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Abstract

In this paper we introduce and experiment with a framework for learning local per-
ceptual distance functions for visual recognition. We learn a distance function for
each individual training image as a combination of elementary distances between
visual features. We apply these combined local distance functions to the tasks
of image retrieval and classification of novel images. On theCaltech 101 object
recognition benchmark, we achieve 59% recognition using 15training images,
which matches the best published performance by Zhang, et al.

1 Introduction

Visual recognition poses many challenges for machine learning techniques. Two particularly note-
worthy ones are:

(1) There is a large number of diverse classes with large intraclass variation. Estimates of how many
categories can be distinguished by humans range from 30,000to 100,000, and that is before we
consider the identification problem, for example distinguishing among the thousands of faces with
which we may be familiar. The variation in a category can be considerable due to pose, lighting and
internal articulation as in human or animal figures.

(2) Distances measured between shape features often are only meaningful for small distances. It is
generally accepted that the most important cue for visual recognition is shape. Embedding visual
shape into a global vector space is problematic, but locallywe might expect a friendlier manifold
structure. It is convenient to capture this local structureby means of a local “perceptual distance”
function around an exemplar image.

A central goal of this paper is to develop and experiment witha framework for learning such local
perceptual distance functions in the context of visual recognition. There will be as many of these
as there are exemplar images, and for a given exemplar image,its distance function is trained by
the guiding principle that the perceptual distances to positive examples (in the same category as the
exemplar) should be smaller that the perceptual distances to negative examples (from all other cat-
egories). A distance function for a particular exemplar (“focal image”) is a linearly weighted com-
bination of elementary feature distance functions, each ofwhich is based on comparisons between
image patches. We learn these weights using a variant of the constrained optimization formulation
proposed by Schultz and Joachims [9] for relative comparison data.



Using these local distance functions, we address applications in image browsing, retrieval and clas-
sification. We show results on the Caltech 101 object recognition benchmark, that has now become
a de facto standard for multi-category classification. The classification performance on this bench-
mark is 59% using only fifteen exemplar images per category, which matches the best published
recognition rate in [12].

2 Visual Features

The rest of the paper presents a method for learning local distance functions for a set offocal images,
and using those local distance functions for ranking, retrieval, and classification. Our method is
general in that it can be used with any feature type. One strength of the method is that, for a given
focal image, it chooses the features that best capture the similarity of that image to other images.
Patch-based features are an obvious choice, in part becausetheir locality allows our algorithm to
choose the pieces of the image that are most salient. Anotherstrength of the method is that it
naturally allows for the combination of different types of features. To demonstrate this, we use a
combination of shape and color patch-based features.

Many papers have shown the benefits of using filter-based patch features such asSIFT [7] and
geometric blur features [1] for shape- or texture-based object matching and recognition [6][4][1].
We chose to use geometric blur descriptors, which were used by Zhang et al. in [12] in combination
with their KNN-SVM method to give the best published resultson the Caltech 101 image recognition
benchmark. Like SIFT, geometric blur features summarize oriented filter responses within a patch
of the image, but are designed to be more robust to affine transformation and differences in the
periphery of the patch. For a full description of geometric blur descriptors, see [1]. In previous work
using geometric blur descriptors on the Caltech 101 data set[1] [12], the patches used are centered
at some number of edge points sampled from the image, and features are computed on patches of a
fixed scale and orientation. We follow this methodology as well, though one could use an interest
point operator to determine scale and orientation from low-level information, as is typically done
with SIFT features. We use two different scales of geometricblur features, the same as used in [12].
The larger uses a patch radius of 70 pixels, and the smaller uses a patch radius of 42 pixels. Both
use four oriented filters and 51 sample points, to give features with 204 dimensions. As is done in
[1], we default to normalizing the feature vector so that theL2 norm is equal to one.

For color, we computed color histograms for eight-pixel radius patches centered at edge pixels in the
image. Any “pixels” in a patch that were off the edge of the image were counted in a “undefined”
bin, and we converted the HSV coordinates of the remaining points to a Cartesian space where thez
direction is value and(x, y) is the Cartesian projection of the radial hue/saturation dimensions. We
divided the(x, y) space into an11 × 11 grid, and made three divisions in thez direction. These
were the only parameters that we tested with the color features, and while we could have used cross
validation to choose the best parameters, we chose not to so that we could highlight the performance
of our algorithm without optimizing for the Caltech 101 dataset. We normalize the bins by the total
number of pixels in the patch.1

Our learning algorithm in the next section learns, for a given focal image F , a weighting over
elementary distance functions which are computed between the focal imageF and another imageI.
Again, our method is general in that any elementary distancefunction over any image feature type
can be used, so long as it returns a non-negative value. For a given focal image and any other image
I, we havej ∈ [1,M ] such elementary distance measures, and we denote eachdF

j (F , I). 2 In our
experiments, we use an elementary distance function for each of our patch features. The elementary
distance function for thejth patch is the smallestL2 distance between thejth feature inF and the
set of features of the same type (e.g., large geometric blur feature) from the other image. Expressing
this formally, if we takepF

j to bejth patch feature from imageF , and{P I} to be the set of features

1As a post-processing step, we normalized the distances between color features to have the same standard
deviation as the distribution over distances between shape features in the training images.

2We useF in both the superscript and as an argument to the function to emphasize that the elementary
distance function is both particular to the focal image and computed on its contents.



from I that are of the same type aspF
j (e.g. the same scale geometric blur feature):

dFj (F , I) = min
pI∈{PI}

√

∥

∥pF
j − pI

∥

∥

2

(1)

Note that this is an asymmetric distance, and that in generalour method can use any distance mea-
sures, including ones that take into account geometric relationships between patches.

3 Learning To Combine Elementary Distance Functions

In this section we describe the core mechanism of our retrieval and classification. We have a training
set of focal images, and for each we want to learn a distance function that takes any image and
returns a non-negative number. For a focal imageF and any other imageI, we denote this function
asDF (F , I). We could use such a function to rank any set of images with respect to the focal
imageF , and ideally the resulting ordering would rank the images similar toF ahead of dissimilar
images. The input to the learning problem will be derived from a rank ordering over the training
images, though the rank ordering can be very coarse, as it is in our experiments.

Naturally, we want this function to be based on the content ofthe images, and choose a linear
combination of elementary distance measures computed fromimage content features, such as those
described in the previous section. The learning goal is to find a non-negative set of weights that
combine theM elementary distance functions into one distance function,where we denote thejth
elementary distance function computed for thejth feature from the focal imageF by dFj (F , I):

DF (F , I) =

M
∑

j=1

wF
j dFj (F , I) =

〈

wF · dF (F , I)
〉

(2)

We would like to emphasize that both the set of elementary distance functions and the learned
weights are particular to the focal imageF . We need a learning algorithm to learn the weight vector
wF which attains the following properties: (1) the algorithm should enforce that∀j, wF

j is non-
negative;3 (2) it should generalize well from a fairly small set of training images, such that a novel
image that is similar to the focal image is ranked well; (3) itshould work withany elementary
distance functions between visual features; and (4) the algorithm should be able to cope with data
expressed as pairs of images that are more and less similar than the focal image, rather than strict
positive and negative examples.4

Properties (3) and (4) led us to a formulation where the inputto our algorithm is derived fromtriplets
of images, as is also used by Schultz and Joachims in [9]. Assume that we have a lexicographical
ordering over imagesI1, I2, . . . , IN . Given that imageIi is an image “more similar” to the focal
imageF than imageIj , we have a triplet(F , Ii, Ij) such that we would ideally want

DF (F , Ij) > DF (F , Ii) , (3)

so that a rank ordering based on our distance function placesthese two images in their correct
relative positions. In equation (2) we defined this distancefunction to be weighted combination of
individual measures, so this condition is equivalent to

〈

wF · dF (F , Ij)
〉

>
〈

wF · dF (F , Ii)
〉

or
〈

wF · xi,j

〉

> 0, wherexi,j = dF (F , Ij) − dF (F , Ii) captures the relative rank of the triplet
(F , Ii, Ij), and is one vector in the set of training vectorsTF input to our algorithm. While it
would be nice to satisfy Equation (3) precisely, in practiceour data is very noisy by nature and it
is impossible to find weights which satisfy the constraints for all possible triplets. In addition, we
would like to constrain the norm ofwF in order to guard from overfitting (see property (2)). We
thus cast the problem as a constrained optimization problemwith a slack variable associated with
each triplet so as to allow some of the distance constraints to be violated. We arrive at the following

3The positivity constraint is not strictly necessary for the learning framework, but is an intuitive constraint
and in practice has the effect of removing confounding features and promoting sparsity.

4While we don’t fully exploit this last property in the experiments in this paper,it allows the technique to
generalize to settings where the training data does not come from a binary source, such as user feedback or
click streams.



maximal margin formulation which employs slack variables for each of the triplets and includes a
primal positivity constraint onw:

arg min
wF ,ξ

1

2

∥

∥wF
∥

∥

2

+ C
∑

ij

ξij (4)

s.t. : ∀(i, j) ∈ TF :
〈

wF · xi,j

〉

≥ 1 − ξij , ξij ≥ 0, wF
k ≥ 0 (5)

We chose to use L2 regularization instead of the L1 to be more robust to noise, perhaps at the expense
of increased sparsity.

The constrained optimization problem defined above is a close variant of that proposed by Schultz
and Joachims in [9] for distance metric learning. However, our setting is different from theirs in two
ways. First, their triplets do not share the same focal imagesince they apply their method to learning
one metric for all classes and instances. Second, they arrive at their formulation by assuming that
the elements of their distance vectors fit the formdk(Ii, Ij) = (pIi

k − p
Ij

k )2 , wherepIi

k is thekth
element of the feature vector for the itemIi. This assumption amounts to the restrictions that (1)
each feature from our image be a single number, and (2) we onlyuse aL2

2
distance between these

features. This would appear to preclude our use of patch features and more interesting distance
measures, however we have shown that this is an unnecessary restriction on the algorithm. Thus,
a contribution of this paper is to show that the algorithm in [9] is more widely applicable than
originally presented, thus making it more useful for difficult machine vision problems.

We used a custom solver for the optimization problem, which runs on the order of a second for about
3,000 triplets. The dual optimization includes a dual variableαi,j for each triplet and a dual variable
µ, which enforces the positivity constraint onwF . In each epoch of training, we iterate over the set
of αi,j variables that violate the KKT constraints for our problem,and for each, we first increase
the dual with a closed-form update toαij , then we updateµ to project the current solution into the
feasible region. This approach is similar to the row action approach described in [2].5

4 Using Distance Functions for Browsing, Retrieval, and Classification

Given a set ofK training images, we can use each as a focal imageFk and use the remainingK − 1
images to learn the distance functionDFk(Fk, ·). Each of theK distance functions that we learn
induces a ranking over the otherK − 1 images. In the next few sections, we will discuss how we
can leverage this rich source of information for content-based image applications.

4.1 Image Rankings for Image Browsing

If we have rankings on a closed set ofK images, we can create a simple image browsing application
that captures the similarity relationships between these images. The user starts on a page showing
the ranking for one of theK images. If the user clicks on any of the images in the ranking,they are
shown the ranking for that image. This allows the user to navigate “image space” using the local
distance functions that we have learned. Figure 1 shows one such ranking learned from a subset of
the Caltech101 data set. In our supplemental material, we provide HTML pages showing rankings
for a subset of the Caltech 101 images, and the user can navigate to the rankings for other images for
which we were able to supply the ranking pages.6 7 We do not have a quantitative evaluation of these
rankings, but one can get a qualitative idea of how the imageshave been organized by the learning
algorithm. These pages also serve as a nice visualization ofthe learned image similarity functions,
and are helpful as a basis for understanding how we leverage the rankings for image retrieval and
classification.

5In the Appendix to the paper, included asappendix.pdf in the supplemental materials, we give the
derivation of the algorithm we used to solve the optimization.

6The number of pages is limited due to the restriction on the size of the supplemental materials.
7Unzip browse localmetrics.tgz and view file:///XXX/archive localmetrics/

browse/index.html in your browser, whereXXX is the directory into which you expanded the tar file.



4.2 Image Retrieval from Distance Functions

Given theK distance functions and a new query imageQ, we would like to return a listing of
the K training images in order of similarity toQ. While we can use theK distance functions
to compute the distance from each of the focal imagesFk to Q, these distances are on different
scales and are not directly comparable. This is because (1) the weight vectors for each of the focal
vectors are not constrained to share any properties other than non-negativity, and (2) the number of
elementary distance functions and the elementary functions themselves are different for each focal
image. This challenge is a research problem unto itself, andfor the scope of this work, we employed
a combination of two simple heuristics that works surprisingly well. We hope that these heuristics
provide insight into more principled solutions.

The first heuristic attempts to rescale theK focal image distance functions to make them more
comparable. For each focal image, we divide the distance function by the distance to the closest
image in the learning set, thus making the smallest distanceto the focal image the unit distance.
Thus, if i ranges over the images used to learn thekth distance function, the new distance function
would beD(Fk,Q) divided byminIi 6=Fk

D(Fk, Ii). If the distance to the closest training image is
zero, then we take the distance of the closest training imagethat is nonzero.

Another approach would be, for each test imageQ, to compute some measure of confidence for each
focal imageFi, which could be incorporated into the score for each focal image used to rank them
relative to one another forQ. In this spirit we developed a second heuristic which approximates the
quality of the ranking of a test image relative to a focal image by simply counting the number of
out-of-class training images that were ranked above the test image by that focal image.8 If Q is
very similar toFk, and the distance function learned forFk captures this, then there should be few
dissimilar training images ranked aboveQ, thus the larger the value, the less similar we believeQ
is toFk, relative to the other focal images. For example, Figure 1 shows the raw distances for each
of the images to the focal image in the upper-left corner. There are two negative training examples
in this ranking, the lotus in the 11th position, and the sunflower in the 12th position. All test images
before the 11th position would be given an error penalty of zero, and the test image of the sunflower
in the 13th position would be given an error penalty of two.

These two heuristics are complementary, and we combined them in an ad-hoc manner to generate a
score for each test imageQ to each focal imageFk by simply multiplying the normalized distance
by the error penalty plus one (to avoid zeros). We do not quantitatively evaluate the performance
on the retrieval task, but describe in the next section how weuse these retrieval rankings to perform
classification on the Caltech101 data set. These heuristicsare the weakest part of our method,
and a better algorithm for comparing new images across spaces is likely to even further improve
performance both in retrieval and recognition. We have in theK rankings of the otherK−1 images
a very rich source of information about how all the training images relate to one another, and our
heuristics only make use of a small portion of that information.

4.3 Image Classification from Image Retrieval

If we have methods for determining image similarity and performing retrieval that perform well,
then classification can simply be a post-process on ranked retrieval lists when labels are available
for the training data. From the scores computed between a query imageQ and each focal image
as described in the last section, we have an ordering over ourtraining images. Given class labels
for the training images, we can use a nearest neighbor classifier to assign a class label toQ. In our
experiments, we use a variant of a 2-NN classifier where, if wedo not find two labels that agree in
the first three items of the list, then we continue looking down the list to find the first two that agree.
If there are not two that agree within the top ten items of the list, we assign the label from the first
in the list.

8If the training data isn’t in the form of in- and out-of-class examples, thenwe could instead count the
number of similar-dissimilar inversions in the ranking.



5 Caltech101 Experiments

We test our approach on the Caltech101 data set [3]9. This data set has artifacts that make a few
classes easy, but many are quite difficult, and due to the important challenges it poses for scalable ob-
ject recognition, it has up to this point been one of thede facto standard benchmarks for multi-class
image categorization/object recognition. The dataset contains images from 101 different categories,
with the number of images per category ranging from 31 to 800,with a median of about 50 images.
We ignore the background class and work in a forced-choice scenario with the 101 object categories,
where a query image must be assigned to one of the 101 categories.

We use the same testing methodology and mean recognition reporting described in Grauman et.
al. [4]: we use varying numbers of training set sizes (given in number of examples per class),
and in each training scenario, test with all other images in the Caltech101 data set, except the
BACKGROUND Google class. Recognition rate per class is computed, then averaged across classes.
This normalizes the overall recognition rate so that the performance for categories with a larger num-
ber of test images does not skew the mean recognition rate.

5.1 Training data

We begin with resized versions of the images. The aspect ratio is maintained, but all images are
scaled down to be around200 × 300. We computed features for each of these image as described
in Section 2. We computed at most 400 of each type of feature (two sizes of geometric blur and
one color), for a maximum total of 1,200 features per image. For images with few edge points, we
computed fewer features so that the features were not overlyredundant.

A given run of the learning algorithm is always with respect to one focal imageFk, so that if we
train with 15 images from each of the 101 classes, we run our learning algorithm 1,515 times. For
each focal image we choose a set of more/less similar triplets for training, and since we are learning
similarity for the purposes image classification, we use thecategory labels on the images in the
training set; images that have the same label as the focal image are considered more similar than
all images that are out of class. Note that our use of tripletsallows for a more nuanced training set
where an image could be more similar with respect to one imageand less similar with respect to
another, but we are not fully exploiting that in these experiments.

For each focal image, we use only a subset of the full pairwisecombination of all similar and
dissimilar images. For clarity, we refer toall the images available for training as the “training set”
(e.g. 1,515 images if we are training with 15 images per category), and those that are used as input to
learning for a given focal image as the “learning set” for that focal image. We want in our learning
set for a focal imageF those images that are similar to the focal image according toone of our
individual distance measuresdFk (F , ·). For each of theM distance measures, we take the topN

closest images given bydFk (F , ·). If that group contains both in- and out-of-class images, then we
make triplets out of the full bipartite match. If allN images are in-class, then we find the closest out-
of-class image according to that distance measure and makeN triplets with one out-of-class image
and theN similar images. We do the converse if allN images are out of class. In our experiments,
we usedN = 5, and we have not yet performed experiments to determine the effect of the choice of
N . The final set of triplets forF is the union of the triplets chosen by theM measures. On average,
we used 2,210 triplets per focal image, and mean training time was 1 second.

5.2 Results

We ran a series of experiments, each with a different number of training images per category (either
5, 10, 15, 20, or 30), where we generated 10 independent random splits of the 8,677 images from
the 101 categories into training and test sets. We report theaverage of the mean recognition rates
across these splits as well as the standard deviations. We determined theC parameter of the training
algorithm using leave-one-out cross-validation on a smallrandom subset of 15 images per category,
and our final results are reported using the best value ofC found (0.01). In general, however, the

9Information about the data set, images, and published results can be found athttp://www.vision.
caltech.edu/Image Datasets/Caltech101/Caltech101.html



water lilly (focal image) waterlilly 12.37 lotus 12.39 waterlilly 12.44 water lilly (pos) 12.58

sunflower 12.70 lotus 12.72 waterlilly 12.89 water lilly (pos) 12.96 waterlilly (pos) 13.14

water lilly 13.16 lotus (neg) 13.21 sunflower (neg) 13.22 sunflower 13.23 waterlilly (pos) 13.26 stegosaurus 13.28

Figure 1: The first 15 images from a ranking induced for the focal image in the upper-left corner,
using 15 training/category regime on a subset of the Caltech101 data set. Each image is shown with
its unnormalized distance, and only those marked with (pos)or (neg) were in the learning set for this
focal image. A longer version of the ranking for this image and the rest of this subset can be seen in
the supplemental materials by starting atbrowse/index.html.

method was robust to the choice ofC, with only changes of about 1% in recognition with orders of
magnitude differences inC near the maximum.

In the 15 training images/category setting, we performed recognition experiments on each of our
features separately, the combination of the two shape features, and the combination of two shape
features with the color features, for a total of five different feature combinations. Recognition in the
color-only experiment was the poorest at 13.0%, and in only thirteen of the categories were one-third
or better of test images labeled correctly:Leopards, airplanes, butterfly, car side,
dollar bill, garfield, hawksbill, pizza, snoopy, stop sign, strawberry,
sunflower, andyin yang. Note that all images in thecar side category are black and
white, and that manyhawksbill andairplane images have blue backgrounds. The next best
performance was from the small geometric blur features with50.4% (0.5% std), followed by the
large geometric blur features with 51.4% (±0.8%). Combining the two shape features together, we
achieved 58.2% (±0.7%), and with color and shape, reached 59.1% (±0.8%), which matches the
best published performance for 15 training images on the Caltech 101 data set[12]. The combined
shape and color was better than color alone for almost all categories, excepthawksbill, lotus,
andsunflower, which did not improve with the addition of shape, andpizza, which actually
degraded.10 The combined shape and color was better than the two shape features alone for 39 of
the categories, while it degraded performance for 34 of the categories, and did not change perfor-
mance in the remaining 28. In Figure 5.2 we show the confusionmatrix for combined shape and
color using 15 training images per category. Also in that figure is a graph based on that in [12] that
shows most of the published results for Caltech101 and our performance using 5, 10, 15, 20, and 30
training examples and all three features.

Almost all the processing at test time is the computation of the elementary distance functions be-
tween the focal images and the test image. In practice the weight vectors that we learn for our focal
images are fairly sparse, with a median of 69% of the elementsset to zero after learning, which
greatly reduces the number of feature comparisons performed at test time. We measured that our
unoptimized code takes about 300 seconds per test image.11 After comparisons are computed, we
only need to compute linear combinations and compare scoresacross focal images, which amounts
to negligible processing time. This is a benefit of our methodcompared to the KNN-SVM method of
Zhang, et al.[12], which achieves the same recognition rate, but requires the training of a multiclass
SVM for every test image, and must perform all feature comparisons.

10The distance measure we use combined with the normalization of the geometric blur features seems to
make the focal images from many categories look like pizza.

11To further speed up comparisons, in place of an exact nearest neighbor computation, we could use approx-
imate nearest neighbor algorithms such as locality-sensitive hashing or spill trees.



Figure 2: Average recognition rate across classes versus the number of training examples, based on
the graph in [12]. Results from [12], [6], [8], [4], [1], [11], [5], [10], [3].

6 Conclusion

There are two main contributions in this paper. First, we show the usefulness of simple locally-
defined distance functions for capturing similarity structure between images and demonstrate that
such an approach does not necessarily overfit. This providesan alternative to the popular approach
of learning a single metric for all classes, making it bettersuited to the vision setting where variation
can be large even within a visual category. Second, we demonstrate that using these local distance
metrics and a very simple heuristic, we can perform image retrieval as well as image classification.
On the Caltech 101 object recognition benchmark, we are ableto achieve a recognition performance
of 59% using only fifteen training images per category, whichmatches the best reported perfor-
mance. Furthermore, these results indicate that replacingthe simple-minded heuristics we use to
leverage our distance functions for retrieval with more principled techniques would further utilize
the rich set of ranking information that we have learned and further improve retrieval and recogni-
tion.
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