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Abstract

Patch-based appearance models are used in a wide range of computer vision ap-
plications. To learn such models it has previously been necessary to specify a
suitable set of patch sizes and shapes by hand. In the jigsaw model presented
here, the shape, size and appearance of patches are learned automatically from
the repeated structures in a set of training images. By learning such irregularly
shaped ‘jigsaw pieces’, we are able to discover both the shape and the appearance
of object parts without supervision. When applied to face images, for example,
the learned jigsaw pieces are surprisingly strongly associated with face parts of
different shapes and scales such as eyes, noses, eyebrows and cheeks, to name
a few. We conclude that learning the shape of the patch not only improves the
accuracy of appearance-based part detection but also allows for shape-based part
detection. This enables parts of similar appearance but different shapes to be dis-
tinguished; for example, while foreheads and cheeks are both skin colored, they
have markedly different shapes.

1 Introduction
Many computer vision tasks require the use of appearance and shape models to represent objects
in the scene. The choices for appearance models range from histogram-based representations that
throws away spatial information, to template-based representations that try to capture the entire spa-
tial layout of the objects but cope poorly with articulation, deformation or variation in appearance.
In the middle of this spectrum lie patch-based models that aim to find the right balance between the
two extremes.

However, a central problem with existing patch-based models is that there is no way to choose the
shape and size of a patch; typically a predefined set of patch sizes and shapes (often rectangles or
circles) are used. We believe that natural images can provide enough cues to allow patches to be
discovered of varying shape and size corresponding to the shape and size of object parts present
in the images. Indeed, we will show that the patches discovered by the jigsaw model can become
strongly associated with semantic object parts.

With this motivation, we introduce a generative model for a set of images that learns to extract irreg-
ularly shaped and sized patches from a latent image which are combined to generate each training
image. We call this latent image ajigsawas it contains all the necessary ‘jigsaw pieces’ that can be
used to generate the target image set. We present an inference algorithm for learning the jigsaw and
for finding the jigsaw pieces that make up each image.

As our proposed jigsaw model is a generative model for an image, it can be readily used as a compo-
nent in many computer vision applications for both image understanding and image synthesis. These
include object recognition, detection, image segmentation and image classification, object synthe-
sis, image de-noising, super resolution, texture transfer between images and image in-painting. In
fact, the jigsaw model is likely to be useable as a direct replacement for a fixed patch model in any
existing patch-based system.



2 Related work
The closest work to ours is the epitome model of Jojic et al. [1]. This is a generative model for
image patches, or alternatively a model for images if patches that share coordinates in the image
are averaged together (although this averaging often leads to a blurry result). Epitomes are learned
using a set of fixed shaped patches over a small range of sizes. In contrast, in the jigsaw model,
the inference process chooses appropriately shaped and sized pieces from the training images when
learning the jigsaw. The difference between these two models is illustrated in section 4.

Our work also closely relates to the seminal work of Freeman et al. [2] that proposed a general
machinery for inferring underlying scenes from images, with goals such as in optical flow estimation
and super-resolution. They define a Markov random field over image patches and infer the hidden
scene representation using belief propagation. Again, they use a set of fixed size image patches,
hoping to reach a reasonable trade-off between capturing sufficient statistics in each patch, and
disambiguating different kinds of features. Along these lines, Markov random field with larger
cliques have also been used to capture the statistic of natural images, such as the field of experts
model proposed in [3] which represents the field potentials as non-linear functions of linear filters.
Again, the underlying linear filters are applied to patches of a fixed size.

In the domain of image synthesis the work of Freeman et al. [2] has inspired many patch-based
synthesis algorithms including super resolution, texture transfer, image in-painting or photo syn-
thesis. They can be viewed as a data-driven way of sampling from the Markov random field with
high-order cliques given by the overlapping patches. The texture synthesis and transfer algorithm of
Efros et al. [4] constructs a new image by greedily selecting overlapping patches so that the seam
transition is not visible. Whilst this work does allow different patch shapes, it does not learn patch
appearance since it works from a supplied texture image. Recently a similar approach has been
proposed in [5] for synthesising a collage image from a given set of input images, although in this
case a probabilistic model is defined and optimised.

Patch-based models are also widely applied in object recognition research [6, 7, 8, 9, 10]. These
models use hand-selected patch shapes (typically rectangles) which can lead to poor results given
that different object parts have different sizes and shapes. In fact, the use of fixed patches reduces
accuracy when the object part is of different size and shape than the chosen patch; in this case, the
patch model has to cope with the variability outside the object part. This effect is particularly evident
when the part is at the edge of the object as the model then has to try and capture the variability of
the background. In addition, such models ignore the shape of the object part which is frequently
much more discriminative than appearance alone.

The paper is structured as follows: In section 3 we introduce the probabilistic model and describe
a method for performing learning and inference in the model. In section 4 we show results for
synthetic and real data and present a comparison to the epitome model. Finally, in section 5, we
discuss possible extensions to the model.

3 Probabilistic model
This section describes the probabilistic model that we use to learn a jigsaw from a set of training
images. We aim to learn a jigsaw such that, given an image set, pieces of the jigsaw image satisfy
the following criteria:

• each piece is similar in appearance and shape to several regions of the training images;

• any of the training images can be approximately reconstructed using only pieces from the
jigsaw (a piece may be used more than once in a single image);

• pieces are as large as possible for a particular accuracy of reconstruction.

Thus, while allowing the jigsaw pieces to have arbitrary shape, we ensure that such pieces are shared
across the entire image set, exhaustively explain the input image set, and are also large enough to
be discriminative. By meeting these criteria, we can capture both the appearance and the shape of
repeated image structures, for example, eyes, noses and mouths in a set of face images.

We define a jigsawJ to be an image such that each pixelz in J has an intensity valueµ(z) and an
associated varianceλ−1(z) (soλ is the inverse variance, also called the precision). A set of spatially
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Figure 1: Graphical model showing how the jigsawJ is used to generate a set of imagesI1 . . . IN

by combining the jigsaw pieces in different ways. Each image has a corresponding offset mapL
which defines the jigsaw pieces used to generate that image (see text for details). Notice that several
jigsaw pieces can overlap and hence share parts of their appearance.

grouped pixels inJ is a jigsaw piece. We can combine many of these pieces to generate images,
noting that pixels in the jigsaw be re-used in multiple pieces.

Our probabilistic model is a generative image model which generates an image by joining together
pieces of the jigsaw and then adding Gaussian noise of variance given by the jigsaw. For each image
I, we have an associatedoffset mapL of the same size which determines the jigsaw pieces used
to make that image. This offset map defines a position in the jigsaw for each pixel in the image
(more than one image pixel can map to the same jigsaw pixel). Each entry in the offset map is a
two-dimensional offsetli = (lx, ly), which maps a 2D pointi in the image to a 2D pointz in the
jigsaw usingz = (i − li) mod |J |, where|J | = (width, height) are the dimensions of the jigsaw.
Notice that if two adjacent pixels in the image have the same offset label, then they map to adjacent
pixels in the jigsaw. Figure 1 provides a schematic view of the overall probabilistic model, as it is
used to generate a set ofN face images.

Given this mapping and the jigsaw, the probability distribution of an image is assumed to be inde-
pendent for each pixel and is given by

P (I |J,L) =
∏

i

N (I(i); µ(i− li), λ(i− li)−1) (1)

where the product is over image pixel positions and both subtractions are modulo|J |.
We want the images to consist of coherent pieces of the jigsaw, and so we define a Markov random
field on the offset map to encourage neighboring pixels to have the same offsets.

P (L) =
1
Z

exp


−

∑

(i,j)∈E

ψ(li, lj)


 (2)

whereE is the set of edges in a 4-connected grid. The interaction potentialψ defines a Pott’s model
on the offsets:

ψ(li, lj) = γ δ(li 6= lj) (3)

whereγ is a parameter which influences the typical size of the learned jigsaw pieces. Currently,γ is
set to give the largest pieces whilst maintaining reasonable quality when the image is reconstructed
from the jigsaw.

When learning the jigsaw, it is possible for regions of the jigsaw to be unused, that is, to have no
image pixels mapped to them. To allow for this case, we define a Normal-Gamma prior onµ andλ



for each jigsaw pixelz,

P (J) =
∏
z

N (µ(z); µ0, (βλ(z))−1) Gamma(λ(z); a, b). (4)

This prior means that the behaviour of the model is well defined for unused regions. For our experi-
ments, we fix the hyperparametersµ to .5,β to 1,b to three times the inverse data variance anda to
the square ofb. The local interaction strengthγ is set to 5 per channel.

Inference and learning: The model defines the joint probability distribution on a jigsawJ, a set of
imagesI1 . . . IN , and their offset mapsL1 . . .LN to be

P
(
J, {I,L}N

1

)
= P (J)

N∏
n=1

P (In|J,Ln)P (L). (5)

When learning a jigsaw, the image setI1 . . . IN is known and we aim to achieve MAP learning of
the remaining variables. In other words, our goal is to find the jigsawJ and offset mapsL1 . . .LN

that maximise the joint probability (5).

We achieve this in an iterative manner. First, the jigsaw is initialised by setting the precisionsλ to
the expected value under the priorb/a and the meansµ to Gaussian noise with the same mean and
variance as the data. Given this initialisation, the offset maps are updated for each image by applying
the alpha-expansion graph-cut algorithm of [11] (note that our energy is submodular, also known as
regular). Whilst this process will not necessarily find the most probable offset map, it is guaranteed
to find at least a strong local minimum such that no single expansion move can increase (5).

Given the inferred offset maps, the jigsawJ that maximisesP
(
J, {I,L}N

1

)
can be found analyti-

cally. This is achieved for a jigsaw pixelz, the optimal meanµ? and precisionλ? by using

µ? =
βµ0 +

∑
x∈X(z) I(x)

β + |X(z)| (6)

λ−1? =
b + βµ2

0 − (β + |X(z)|)(µ?)2 +
∑

x∈X(z) I(x)2

a + |X(z)| (7)

whereX(z) is the set of image pixels that are mapped to the jigsaw pixelz across all images. We
iterate between finding the offset maps holding the jigsaw fixed, and updating the jigsaw using the
recently updated offset maps.

When inference has converged, we apply a clustering step to determine the jigsaw pieces (in future
we plan to extend the model so that this clustering arises directly during learning). Regions of the
image are placed in clusters according to the degree of overlap they have in the jigsaw. The degree
of overlap is measured as the ratio of the intersection to the union of the two regions of the jigsaw
the image regions map to. This has the effect of clustering image regions by both appearance and
shape. Each cluster then corresponds to a region of the jigsaw with an (approximately) consistent
shape that explains a large number of image regions.

4 Results
A toy example: In this experiment, we applied our model to the hand-crafted 150x150 RGB im-
age shown in Fig. 2a. This image was constructed by placing four distinct objects (star, triangle,
square and circle), at random positions on a black background image, with the pixels from the more
recently placed object replacing the previously drawn pixels. Hence, we can see substantial amount
of occlusion of parts of these objects. Using this image as the only input, we would like our model
to automatically infer the appearances and shapes of the objects present in the image.

Existing patch-based models are not well-suited to analyzing this image for two reasons: first, there
is no clear way to choose the appropriate patch shapes and sizes, and secondly, even if such a choice
is known, it is difficult for these existing methods (such as epitome [1]) to learn the shape as they
cannot allow for occlusion boundaries without having an explicit occlusion model. For instance, in
[1], a separate shape epitome is learned in conjunction with the appearance epitome so that image
patches can be explained as a two-layered composition of appearance patches using the shape patch.
However, this type of image is difficult to model with a small number of layers due to the large



(a) Input image (b) Input image showing segmentation into patches

(c) Jigsaw mean (d) Jigsaw variance

Figure 2: Toy example:(a) The input image(b) Input image with segmentation boundaries super-
imposed. Red boundary lines have been drawn on the edge of neighboring pixels that have differing
offsets. This segmentation illustrates the different shaped jigsaw pieces found when learning the jig-
saw shown in (c)-(d).(c) Jigsaw mean with the four most-used jigsaw pieces are outlined in white.
(d) The jigsaw variance summed across the RGB channels; white is high, black is low.

number of objects present. In contrast, our model can infer any number of overlapping objects,
without any explicit modelling of layers or depth. This is because our learning algorithm has the
freedom to appropriately adjust a patch’s shape and size to explain only a portion of an object without
explicitly having to represent a global layer ordering. Moreover, we have the potential to infer the
relative depth ordering of neighboring patches by treating rare transitions as occlusions.

Fig. 2b-d shows the results of learning a jigsaw of this toy image. In fig. 2b, we show how the
image decomposes into jigsaw pieces. When two neighboring pixels have different labels, they map
to non-neighboring locations in the jigsaw. With this understanding, we can look at the change in
the labels of the adjacent pixels and plot such a change as a red line. Hence, each region bounded
by the red lines indicates a region from the input image being mapped to the jigsaw. From Fig. 2b,
we can see that the model has discovered well-defined parts (in this example, objects) present in the
image. This is further illustrated in the36× 36 learned jigsaw whose mean and variance are shown
in Fig. 2c,d. The learned jigsaw has captured the shapes and appearances of the four objects and
a black region for modelling the background. Under our Bayesian model, pixels in the jigsaw that
have never been used in explaining the observation are set toµ0, which we have fixed to .5 (gray).
We can obtain jigsaw pieces by doing the clustering step outlined in Section. 3. In Fig. 2c, we also
show the four most-used jigsaw pieces thus obtained by outlining them in white.

Comparison to epitome model: In this section, we compare the jigsaw model with the epitome
model [1], as applied to the dog image in Fig. 3a. We learned a32 × 32 epitome (Fig. 3d) using
all the possible7 × 7 patches from the input image. We then learned a32 × 32 jigsaw (Fig. 3c)
such that the average patch area was 49 pixels, the same as in the epitome model. This was achieved
by modifying the compatibility parameterγ. Fig. 3b shows the segmentation of the image after



(a) Input image (b) Image showing segmentation

(c) Jigsaw mean (d) Epitome mean

Reconstructions from:
(e) Jigsaw (f) Epitome (no averaging) (g) Epitome (averaging 49 patches)

Mean squared error:  .0537 Mean squared error: .0711 Mean squared error: :  .0541

Figure 3: Comparison between jigsaw and epitome.(a) The input image(b) The segmentation of
the image given by the jigsaw model(c,d) The means of the learned jigsaw and epitome models
(e) Reconstruction of the image using the jigsaw(f) Reconstruction from the epitome where each
image pixel is reconstructed using only one fixed-size patch(g) Reconstruction from the epitome
where each image pixel is the average of 49 patches. While this reconstruction has similar mean
squared error to the jigsaw reconstruction, it is more blurry and less visually pleasing.

learning, with patch boundaries overlaid in red. We can see that the pieces correspond to meaningful
regions such as flowers, and also that patch boundaries tend to follow object boundaries.

Comparing Figs. 3c & d, we find that the jigsaw is much less blurred than the epitome and also
doesn’t have the epitome’s artificial ’block’ structure. Instead, the boundaries between different
textures are placed to allocate the appropriate amount of jigsaw space to each texture, for example,
entire flowers are represented as one coherent region. Epitome models can use multi-resolution
learning to reduce, but not eliminate, block artifacts. However, whilst this technique can also be
applied to jigsaw learning, it has not been found to be necessary in order to obtain a good solution.

In Fig. 3e-g, we compare reconstructions of the input image from the learned jigsaw and epitome
models. Since the jigsaw is a generative model for an image, we can reconstruct the image by
mapping pixel colors from the jigsaw according to the offset map. When reconstructing from the
epitome, we can choose to either use one patch per pixel, or to average a number of patches per pixel.
The first approach is most comparable to the jigsaw reconstruction, as it requires only one offset per
pixel. However, we find that, as shown in Fig. 3f, the reconstruction is very blocky. When we
reconstruct the each pixel from the 49 overlapping patches (Fig. 3g), we find that the reconstruction
is overly blurry compared to the jigsaw, despite having a similar mean squared reconstruction error.
In addition, this method requires 49 parameters per pixel rather than one and hence is a significantly
less compact representation of the image. The reconstruction from the jigsaw is noticeably less
blurry and is more visibly pleasing as there is no averaging in the generative process and patch
boundaries tend to occur at actual object boundaries.

Modelling face images:We next applied the jigsaw model to a set of 100 face images from the
Olivetti database at AT&T consisting of 10 different images of 10 people. Each of these grayscale
images are of size64×64 pixels. We set the jigsaw size to128×128 pixels so that the jigsaw has only
1/25 of the area of the input images combined. Figure 4a shows the inferred segmentation of the
images into different shaped and sized pieces (each row contains the images of one person). When
the faces depict the same person with similar pose, the resulting segmentations for these images are
typically similar, showing that similar jigsaw pieces are being used to explain each image. This can
be seen, for instance, from the first row of images in that figure.

Figure 4b shows the mean of the learned jigsaw which can be seen to contain a number of face
‘elements’ such as eyes, noses etc. To obtain the jigsaw pieces, we applied the clustering step
outlined in Section. 3. The obtained clusters are shown in Figure 5(left), which also shows the



(a) 100 face images showing learned segmentation (b) Jigsaw mean

Figure 4: Face images:(a) A set of 100 images, each row containing ten different images of the
same person, with the segmentation given by the jigsaw model shown in red.(b) Jigsaw learned
from these face images, see Figure 5 for clustering results.

sharing of these jigsaw pieces. With the jigsaw pieces known, we can now retrieve the regions from
the image set that correspond to each jigsaw piece. In Figure 5 (right), we show a random selection
of image regions corresponding to several of the most common jigsaw pieces (shown color-coded).
What is surprising is that a particular jigsaw piece becomes very strongly associated with a particular
face part (far more so than when clustering by appearance alone). Thus, by learning the shape of
each jigsaw piece, our model has effectively identified small and large face parts of widely different

Figure 5: Left: The learned face jigsaw of Fig. 4 with overlaid white outlines showing different
overlapping jigsaw pieces. For clarity, pieces used five or fewer times are not shown. Areas of the
jigsaw not used by the remaining pieces have been blacked out. Seven of the most frequently used
jigsaw pieces are shown colored.Right: Unsupervised part learning. For each color-coded jigsaw
piece in the left image, a column showsrandomly chosenimages from the image set, for which that
piece was selected. Notice how these pieces are very strongly associated with different face parts –
the model has achieved unsupervised discovery of two different nose shapes, eyes, eyebrows, cheeks
etc, despite their widely different shapes and sizes.



shapes and aspect ratios. We can also see from that figure that certain jigsaw pieces are conserved
across different people – for example, the nose piece shown in the first column of that figure.

5 Discussion
We have presented a generative jigsaw model which is capable of learning the shape, size and ap-
pearance of repeated regions in a set of images. We have also shown that, for a set of face images,
the learned jigsaw pieces are strongly associated with particular face parts.

Currently, we apply a post-hoc clustering step to learn the jigsaw pieces. This process can be incor-
porated into the model by extending the pixel offset to include a cluster label and learning the region
of jigsaw used by each cluster. We are investigating how best to achieve this.

While we chose a Gaussian as the model for pixel appearance, alternative models can be used, such
as histograms, whilst retaining the ability to achieve translation-invariant clustering. Indeed, by
using appearance models of other forms, we believe that our model could be used to find repeated
structures in other domains such as audio and biology, as well as in images.

Other transformations, such as rotation, scalings and flip, can be incorporated in the model with
cost increasing linearly with the number of transformations. We can also extend the model to allow
the jigsaw pieces to undergo deformation by favoring neighboring offsets that are similar as well as
being identical, using a scheme similar to that of [12].

A practical issue with learning jigsaws is the computational requirement. Every iteration of learning
involves solving as many binary graph cuts as there are pixels in the jigsaw. For instance, for the
toy example, it took about30 minutes to learn a36× 36 jigsaw from a150× 150 image. We have
since developed a significantly faster inference algorithm based on sparse belief propagation. This
speed-up allows the model to be applied to larger image sets and to learn larger jigsaws.

Currently, our model does not explicitly account for multiple sources of appearance variability, such
as illumination. This means that the same object under different illuminations, for example, will
be modelled by different parts of the jigsaw. To account for this, we are investigating factored
variants of the jigsaw which separate out different latent causes of appearance variability. Despite
this limitation, however, we are already achieving very promising results when using the jigsaw for
image synthesis, motion segmentation and object recognition.
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