Indexing with local features,
Bag of words models

Thursday, Oct 29

Kristen Grauman
UT-Austin

Last time

* Interest point detection
— Harris corner detector
— Laplacian of Gaussian, automatic scale selection
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Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

Corners as distinctive interest points

L L,
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M = > w(x, |,
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2 x 2 matrix of image derivatives (averaged in
neighborhood of a point).

PN

...s/

Notation:
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Harris corners example

from the R map

Any local max in 3 x 3 window Only local maxes exceeding

average R (thresholded)

Properties of the Harris corner detector

Rotation invariant? Yes

Scale invariant? No

All points will be
classified as edges

)y =

Corner!!
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Automatic scale selection

We define the characteristic scale as the scale
that produces peak of Laplacian response

2000
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3 7 8 B

characteristic scale

Slide credit: Lana Lazebnil

Example

Original image
at % the size
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Scale invariant interest points

Interest points are local maxima in both position
and scale.

= List of
x,y,0)

Squared filter
response maps

Today

« Matching local features
* Indexing features
« Bag of words model
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Local features: main components

1) Detection: Identify the
interest points

feature descriptor
surrounding each interest
point.

2) Description:Extract vector (&'(1)
X, =X

3) Matching: Determine
correspondence between
descriptors in two views

X, =[x?,..., x?P]

Raw patches as local descriptors

region A region B

The simplest way to describe the
' mgm  neighborhood around an interest
point is to write down the list of

[ ] !
g% But this is very sensitive to even
r small shifts, rotations.
vector a vector b

intensities to form a feature vector.
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SIFT descriptor

[Lowe 2004]

» Use histograms to bin pixels within sub-patches

according to their orientation.

K

2

# K>
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Why subpatches?

Why does SIFT
have some
illumination
invariance?

Making the descriptor rotation invariant

* Rotate patch according to its dominant gradient

orientation

» This puts the patches into a canonical orientation.

Image from Matthew Brown
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SIFT descriptor
[Lowe 2004]

Extraordinarily robust matching technique
- Can handle changes in viewpoint
» Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
+ Sometimes even day vs. night (below)
Fast and efficient—can run in real time

Lots of code available
«  http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of SIFT

e MR (/T

SteE‘Seit-z

Local features: main components

3) Matching: Determine
correspondence between
descriptors in two views
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Matching local features

Matching local features

Ima o Image 2
To generate candidate matches, find patches that have
the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or
closest k, or within a thresholded distance)

10/29/2009
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Matching local features

Image 1 - Image 2

In stereo case, may constrain by proximity if we make
assumptions on max disparities.

Ambiguous matches

Imae 1 - | Image 2
At what SSD value do we have a good match?

To add robustness to matching, can consider ratio :
distance to best match / distance to second best match

If high, could be ambiguous match.
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Applications of local
invariant features

Wide baseline stereo
Motion tracking
Panoramas

Mobile robot navigation
3D reconstruction
Recognition

Automatic mosaicing

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Recognition

Rothganger et al. 2003 Lowe 2002
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Today

» Matching local features
* Indexing features
» Bag of words model

Indexing local features

» Each patch / region has a descriptor, which is a
point in some high-dmensional feature space
(e.g., SIFT)

® 128D descriptor
E space

10/29/2009

16



Indexing local features

* When we see close points in feature space, we
have similar descriptors, which indicates similar
local content.

Model image 128D descriptor Target image
space

» This is of interest not only for 3d reconstruction, but
also for retrieving images of similar objects.

Figure credit: A. Zisserman

Indexing local features
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Indexing local features

With potentially thousands of features per
image, and hundreds to millions of images to
search, how to efficiently find those that are
relevant to a new image?

Indexing local features:
inverted file index
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For text
documents, an
efficient way to find
all pages on which
a word occurs is to
use an index...

We want to find all
images in which a
feature occurs.

To use this idea,
we’ll need to map
our features to
“visual words”

10/29/2009
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Text retrieval vs. image search

* What makes the problems similar, different?

Visual words: main idea

* Extract some local features from a number of images ...

e.g., SIFT descriptor space: each
point is 128-dimensional

Slide credit: D. Nister, CVPR 2006

10/29/2009
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Visual words: main idea

Visual words: main idea

10/29/2009
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Visual words: main idea
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Visual words

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
* Quantize via

clustering, let
cluster centers be
the prototype
“words”

Descriptor space
YW

10/29/2009
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Visual words

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
» Determine which

word to assign to
each new image
region by finding
the closest cluster
center.

Descriptor space
oY ¥%

Visual words

 Example: each A dhdhdhdhdhdhd
group of patches bbb dba b 4

belongs to the

same visual word Enuuuunhuu
alalelalnleslale s
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* First explored for texture and

material representations

Texton = cluster center of
filter responses over
collection of images

Describe textures and
materials based on
distribution of prototypical
texture elements.

Leung & Malik 1999; Varma &
Zisserman, 2002; Lazebnik,
Schmid & Ponce, 2003;
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Recall: Texture representation example

Windows with
primarily horizontal Both
edgeS D — p— | [/
= 4 g \\\ ,/'/ \‘m
ER ¥ 00
> |
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c  / S/ O
: [ &
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[a]

Dimension 1 (mean d/dx|value)

Windows with
small gradient in
both directions edges

Windows with
primarily vertical

mean mean
d/dx d/dy
value value
Win. #1 4 10
Win.#2 18 7
wWin#9 | 20 20

statistics to
summarize patterns
in small windows

10/29/2009
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Visual words

* More recently used for
describing scenes and
objects for the sake of

indexing or classification. s E

Sivic & Zisserman 2003;
Csurka, Bray, Dance, & Fan
2004; many others.

w Image #1

& 2
]
o]
2 7 1,2
o g
@ Image #2 8 3
o
L
a 9

10

Image #3
91 2

+ Database ifnages are loaded into the index mapping
words to image numbers

10/29/2009
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Inverted file index

New query image

10
91 2

* New query image is mapped to indices of database
images that share a word.

* If a local image region is a visual word,
how can we summarize an image (the
document)?

26



Analogy to documents

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the

For a long tige :
image wa# Sensory, brain,

visual, perception,
etinal, cerebral cortex
eye, cell, optical
nerve, image

demonstrate that the message abo
image falling on the retina undergoe:
wise analysis in a system of nerve cel
stored in columns. In this system each
has its specific function and is responsibi?
a specific detail in the pattern of the retina
image.

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce

exports, imports, US,
uan, bank, domestic,/

demand so ‘:‘__
country. China = 1
yuan against the u
permitted it to trade within a narro
the US wants the yuan to be allowe
freely. However, Beijing has made it ci
it will take its time and tread carefully bél
allowing the yuan to rise further in value.

ICCV 2005 short course, L. Fei-Fei

v

Bag of ‘words’

ICCV 2005 short course, L. Fei-Fei

10/29/2009
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Bags of visual words

* Summarize entire image g
based on its distribution N
(histogram) of word Y i
occurrences. 1
x E;;_)
» Analogous to bag of words H _
representation commonly Do -
JLw =
used for documents.
A % Bl aE % ‘
VLSRG S AN
Jhw®

Comparing bags of words

* Rank frames by normalized scalar product between their
(possibly weighted) occurrence counts---nearest
neighbor search for similar images.

181 4 ° [51 1 0]

‘ d;eq
‘ sim(dy,q) = |“—T oF
T
£

Th ™ J LW ™~
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tf-idf weighting

» Term frequency — inverse document frequency

» Describe frame by frequency of each word within it,
downweight words that appear often in the database

» (Standard weighting for text retrieval)

Total number of

Number of — :
occurrences of word — —— p1 id N g:f:brg (Se‘r;ts n
i in document d = — log —

. ny n; Number of documents
Number of words in " word i occurs in, in
document d whole database

Bags of words for content-based
image retrieval

What if query of interest is a portion of a frame?

Visually defined query “Groundhog Day” [Rammis, 1993]

“Find this
clock”

“Find this
place” g

Slide from Andrew Zisserman
Sivic & Zisserman, ICCV 2003

10/29/2009
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Video Google System

Query
region

1. Collect all words within
query region
2. Inverted file index to find
relevant frames
. Compare word counts

3
4. Spatial verification

Sivic & Zisserman, ICCV 2003

sauwiel) panalLay

e Demo online at :
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html
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K. Grauman, B. Leib

59

+ Collecting words within a query region

Query region:

pull out only the SIFT
descriptors whose
positions are within
the polygon

60
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Bag of words and spatial info

* A bag of words is an orderless representation: throwing
out spatial relationships between features

+ Middle ground:
— Visual “phrases” : frequently co-occurring words

— Semi-local features : describe configuration,
neighborhood

— Let position be part of each feature
— Count bags of words only within sub-grids of an image

— After matching, verify spatial consistency (e.g., look at
neighbors — are they the same too?)

10/29/2009
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Visual vocabulary formation

Issues:
« Sampling strategy: where to extract features?

Sampling strategies

Specific object Category

33
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Sampling strategies

~ Sparse, at Dense, uniformly o Randomly
interest points

» To find specific, textured objects, sparse
sampling from interest points often more
reliable.

* Multiple complementary interest operators
offer more image coverage.

» For object categorization, dense sampling
offers better coverage.

Multiple interest
operators

Image credits: F-F. Li, E. Nowak, J. Sivic

Visual vocabulary formation

Issues:

« Sampling strategy: where to extract features?

» Unsupervised vs. supervised

* What corpus provides features (universal vocabulary?)
» Vocabulary size, number of words

+ Clustering / quantization algorithm
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Vocabulary Trees: hierarchical clustering
for large vocabularies
* Tree construction:

° \
[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister

Visual Object Recognition Tutorial

Vocabulary Tree

* Training: Filling the tree

Visual Object Recognition Tutorial

[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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Vocabulary Tree

* Training: Filling the tree

[Nister & Stewenius, CVPR’06]

Visual Object Recognition Tutorial

K. Grauman, B. Leibe Slide credit: David Nister

Vocabulary Tree

* Training: Filling the tree

[Nister & Stewenius, CVPR’06]
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K. Grauman, B. Leibe Slide credit: David Nister
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Vocabulary Tree

* Training: Filling the tree

Visual Object Recognition Tutorial

ﬁ. [Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister

Vocabulary Tree

* Training: Filling the tree
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[Nister & Stewenius, CVPR’06]
74

“Grauman, B. Leibe Slide credit: David Nister
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What is the computational advantage of the
hierarchical representation bag of words, vs.
a flat vocabulary?

Vocabulary Tree

e Recognition

RANSAC
verification

[Nister & Stewenius, CVPR’06]
76
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“Grauman, B. Leibe Slide credit: David Nister
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+ + + +

Bags of words: pros and cons

flexible to geometry / deformations / viewpoint
compact summary of image content

provides vector representation for sets

has yielded good recognition results in practice

basic model ignores geometry — must verify afterwards,
or encode via features

background and foreground mixed when bag covers
whole image

interest points or sampling: no guarantee to capture
object-level parts

optimal vocabulary formation remains unclear

Summary

Local invariant features: distinctive matches possible in
spite of significant view change, useful not only to
provide matches for multi-view geometry, but also to find
objects and scenes.

To find correspondences among detected features,
measure distance between descriptors, and look for
most similar patches.

Bag of words representation: quantize feature space to
make discrete set of visual words

— Summarize image by distribution of words
— Index individual words

Inverted index: pre-compute index to enable faster
search at query time

10/29/2009
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