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Distance function vs. Distance Metric

» Distance Metric:
= Satisfy non-negativity, symmetry and triangle
Inequation
- Distance Function:

= May not satisfy one or more requirements for
distance metric

= More general than distance metric



Constraints

- Pairwise constraints
= Equivalence constraints
- Image 1 and image j is

similar
» Inequivalence constraints .
- Image i and image j is Red line: equivalence constraints
not similar Blue line: in-equivalence constraints

I image Kk
. “.

- Triplet constraints

- Image j 1s more
similar to image i than
image k

Constraints are the supervised knowledge for the distance learning methods



Why not labels?

- Sometimes constraints are easier to get than
labels

s faces extracted from successive frames in a video
in roughly the same location can be assumed to
come from the same person

- il = "l




Why not labels?

- Sometimes constraints are easier to get than labels

= Distributed Teaching
- Constraints are given by teachers who don’t coordinate

with each other

given by teacher T3
|

given by teacher T1

) - ‘

given by teacher T2



Why not labels?

- Sometimes constraints are easier to get than
labels

= Search engine logs
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Web Maps
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Blueprints - Code

The Java Pet Store 2.0 Reference Application is a sample application to illustrate how the
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java.sun.com/blueprints/code/ - 14k - Cached - Similar pages - Note this



Problem

- Glven a set of constraints
 Learn one or more distance functions for the input

space of data from that preserves the distance relation
among the training data pairs



Importance

- Many machine learning algorithms, heavily rely on
the distance functions for the input data patterns. e.g.
KNN

 The learned functions can significantly improve the
performance in classification, clustering and retrieval
tasks:

e.g. KNN classifier, spectral clustering, content-
based image retrieval (CBIR).
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Parameterized Mahalanobis Distance
Metric

d(z,y) = da(z,y) = ||l — ylla = \/(z — )T Az — )

T

X, y: the feature vectors of two objects,
for example, a words-of-bag representation of an image



Parameterized Mahalanobis Distance
Metric

d(z,y) = da(z,y) = ||z — ylla = \/(z — )T Az ~ )

T

To be a metric, A must be semi-definite



Parameterized Mahalanobis Distance
Metric

d(z,y) = da(z,y) = ||l — ylla = \/(z — )T Az — )

It is equivalent to finding a rescaling of a data that replaces
each point x with 41/2; and applying standard Euclidean
distance

A - A
Q.
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Parameterized Mahalanobis Distance
Metric

d(z,y) = da(z,y) = ||l — ylla = \/(z — )T Az — )

 If A=I, Euclidean distance

- If A is diagonal, this corresponds to learning a
metric in which the different axes are given
different “weights”



Global Methods

« Try to satisfy all the constraints simultaneously

= keep all the data points within the same classes close, while
separating all the data points from different classes



- Distance Metric Learning, with Application to

Clustering with Side-information [Eric Xing . Et,
2003]



A Graphical View
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(a) Data Dist. of the original dataset (b) Data scaled by the global metric

Keep all the data points within the same classes close

Separate all the data points from different classes
(the figure from [Eric Xing . Et, 2003])



Pairwise Constraints

= A set of Equivalence constraints

S = {(xi,xj)lxi and x; are simﬂar]
= A set of In-equivalence constraints

D = {(xi,xj)lxi and x; are dissimi!ar]



The Approach

« Formulate as a constrained convex programming problem
= Minimize the distance between the data pairs in S——
= Subject to data pairs in D are well separated

. 2
e E{m-@,.‘rj}ES zi — 2[4
s.1. E[;Ei,;fj}ED |$i — &Iy |.-‘1 E 1? S

A0

ensure that A does not collapse the

- Solving an iterative gradient ascent algorithm

dataset to a single point




Another example
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(a)Original data (b) Rescaling by learned  (¢) rescaling by learned
diagonal A full A

(the figure from [Eric Xing . Et, 2003])



RCA

- Learning a Mahalanobis Metric from
Equivalence Constraints [BAR HILLEL, et al. 2005]



RCA(Relevant Component Analysis)

» Basic Ideas

= Changes the feature space by assigning large
weights to “relevant dimensions” and low weights
to “irrelevant dimensions”.

» These “relevant dimensions” are estimated using
equivalence constraints



Another view of equivalence
constraints: chunklets

Chunklets formed by applying transitive closure

D =
Estimate the within class covariance
dimensions correspond to large with-in covariance are not relevant
dimensions correspond to small with-in covariance are relevant



Synthetic Gaussian data
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(a) The fully labeled data set with 3 classes.

(b) Same data unlabeled; classes' structure is less evident.

(c) The set of chunklets that are provided to the RCA algorithm
(d) The centered chunklets, and their empirical covariance.

(e) The RCA transformation applied to the chunklets. (centered)
(f) The original data after applying the RCA transformation.

(BAR HILLEL, et al. 2005)



RCA Algorithm

» Sum of in-chunklet covariance matrices for p
pomts in k chunklets

C=— ZZ(XJI_mJ)(XJI m;)",  chunklet j : {x;},2;, with meanm

=1 i=1

- Compute the whitening transformation
associated with ¢ w = ¢-% , and apply it to the
data points, Xnew = WX
= (The whitening transformation W assigns lower

weights to directions of large variability)



Applying to faces

Top: facial images of two subjects under different lighting conditions.

Bottom: the same images from the top row after applying PCA and RCA and then
reconstructing the images

RCA dramatically reduces the effect of different lighting conditions,
and the reconstructed images of each person look very similar to each
other. [Bar-Hillel, et al., 2005]



Comparing Xing’s method and RCA

- Xing’s method

= Use both equivalence constraints and in-equivalence
constraints

= The iterative gradient ascent algorithm leading to high
computational load and is sensitive to parameter tuning

= Does not explicitly exploit the transitivity property of
positive equivalence constraints

- RCA
= Only use equivalence constraints
o explicitly exploit the transitivity property of positive
equivalence constraints
= Low computational load

= Empirically show that RCA is similar or better than Xing’
method using UCI data



Problems with Global Method

- Satisfying some constraints may be conflict to
satistying other constraints



Multimodal data distributions
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(a) Data Dist. of the original (b) Data scaled by the global metric
dataset
Multimodal data distributions prevent global distance metrics from
simultaneously satisfying constraints on within-class compactness and

between-class separability.
[[Yang, et al, AAAI, 2006] ]



Local Methods

- Not try to satisfy all the constraints, but try to
satisty the local constraints



LMNN

- Large Margin Nearest Neighbor Based Distance
Metric Learning [Weinberger et al., 2005]



K-Nearest Neighbor Classification

B

We only care the nearest k neighbors



LMNN

Learns a Mahanalobis distance metric, which

= Enforces the k-nearest neighbors belong to the same class

= Enforces examples from different classes are separated by
a large margin

BEFORE AFTER

e ”mﬂl‘gm_“ - | local |1e1;]1hm huud |'u_ia1 éﬁ'

() Similarly labeled
B Differently labeled

T el _| target neighbor | . Dhfferently labeled




Approach

s Formulated as a optimization problem
= Solving using semi-definite programming method



Cost Function

(L) =Y s llL(E—F)* + e ) mi(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

1] il

Distance Function: ~ D(7;,7;) = ||L(F — 7;)|*



Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

17 T il

Nij € 10,1} indicate whether input Z; 1s a target neighbor of input ;

Target Neighbors: identified as the k-nearest neighbors,

determined by Euclidean distance, that share the same label
A

When K=2




Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

ij ijl

!

Penalizes large distances between inputs and target neighbors. In
other words, making similar neighbors close

A




Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

ij ijl

[z_]+ = max(z, 0)




Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

ij ijl

For inputs and target neighbors
It is equal to 1
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[l Differently labeled




Approach-Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

ij ijl

1

For inputs and target neighbors
It is equal to 1

v
yu € {0,1} indicates if 7;and # has
same label. So For input and neighbors having
different labels, it is equal to 1

ACICIX

() Similasty labeled
B Differently labeled
[l Differently labeled
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Approach-Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

ij ijl

1

For inputs and target neighbors
It is equal to 1

v
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sime la%el. So For input and neighbors having
different labels, it is equal to 1

ACICIX
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Distance between inputs and target neighbors

() Similasty labeled
B Differently labeled
[l Differently labeled




Approach-Cost Function

(L) =) s llL(E—F)* + e ) miy(l—ya) [L+ LT —F;) >~ |L(Z -3) 7],

ij ijl T

For inputs and target neighbors
It is equal to 1

v
yu € {0,1} indicates if 7;and # has
same label. So For input and neighbors having
different labels, it is equal to 1

BEFORE TATTTIC

v
Distance between inputs and target neighbors
Distance between input and neighbors

() Similasty labeled
B Differently labeled
[l Differently labeled

with different labels




Cost Function

(L) =) n|L(EF—Z)|F+¢) ni(l—ya) [1 + |L(Z —7;)|* — |L(T - 3) ]
+

ij ijl

v

Differently labeled neighbors lie outside the
smaller radius with a margin of at least one unit
distance

B Differently labeled
[l Differently labeled
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Test on Face Recognition

Test Image: 1@, - e h
E M‘J a E Q
-
. A% -
Among 3 nearest neighbors § \ ] = z
before but not after trammg: § d b = :__‘ o

Images from the AT&T face recognition data base, kNN classification (k = 3)

Among 3 nearest neighbors
after but not before tramng:

*Top row: an image correctly recognized with Mahalanobis distances, but not with Euclidean distances

*Middle row: correct match among the k=3 nearest neighbors according to Mahalanobis distance, but
not Euclidean distance.

*Bottom row: incorrect match among the k=3 nearest neighbors according to Euclidean distance, but
not Mahalanobis distance.

[K. Weinberger et al., 2005]



ILMNN

- An Invariant Large Margin Nearest Neighbor
Classifier [Mudigonda, et al, 2007]



Transformation Invariance

Same after rotation transformation and thickness transformation

When do classification, the classifier needs to regard the two images
as the same image.

Figure from [Simard et al., 1998]



ILMNN

- An extension to LMNN[K.Weinberger et al.,
2005]
= Add regularization to LMNN to avoid overfitting
= Incorporating invariance using Polynomial
Transformations (Such as Euclidean, Similarity,
Affine, usually used in computer vision)
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[Mudigonda, et al, 2007]
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- Learning Globally-Consistent Local Distance
Functions for Shape-Based Image Retrieval and
Classification[Frome, et al., 2007]

= The slides are adapted from Frome’ talk on ICCV 2007
(http://www.cs.berkeley.edu/~afrome/papers/iccv2007_talk.pdf)



Globally-Consistent Local Distance

Functions [Frome, et al., 2007]

- Previous methods only learn one distance
function for all images, while this method learns
one distance function for each image

= From this perspective, it’s a local distance function
learning method while all the previous methods
are global



why learn for every |mage7

clutter &
occlusion

articulation

variation

psychology: Rosch’s family resemblances




Using triplet constraints

ranking: learn from triplets of training images

in-class jout-of-class

reference image
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Patch-based features

- Different images may have different number of
features.

patch-based features
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D, j : distance from image 7 to image j
: (not symmetric

featuclje-to-image ' :
istance Image j

distance function can be evaluated from image i to
any other image




“reference image”

image 1 imae_}'
e

D)
Wi - dg; > Wi e dj-i.
Wi - dp; — W - d]vz; =0

[Frome, et al., 2007]



W . X,} >0
W Xk > 1

empirical loss: Z [1 — W . X,ﬂj/};}+

1,7, kEtriplets

minwy ¢ %HVVH2
S.T1.

Schultz,Joachims NIPS 2003
Frome,Singer,Malik NIPS 2006




experiments

Caltech-101 (without using absolute position)

features: geometric blur (2 sizes) and color

L, feature-to-image distance

geometrically
blur

42 & 70 pixel idl P  & sample
radius, ‘
4 channels

Berg,Berg,Malik
CVPR 2005




problem scale
(15 images/category, 101 categories)
~1,200 features/image: weight vector has |.8M elements
using in- vs. out-of-class,
exhaustive set of triplets is 31.8 M triplets

speeding it up

pare down to |5.7 M triplets

solve the dual problem
similar to on-line algorithms

early stopping: 10 hours to | hour
set trade-off parameter: one run through triplets

weight vectors are surprisingly sparse.
on average, 68% of weights are zero

[Frome, et al., 2007]



Good Result

True classes:
Leopards

Predicted class: Leopards

fold #0
image #1460

15.873358
1429
Leopards

15.009778 15.170238 15.422895 15.597274
1348 1440 3464 1356 DN
14.590743 Leopards Leopards bonsai 15.559231 Leopards 15.659450
1412 1398 1507
Leopards Leopards Leopards

5

15.809065
8989
wild_cat
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Bad Results

True classes:
Motorbikes
Predicted class: menorah
fold #0
image #2090
SR — : S \:w 3 WP :
M 15641508 15669380 "5 6gso00 15743984  15.782034
14.957495 15.078060 15.146362 1803 1820 1704 6397 4529 S o8 3476
6932 6945 6961 Motorbikes Motorbikes Motorbikes crab N ;
" sl 15.772991 bonsai
menorah snenorah metronome 2 -6208
joshua_tree

15.893048 16.047327 M S e 16.096983
15.894958 5277 . : 16.087242 16.094152 16.095821 6805

honi 16.064186 3391 6947 6169 1

o 2479 ; iafinn ofens mandolin
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g
Motorbikes 32?"
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Summary

- Extremely local, having more ability to learn a
good distance function for complex feature space

- Too many weights to learn
« Too many constraints
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DistBoost

« T. Hertz, A. Bar-Hillel and D. Weinshall,
Learning Distance Functions for Image
Retrieval, in Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR) 2004 [Hertz, et al, 2004]



DistBoost

Distance > [0,1]

Function

Can be seen as a binary classifier (Adaboost)
The constraints are the labeled training examples
for the classifier.



The DistBoost algorithm
Fort=1,..T
Input: weighted (1) Learn constrained (2) Generate “weak”
data=points + GMM distance function
eq. constraints
hix,x,)=0.
© 'Ei h(h,%) =0.1 (3-4) Compute “weak”
(8] 0-' ® P —_— E distance function
e (s, X, ‘J—{] 7 weight a;
7 (7) Translate weights
on pairs to weights = : (5«6) Update weights
on data points Oq on pairs of points

. : . T
Final distance function: D(x,,x )= Z:=1 a.h(x,x;)

- Figure from [Hertz, Ph.D Thesis, 2006]



Algorithm 3 The DistBoost algorithm.
Input:

Data points: (z1,...,a,), € X
A set of equivalence constraints: (z;,, x;,, ¥;). Where y; € {—1,1}
Unlabeled pairs of points:(z;, , i,, y; = *). implicitly defined by all unconstrained pairs of points

e Initialize W}

— 2) i gy = i - pai i
iis = 1/(n%) d1,i2 = 1,...,n (weights over pairs of points)

wp,=1/n k=1,....n (weights over data points)

e Fort=1,...7T

1. Fit a constrained GMM (weak learner) on weighted data points in /X" using the equivalence constraints.

2. Generate a weak hypothesis 7, : X' x X — [-oo,oc] and define a weak distance function as

hy(zs,zj) = % (1 — E’l.t(l?z',.rj)) € [0,1]

3. Compute r; = 3 IfIf"z-'*'lz-Z yihe(x;,, 7;,). only over labeled pairs. Accept the current hypoth-
(:r'e]_'-r'i,yyz:il)
esis only if ry > 0.
4. Choose the hypothesis weight a; = 3 In(722)

1—r¢

5. Update the weights of all points in X' x & as follows:

Wi, exp(—awihe(zi,, iy)) vi € {—1,1}

ot _
wi=q "
Wi, exp(—ay) Yy = *
. 1 Witk
6. Normalize: Wit = 12
112 5w
ag=1 12

7. Translate the weights from X' x X to X2 it =3 I-'I-";:?."l

Output: A final distance function D(xz;, ;) = Zf;l ahy(xi, ;)




Results

- Each row presents a query image and its first 5 nearest neighbors
comparing DistBoost and normalized L1 CCV distance



Results

PN

- 2

- Each row presents a query image and its first 5 nearest neighbors
comparing DistBoost and normalized L1 CCV distance



Results

- Each row presents a query image and its first 5 nearest neighbors
comparing DistBoost and normalized L1 CCV distance



Summary

- Another view of distance function learning

- A global method, since it try to satisty all the
constraints

e Can learn non-linear distance functions



Discussion Points

 Currently most of the work focus on learning
linear distance function, how can we learn non-
linear distance function?

- Learning one distance function for every image
is really good? Will lead to overtitting? Should
we learn higher level distance function?

« The triplet constraints are huge for [Frome,

2007], how to improve the triplet selection
method?
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