every client.
Second, on the client side, the computing device of
a client may have limited computational power,
for example, a palm or a cell phone. In contrast,
SPP is a light weight password protocol that
involves negligible amount of processing time for
both the server side and the client side.

4.3. Web-specific password protocols

Except for the HTTP basic authentication proto-
col mentioned in Section 2, the HTTP specification
provides another authentication mechanism: digest
authentication protocol [4]. The HTTP digest
authentication protocol uses the challenge/response
technique, which basically works as follows. When
client C registers with server S, S stores C’s password
P. When C wants to login on S, S generates a nonce
n and sends it to C as a challenge. Then C computes
MD(n|P) and sends the result to S as a response. Ser-
ver S verifies the received response using the stored
password P and the generated nonce n. Because a
server knows the passwords of its clients, the HTTP
digest authentication protocol is vulnerable to mali-
cious server attacks and password file compromise
attacks. In addition, because the response that a cli-
ent sends to a server is not specific to that server, the
HTTP digest authentication protocol is vulnerable
to server spoofing attacks and phishing attacks.

4.4. Single sign-on protocols

The basic idea of single sign-on protocols, such
as the Microsoft Passport protocol [15], is to use
one central server to authenticate clients for multi-
ple servers, instead of each server authenticating
clients by itself. Although single sign-on protocols
provide clients the convenience of remembering
only one password, which is registered in the single
sign-on server, such protocols have the following
main disadvantages. First, single sign-on protocols
introduces a single point of failure. If the single
sign-on server fails working, then all the servers that
depend on it fail authenticating their clients, which
is extremely destructive. Compromising the single
sign-on server has high pay-offs for attackers and
thereby makes attack attempts more likely. In fact,
Microsoft Passport protocol has already been
shown to have security flaws in [11]. Second, as
pointed out in [13], single sign-on protocols have
high cost of integration because servers need to reg-
ister with the single sign-on server in order to get the
service, and consequently lacks universal adoption.
For the servers that do not use single sign-on proto-
cols, a client has to register with them individually
using passwords. If a client registers with a mali-
cious server using the same password that he uses
for the single sign-on server, then the malicious ser-
ver can impersonate the client to login on multiple
servers.

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx 11

5. Conclusions

The predominant HTTP basic authentication
protocol (over SSL) makes the common practice of
using the same password for multiple accounts
remarkably dangerous: an attacker can effectively
steal users’ passwords for high-security servers by
setting up a malicious server or breaking into a
low-security server. To defeat this type of malicious
server attack, we propose the Single Password Pro-
tocol (SPP). SPP employs two basic techniques: chal-
lenge/response and one-time (server-specific) tickets.

SPP has two important features. One is that SPP
does not allow a server to know a client’s password
at any time. An attacker cannot steal a client’s pass-
word by compromising a server. Therefore, SPP
allows a user to securely use one single password
across multiple servers. The other feature is that
SPP prevents phishing attacks.

The following four properties of SPP makes it a
promising candidate for client authentication across
the Internet:

5.1. Simple

SPP only involves three messages: first, client C
sends to server S his user name C; second, S sends
to C the stored challenge; third, C sends to S a
one-time server-specific ticket, together with a new
challenge and new ticket verification information.
This simple structure makes SPP easy to understand
and easy to implement.

5.2. Secure

The security of SPP is based on two reasonable
assumptions. First, SPP is layered on top of SSL.
This assumption is reasonable because SSL has
become the industry standard for securing communi-
cation over the Internet and has been built into all
major web browsers, web servers, email clients, email
servers, etc. Second, the single password that a client
uses to protect all of his accounts is a string of eight
(or more) random characters, which is not guessable.
This assumption is reasonable because using SPP, a
user needs to remember only one password for all
of his accounts. Under these two assumptions, SPP
is secure against a long list of attacks: eavesdropping
attacks, message replay attacks, message loss attacks,
message modification attacks, message insertion
attacks, brute force attacks, online dictionary attacks,
off-line dictionary attacks, password file compromise

attacks, message log compromise attacks, malicious
server attacks, server spoofing attacks, and even
phishing attacks. Detailed analysis of the security
properties of SPP is available in Section 3.

5.3. Efficient

SPP only involves one type of computation, hash-
ing (i.e., computing message digest), which requires a
negligible amount of processing time. In addition, it
only involves four executions of this hashing compu-
tation: one execution on the server side and three
executions on the client side. SPP itself does not
involve any sort of encryption/decryption opera-
tions, although the messages in SPP are encrypted
by the underlying SSL protocol. This property ben-
efits SPP in both performance and availability. In
terms of performance, computing a message digest
requires orders of magnitude less processing time
than performing an encryption/decryption. In terms
of availability, if a password protocol stores some
encrypted data using some encryption algorithm
on the server side, then a client cannot login on his
accounts on a machine that the corresponding
decryption algorithm is not available.

5.4. User-friendly

Using SPP, a user only needs to remember one
password, and this password can be used for all of
his accounts. In addition, this password can be
changed easily at the user’s will during each login
without the notice of the server.

Acknowledgements

The authors would like to thank Reza Curtmola
for his valuable comments on the preliminary ver-
sion of this paper. The authors also would like to
thank the editor and the anonymous referees for
their constructive comments and valuable sugges-
tions in improving the presentation of this paper.

References

[1] A. Adams, M.A. Sasse, User are not the enemy, Commu-
nications of the ACM 42 (12) (1999) 40-46.

[2] Anti-Phishing Working Group. http://www.antiphish-
ing.org/. Accessed: January 30, 2005.

[3] S.M. Bellovin, M. Merritt, Encrypted key exchange: pass-
word-based protocols secure against dictionary attacks, in:
Proceedings of the 1992 IEEE Computer Society Conference
on Research in Security and Privacy, 1992, pp. 72-84.

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

http://www.antiphishing.org/
http://www.antiphishing.org/

12 M.G. Gouda et al. | Computer Networks xxx (2007) xxx—xxx

[4]J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P.
Leach, A. Luotonen, L. Stewart, Http authentication: Basic
and digest access authentication, RFC 2617, 1999.

[5] A.O. Freier, P. Karlton, P.C. Kocher, The ssl protocol
version 3.0 internet draft, March 1996. http://wp.net-
scape.com/eng/ss13/draft302.txt.

[6] K. Fu, E. Sit, K. Smith, N. Feamster, Dos and don’ts of
client authentication on the web, in: Proceedings of the 10th
USENIX Security Symposium, August 2001.

[7] N. Haller, The s/key one-time password system, RFC 1760,
1995.

[8] N. Haller, C. Metz, A one-time password system, RFC 1938,
1996.

[9] N.M. Haller, The S/KEY one-time password system, in:
Proceedings of the Symposium on Network and Distributed
System Security, 1994, pp. 151-157.

[10] R. Kanaley, Login error trouble keeping track of all your
sign-ons? Here’s a place to keep your electronic keys, but
you’d better remember the password, San Jose Mercury
News, February 4, 2001.

[11] D.P. Kormann, A.D. Rubin, Risks of the passport single
signon protocol, Computer Networks 33 (2000) 51-58.

[12] L. Lamport, Password authentication with insecure commu-
nication, Communications of the ACM 24 (11) (1981) 770-
771.

[13] P.D. McDaniel, Handbook of Information Security, chapter
Computer and Network Authentication, John Wiley and
Sons Inc., 2004.

[14] D.L. McDonald, R.J. Atkinson, C. Metz, One time pass-
words in everything (opie): experience with building and
using stronger authentication, in: Proceedings of the 5th
USENIX UNIX Security Symposium, 1995.

[15] Microsoft Passport, http://www.passport.net/. Accessed:
November 18, 2004.

[16] R. Rivest, The md5 message-digest algorithm, RFC 1321,
1992.

[17] A.D. Rubin, Independent one-time passwords, in: Proceed-
ings of the 5th USENIX Security Symposium, 1995, pp. 167—
175.

[18] US National Institute of Science and Technology. Secure
hash standard. Federal Information Processing Standard
(FIPS) 180-1, 1993.

[19] T. Wu, The secure remote password protocol, in: Proceed-
ings of the Internet Society Symposium on Network and
Distributed System Security, March 1998, pp. 97-111.

Mohamed G. Gouda was born in Egypt.
His first B.Sc. was in Engineering and his
second was in Mathematics; both are
from Cairo University. Later, he
obtained M.A. in Mathematics from
York University and Masters and Ph.D.
in Computer Science from the University
of Waterloo. He worked for the Honey-
well Corporate Technology Center in
Minneapolis 1977-1980. In 1980, he
joined the University of Texas at Austin
where he currently holds the Mike A. Myers Centennial Profes-
sorship in Computer Sciences. He spent one summer at Bell labs
in Murray Hill, one summer at MCC in Austin, and one winter at
the Eindhoven Technical University in the Netherlands.

His research areas are distributed and concurrent computing
and network protocols. In these areas, he has been working on
abstraction, formality, correctness, nondeterminism, atomicity,
reliability, security, convergence, and stabilization. He has pub-
lished over 60 journal papers, and over 80 conference and
workshop papers. He has supervised 19 Ph.D. dissertations.

He was the founding Editor-in-Chief of the Springer-Verlag
journal Distributed Computing 1985-1989. He served on the
editorial board of Information Sciences 1996-1999, and he is
currently on the editorial boards of Distributed Computing and
the Journal of High Speed Networks.

He was the program committee chairman of ACM SIG-
COMM Symposium in 1989. He was the first program committee
chairman of IEEE International Conference on Network Proto-
cols in 1993. He was the first program committee chairman of
IEEE Symposium on Advances in Computers and Communica-
tions, which was held in Egypt in 1995. He was the program
committee chairman of IEEE International Conference on Dis-
tributed Computing Systems in 1999. He is on the steering
committee of the IEEE International Conference on Network
Protocols and on the steering committee of the Symposium on
Self-Stabilizing Systems, and was a member of the Austin Tues-
day Afternoon Club from 1984 till 2001.

He is the author of the textbook “Elements of Network
Protocol Design”, published by John-Wiley & Sons in 1998. This
is the first ever textbook where network protocols are presented
in an abstract and formal setting. He also coauthored, with
Tommy M. McGuire, the monograph “The Austin Protocol
Compiler”, published by Springer in 2005.

He is the 1993 winner of the Kuwait Award in Basic Sciences.
He was the recipient of an IBM Faculty Partnership Award for
the academic year 2000-2001 and again for the academic year
2001-2002 and became a Fellow of the IBM Center for Advanced
Studies in Austin in 2002. He won the 2001 IEEE Communica-
tion Society William R. Bennet Best Paper Award for his paper
“Secure Group Communications Using Key Graphs”, coau-
thored with C. K. Wong and S. S. Lam and published in the
February 2000 issue of the IEEE/ACM Transactions on Net-
working (Volume 8, Number 1, Pages 16-30). In 2004, his paper
“Diverse Firewall Design”, coauthored with Alex X. Liu and
published in the proceedings of the International Conference on
Dependable Systems and Networks, won the William C. Carter
award.

Alex X. Liu received his Ph.D. degree in
computer science from the University of
Texas at Austin in 2006. He is currently
an assistant professor in the Department
of Computer Science and Engineering of
Michigan State University. He won the
2004 IEEE& IFIP William C. Carter
Award, the 2004 National Outstanding
Overseas Students Award sponsored by
the Ministry of Education of China, the
2005 George H. Mitchell Award for
Excellence in Graduate Research in the University of Texas at
Austin, and the 2005 James C.Browne Outstanding Graduate
Student Fellowship in the University of Texas at Austin. His
research interests include computer and network security,
dependable and high-assurance computing, applied cryptogra-
phy, computer networks, operating systems, and distributed
computing.

(2007), doi:10.1016/j.comnet.2007.03.007

Please cite this article in press as: M.G. Gouda et al., SPP: An anti-phishing single password protocol, Comput. Netw.

http://wp.netscape.com/eng/ssl3/draft302.txt
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.passport.net/

	SPP: An anti-phishing single password protocol
	Introduction
	The problem
	Our solution

	Single password protocol
	Version I
	Version II
	Version III
	Version IV
	Final version

	Security analysis
	Assumptions
	Using SSL
	Using strong passwords

	Security properties

	Related work
	One-time password protocols
	Strong password protocols
	Web-specific password protocols
	Single sign-on protocols

	Conclusions
	Simple
	Secure
	Efficient
	User-friendly

	Acknowledgements
	References

