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Distance function vs. Distance Metric

• Distance Metric:

▫ Satisfy  non-negativity,  symmetry and triangle 
inequation

• Distance Function:

▫ May not satisfy one or more requirements for 
distance metric

▫ More general than distance metric



Constraints

• Pairwise constraints
▫ Equivalence constraints
 Image i and image j is 

similar
▫ Inequivalence constraints
 Image i and image j is 

not similar

• Triplet constraints
▫ Image j is more 

similar to image i than 
image k 

Red line: equivalence constraints
Blue line: in-equivalence constraints

Constraints are the supervised knowledge for the distance learning methods



Why not labels?

• Sometimes constraints are easier to get than 
labels

▫ faces extracted from successive frames in a video 
in roughly the same location can be assumed to 
come from the same person



Why not labels?

• Sometimes constraints are easier to get than labels

▫ Distributed Teaching

 Constraints are given by teachers who don’t coordinate 
with each other

given by teacher T1

given by teacher T2

given by teacher T3



Why not labels?

• Sometimes constraints are easier to get than 
labels

▫ Search engine logs

clicked

clicked

Not clicked

More similar



Problem

• Given a set of constraints

• Learn one or more  distance functions for the input 

space of data from that preserves the distance relation 

among the training data pairs



Importance

• Many machine learning algorithms, heavily rely on 
the distance functions for the input data patterns. e.g. 
kNN

• The learned functions can significantly improve the 
performance in classification, clustering and retrieval 
tasks: 

e.g. KNN classifier, spectral clustering, content-
based image retrieval (CBIR).
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Parameterized Mahalanobis Distance 

Metric

x, y: the feature vectors of two objects, 
for example, a words-of-bag representation of an image



Parameterized Mahalanobis Distance 

Metric

To be a metric, A must be semi-definite



Parameterized Mahalanobis Distance 

Metric

x

It is equivalent to finding a rescaling of a data that replaces 
each point x with           and applying standard Euclidean 
distance



Parameterized Mahalanobis Distance 

Metric

• If A=I, Euclidean distance

• If A is diagonal, this corresponds to learning a 
metric in which the different axes are given 
different “weights”



Global Methods

• Try to satisfy all the constraints simultaneously
▫ keep all the data points within the same classes close, while 

separating all the data points from different classes



• Distance Metric Learning, with Application to 
Clustering with Side-information [Eric Xing . Et, 

2003]



(a) Data Dist. of the original dataset (b) Data scaled by the global metric 

A Graphical View 

 Keep all the data points within the same classes close

 Separate all the data points from different classes
(the figure from [Eric Xing . Et, 2003])



Pairwise Constraints

▫ A set of Equivalence constraints

▫ A set of In-equivalence constraints 



The Approach

• Formulate as a constrained convex programming problem

▫ Minimize the distance between the data pairs in S

▫ Subject to data pairs in D are well separated

• Solving an iterative gradient ascent algorithm 
ensure that A does not collapse the 

dataset to a single point



Another example

(a)Original data (b) Rescaling by learned    
diagonal A

(c) rescaling by learned 
full A 

(the figure from [Eric Xing . Et, 2003])



RCA

• Learning a Mahalanobis Metric from 
Equivalence Constraints [BAR HILLEL, et al.  2005]



• Basic Ideas

▫ Changes the feature space by assigning large 
weights to “relevant dimensions” and low weights 
to “irrelevant dimensions”. 

▫ These “relevant dimensions” are estimated using 
equivalence constraints

RCA(Relevant Component Analysis)



Another view of equivalence 

constraints: chunklets

Estimate the within class covariance
dimensions correspond to large with-in covariance are not relevant 
dimensions correspond to small with-in covariance are relevant 

Chunklets formed by applying transitive closure 

Equivalence constraints



Synthetic Gaussian data

(a) The fully labeled data set with 3 classes. 
(b) Same data unlabeled; classes' structure is less evident. 
(c) The set of chunklets that are provided to the RCA algorithm
(d) The centered chunklets, and their empirical covariance. 
(e) The RCA transformation applied to the chunklets. (centered)
(f) The original data after applying the RCA transformation.

(BAR HILLEL, et al.  2005)



RCA Algorithm

• Sum of in-chunklet covariance matrices for p 
points in k chunklets

• Compute the whitening transformation 
associated with                    , and apply it to the 
data points, Xnew = WX

▫ (The whitening transformation W assigns lower 
weights to directions of large variability)
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Applying to faces

Top: facial images of two subjects under different lighting conditions. 
Bottom: the same images from the top row after applying PCA and RCA and then 
reconstructing the images 

RCA dramatically reduces the effect of different lighting conditions, 
and the reconstructed images of each person look very similar to each 
other.                                                             [Bar-Hillel,  et al. , 2005]



Comparing Xing’s method and RCA

• Xing’s method
▫ Use both equivalence constraints and in-equivalence 

constraints
▫ The iterative gradient ascent algorithm leading to high 

computational load and is sensitive to parameter tuning
▫ Does not explicitly exploit the transitivity property of 

positive equivalence constraints
• RCA

▫ Only use equivalence constraints
▫ explicitly exploit the transitivity property of positive 

equivalence constraints
▫ Low computational load 
▫ Empirically show that RCA is similar or better than Xing’ 

method using UCI data



Problems with Global Method

• Satisfying some constraints may be conflict to 
satisfying other constraints



(a)Data Dist. of the original 
dataset

Multimodal data distributions prevent global distance metrics from 
simultaneously satisfying constraints on within-class compactness and 
between-class separability. 
[[Yang, et al, AAAI, 2006] ]

(b) Data scaled by the global metric 

Multimodal data distributions 



Local Methods

• Not try to satisfy all the constraints, but try to 
satisfy the local constraints



LMNN

• Large Margin Nearest Neighbor Based Distance 
Metric Learning [Weinberger et al., 2005]



K-Nearest Neighbor Classification

We only care the nearest k neighbors



LMNN

 Learns a Mahanalobis distance metric, which 
 Enforces the k-nearest neighbors belong to the same class 

 Enforces examples from different classes are separated by 
a large margin



Approach

▫ Formulated as a optimization problem

▫ Solving using semi-definite programming method



Cost Function

Distance Function:

Another form of Mahalanobis Distance: 



Cost Function

Target Neighbors: identified as the  k-nearest neighbors, 
determined by Euclidean distance, that share the same label

When K=2

=0

=1

=0

=1



Cost Function

=0

=1

=0

=1

Penalizes large distances between inputs and target neighbors. In 
other words, making similar neighbors close



Cost Function



Cost Function

For inputs and target neighbors
It is equal to 1 
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same label. So For input and neighbors having 
different labels,  it is equal to 1  
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Approach-Cost Function

Distance between inputs and target neighbors

For inputs and target neighbors
It is equal to 1 

indicates if      and      has 
same label. So For input and neighbors having 
different labels,  it is equal to 1  



Approach-Cost Function

Distance between inputs and target neighbors

Distance between input and neighbors 
with different labels

For inputs and target neighbors
It is equal to 1 

indicates if      and      has 
same label. So For input and neighbors having 
different labels,  it is equal to 1  



Cost Function

Differently labeled neighbors lie outside the 
smaller radius with a margin of at least one unit 
distance



Test on Face Recognition 

Images from the AT&T face recognition data base,  kNN classification (k = 3) 

•Top row: an image correctly recognized with Mahalanobis distances, but not with Euclidean distances

•Middle row: correct match among the k=3 nearest neighbors according to Mahalanobis distance, but 
not Euclidean distance. 

•Bottom row: incorrect match among the k=3 nearest neighbors according to Euclidean distance, but 
not Mahalanobis distance.

[K. Weinberger et al., 2005]



ILMNN

• An Invariant Large Margin Nearest Neighbor 
Classifier [Mudigonda, et al, 2007]



Transformation Invariance

Figure from [Simard et al., 1998]

Same after rotation transformation and thickness transformation 

When do classification, the classifier needs to regard the two images 
as the same image. 



ILMNN

• An extension to LMNN[K.Weinberger et al., 
2005] 

▫ Add regularization to LMNN to avoid overfitting

▫ Incorporating invariance using Polynomial 

Transformations (Such as Euclidean, Similarity, 

Affine, usually used in computer vision)



Green Diamond is test point,
(a) Trajectories defined by rotating the points by an angle -5◦ <θ < 5 ◦
(b) Mapped trajectories After learning

[Mudigonda, et al, 2007]
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• Learning Globally-Consistent Local Distance 
Functions for Shape-Based Image Retrieval and 
Classification[Frome, et al., 2007]

▫ The slides  are adapted from Frome’ talk on ICCV 2007 
(http://www.cs.berkeley.edu/~afrome/papers/iccv2007_talk.pdf)



Globally-Consistent Local Distance 

Functions [Frome, et al., 2007]

• Previous methods only learn one distance 
function for all images, while this method learns 
one distance function for each image

▫ From this perspective, it’s a local distance function 
learning method while all the previous methods 
are global





Using triplet constraints

•

•



• Different images may have different number of 
features.

Patch-based features 





[Frome, et al., 2007]







[Frome, et al., 2007]



Good Result



Bad Results





Summary

• Extremely local, having more ability to learn a 
good distance function for complex feature space

• Too many weights to learn

• Too many constraints
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DistBoost

• T. Hertz, A. Bar-Hillel and D. Weinshall, 
Learning Distance Functions for Image 
Retrieval, in Proceedings of the IEEE 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2004 [Hertz, et al, 2004]



DistBoost

Distance 
Function

[0,1]

Can be seen as a binary classifier (Adaboost)
The constraints are the labeled training examples 
for the classifier.



• Figure from [Hertz, Ph.D Thesis, 2006]





Results

• Each row presents a query image and its first 5 nearest neighbors 
comparing DistBoost and normalized L1 CCV distance
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Results

• Each row presents a query image and its first 5 nearest neighbors 
comparing DistBoost and normalized L1 CCV distance



Summary

• Another view of distance function learning

• A global method, since it try to satisfy all the 
constraints

• Can learn non-linear distance functions



Discussion Points

• Currently most of the work focus on learning 
linear distance function, how can we learn non-
linear distance function?

• Learning one distance function for every image 
is really good? Will lead to overfitting? Should 
we learn higher level distance function?

• The triplet constraints are huge for [Frome, 
2007], how to improve the triplet selection 
method?
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